首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Geobios》2016,49(5):365-379
The Posidoniid-bearing rhythmic deposits, Toarcian to Aalenian (Early/Middle Jurassic) in age, of the Umbria-Marche basins (Fiuminata Colle Corno and Valdorbia type section) consist of hundred couplets, each composed by two semicouplets, a calcium carbonate-poor bed and a calcium carbonate-rich bed, respectively (CacO3 between 10% to 85%), where event tempestite beds randomly occurs. The aim of this work is to show ichnocoenoses and taphocoenoses as well as the faunistic variations of each semicouplet and event beds. Each couplet is ∼30 cm thick in the Toarcian Rosso Ammonitico and up to 40 cm in the Aalenian Calcari e Marne a Posidonia Formation, where the sedimentation rate increased. Here, couplets were deposited in the dysaerobic/aerobic transition zone. The clay-rich portion contains abundant thin-shelled poikilaerobic bivalves and benthic foraminifers (whithout radiolarians) and shows oxygen-poor ichnocoenosis with Chondrites, while the taphocoenosis exhibits convex-upward disposition and disarticulated bivalve shells. Conversely, the limestone semicouplet is rich in radiolarians and thin-shelled bivalves, usually more burrowed (ichnocoenosis including Chondrites and few Planolites and Thalassinoides) than the former, with grouping, dispersion, biogenic fragmentation and orientation-reorientation. In all marl-limestone semicouplets, foraminifers and radiolarians exhibit a periodic inverse correlation in abundance, while thin-shelled bivalves are always abundant. Rhythmically disposed within the rhythmites are also event beds indicating an occasional oxygen-rich substrate, fine-grained calcarenitic tempestites with hummocky cross-stratification, and winnowed bed (thin shelled bivalve concentrations). These deposits are intensely bioturbated (ichnocoenosis including Skolithos, Planolites, Trypanites, Chondrites, and Thalassinoides). Taphocoenoses include fragmentation, grouping, surficial burrowing, biogenic reorientation, and deep burrowing. Ichnological and taphonomical features indicate high physical and biogenical reworking affecting sediments. The Jurassic depocenters of Valdorbia and Fiuminata that received rhythmical dilution (clay) or productivity (carbonate) cycles during Toarcian and Aalenian time can therefore strongly contribute to the study of ichnological and taphonomical variations in rhythmic conditions.  相似文献   

2.
Despite 40+ years of research on aluminum (Al) toxicity in aquatic organisms, Al transport mechanisms through biological membranes, and the intracellular fate of Al once assimilated, remain poorly understood. The trivalent metal scandium shares chemical similarities with Al and, unlike Al, it has a convenient radioactive tracer (Sc-46) allowing for relatively simple measurements at environmentally relevant concentrations. Thus, we investigated the potential of Sc to substitute for Al in uptake and intracellular fate studies with the green alga Chlamydomonas reinhardtii. Short-term (<60 min) competitive uptake experiments indicated that Al does not inhibit Sc influx, implying that these metals do not share a common transport mechanism. Also, internalized Al concentrations were ~4 times higher than Sc concentrations after long-term (72 h) exposures under similar conditions (4.5 μM AlT or ScT, 380 μM FT, pH 7.0, 3.8 pM Al calc 3+ and 1.0 pM Sc calc 3+ ). However, interesting similarities were observed in their relative subcellular distributions, suggesting possible common toxicity/tolerance mechanisms. Both metals mostly distributed to the organelles fraction and almost no association was found with the cytosolic proteins. The greatest difference was observed in the cellular debris fraction (membranes and nucleus) where Al was much more concentrated than Sc. However, it is not clear whether or not this fraction contained extracellular metal associated with the algal surface. To summarize, Sc does not seem to be an adequate substitute of Al for transport/uptake studies, but could be for investigations of toxicity/tolerance mechanisms in C. reinhardtii. Further work is needed to verify this latter suggestion.  相似文献   

3.
It has been reported that aluminum (Al) toxicity is a major limiting factor for plant growth and production on acidic soils. Boron (B) is indispensable micronutrient for normal growth of higher plants, and its addition could alleviate Al toxicity. The rape seedlings were grown under three B (0.25, 25 and 500 μM) and two Al concentrations [0 (?Al) and 100 μM (+Al) as AlCl3·6H2O]. The results indicated that Al stress severely hampered root elongation and root activity at 0.25 μM B while the normal (25 μM) and excess (500 μM) B improved the biomass of rape seedlings under Al exposure. Additionally, normal and excess B treatment reduced accumulation of Al in the roots and leaves under Al toxicity, which was also confirmed by hematoxylin with light staining. This indicates that both normal and excess B could alleviate Al toxicity. Furthermore, it also decreased the contents of malondialdehyde and soluble protein under Al toxicity. Likewise, superoxide dismutase activity (SOD) improved by 97.82 and 131.96% in the roots, and 168 and 119.88% in the leaves at 25 and 500 µM B, respectively, while the peroxidase and catalase activities dropped as a result of Al stress. The study results demonstrated that appropriate B application is necessary to avoid the harmful consequences of Al toxicity in rape seedlings.  相似文献   

4.

Aims

The effect of different MeJA doses applied prior to or simultaneously with toxic Al on biochemical and physiological properties of Vaccinium corymbosum cultivars with contrasting Al resistance was studied.

Methods

Legacy (Al-resistant) and Bluegold (Al-sensitive) plants were treated with and without toxic Al under controlled conditions: a) without Al and MeJA, b) 100 μM Al, c) 100 μM Al + 5 μM MeJA, d) 100 μM Al + 10 μM MeJA and e) 100 μM Al + 50 μM MeJA. MeJA was applied to leaves 24 h prior to or simultaneously with Al in nutrient solution. After 48 h, Al-concentration, lipid peroxidation (LP), H2O2, antioxidant activity, total phenols, total flavonoids, phenolic compounds and superoxide dismutase activity (SOD) of plant organs were analyzed.

Results

Al-concentrations increased with Al-treatment in both cultivars, being Al, LP and H2O2 concentrations reduced with low simultaneous MeJA application. Higher MeJA doses induced more oxidative damage than the lowest. Legacy increased mainly non-enzymatic compounds, whereas Bluegold increased SOD activity to counteract Al3+.

Conclusions

Low MeJA doses applied simultaneously with Al3+ increased Al-resistance in Legacy by increasing phenolic compounds, while Bluegold reduced oxidative damage through increment of SOD activity, suggesting a diminution of its Al-sensitivity. Higher MeJA doses could be potentially toxic. Studies are needed to determine the molecular mechanisms involved in the protective MeJA effect against Al-toxicity.
  相似文献   

5.
The plasmonic effect is introduced in solar thermal areas to enhance light harvest and absorption. The optical properties of plasmonic nanofluid are simulated by finite difference time domain (FDTD) method. Due to the excitation of localized surface plasmon resonance (LSPR) effect, an intensive absorption peak is observed at 0.5 μm. The absorption characteristics are sensitive to particle size and concentration. As the particle size increases, the absorption peak is broadened and shifted to longer wavelength. The absorption of SiO2/Ag plasmonic nanofluid is improved gradually as the volume concentration increases, especially in the UV region. The absorption edge is shifted from 0.6 to 1.0 μm as the volume concentration increases from 0.001 to 0.01. The thermal simulation of suspended SiO2/Ag nanoparticle shows a uniform temperature rise of 17.91 K under solar irradiation (AM 1.5), while under the same condition, the temperature rises in Ag nanoparticle and Al nanoparticle are 11.12 and 5.39 K, respectively. The core/shell plasmonic nanofluid exhibits a higher photothermal performance, which has a potential application in photothermal areas. A higher temperature rise can be obtained by improving the incident light intensity or optical absorption properties of nanoparticles.  相似文献   

6.
Suaeda fruticosa Forssk is a leaf succulent obligate halophyte that produces numerous seeds under saline conditions. Seeds are a good source of high quality edible oil and leaves are capable of removing substantial amount of salt from the saline soil besides many other economic usages. Little is known about the biochemical basis of salt tolerance in this species. We studied some biochemical responses of S. fruticosa to different exogenous treatments under non-saline (0 mM), moderate (300 mM) or high (600 mM) NaCl levels. Eight-week-old seedlings were sprayed twice a week with distilled water, hydrogen peroxide (H2O2, 100 μM), glycine betaine (GB, 10 mM), or ascorbic acid (AsA, 20 mM) for 30 days. At moderate (300 mM) NaCl, leaf Na+, Ca2+ and osmolality increased, along with unchanged ROS and antioxidant enzyme activities, possibly causing a better plant growth. Plants grew slowly at 600 mM NaCl to avoid leaf Na+ buildup relative to those at 300 mM NaCl. Exogenous application of distilled water and H2O2 improved ROS scavenging mechanisms, although growth was unaffected. ASA and GB alleviated salt-induced growth inhibition at 600 mM NaCl through enhancing the antioxidant defense system and osmotic and ion homeostasis, respectively.  相似文献   

7.
Aluminum (Al) is the third most abundant metal in the Earth’s surface, and Al toxicity promotes several negative effects in plant metabolism. Silicon (Si) is the second most common mineral in soil and is considered a beneficial element for plants, improving their tolerance to biotic and abiotic stresses. The aim of this study is to determine whether Si can reduce the accumulation of Al, explain the possible contribution of Si in mitigating Al toxicity, and indicate the better Si dose–response for cowpea plants. The experiment had a factorial design with two levels of aluminum (0 and 10 mM Al) and three levels of silicon (0, 1.25 and 2.50 mM Si). The utilization of Si in plants exposed to Al toxicity contributed to significant reductions in the Al contents of all tissues, corresponding to reductions of 51, 29 and 41% in roots, stems and leaves, respectively, upon treatment with 2.50 mM Si + 10 mM Al compared to the control treatment (0 mM Si + 10 mM Al). Al toxicity promoted decreases in ΦPSII, qP and ETR, whereas 2.50 mM Si induced increases of 54, 185 and 29%, respectively. Plants exposed to Al had lower values of P N, WUE and P N/C i, whereas Si application at a concentration of 2.50 mM yielded improvements of 53, 32 and 67%, respectively. Al exposure increased SOD, CAT, APX and POX activities, whereas treatment with 2.50 mM Si + 10 mM Al produced significant variations of 72, 97, 48 and 32%, respectively, compared to 0 mM Si + 10 mM Al. Our results proved that Si reduced the Al contents in all tissues. Si also improved the photochemical efficiency of PSII, gas exchange, pigments and antioxidant enzymes, contributing to a reduction in the accumulation of oxidative compounds. These benefits corroborate the multiple roles exercised by Si in metabolism and reveal that Si immobilizes the Al in roots and reduce the accumulation of this metal in other organs, mitigating the damage caused by Al in cowpea plants. In relation to dose–response, plants exposed to 1.25 mM Si without Al presented better results in terms of growth, whereas the toxic effects of plants exposed to Al were mitigated with 2.50 mM Si.  相似文献   

8.
Plant growth and productivity are greatly affected due to changes in the environmental conditions. In the present investigation, the interactive effects of two important abiotic stresses, i.e., water deficit and Al toxicity, were examined in the seedlings of two rice (Oryza sativa L.) cvs. Malviya-36 (water deficit/Al sensitive) and Vandana (water deficit/Al tolerant). When 15 days grown seedlings were exposed to water deficit (created with 15 % polyethylene glycol 6000) or Al (1 mM AlCl3) treatment or both the treatments together for 48 h, the lengths of root/shoot, relative water content, and chlorophyll greatly declined in the seedlings of the sensitive cultivar, whereas in the tolerant seedlings, either little or insignificant decline in these parameters was observed due to the treatments. Seedlings subjected to water deficit or Al treatment alone or in combination showed increased intensity of the isoenzyme activity bands of superoxide dismutase (SOD), guaiacol peroxidase (GPX), and ascorbate peroxidase (APX) in in-gel activity staining studies. Water deficit caused decrease in intensity of catalase (CAT) activity bands; however, when seedlings were exposed to AlCl3 alone or in combination with water deficit, the intensity of the CAT isoforms increased in both the rice cultivars. The level of expression of the activity bands of SOD, CAT, GPX, and APX was always higher in the seedlings of tolerant cv. Vandana compared to the sensitive cv. Malviya-36 under both controls as well as stress treatments. Higher intensity of isozymes representing higher activity levels of antioxidative enzymes in the rice seedlings and their further increase under water deficit, Al exposure, or in combination of both the stresses appears to serve as useful marker for specifying a combination of water deficit and Al tolerance in rice.  相似文献   

9.
Allium stracheyi Baker (Alliaceae, 2600–3000 m asl), an endangered species of Central Himalaya, India, has low seed germination in its natural habitat. This study is an attempt to improve seed germination by determining the seed viability with a low mean germination time (MGT) and germination index (GI) under optimum temperature, light, and pre-soaking treatments. The seeds were pre-soaked in hot water (80°C), cold water (10°C), and gibberellic acid (GA3 at 50 and 100 mg/l) for 24 h and subjected to light (12 h light and 12 h dark) and continuous dark (24 h) conditions with different temperature regimes (10, 15, 20, 25, and 30°C). The viability varied between 66.0% and 69.67% and declined rapidly after 12 months of storage. Our studies suggest that the 100 mg/l GA3 treatment was beneficial for seed germination and seedling growth. Pre-soaking in a 100 mg/l GA3 solution and incubation at 20°C under light conditions enhanced the germination significantly (p < 0.05) and resulted in the highest (97.3%) germination with the lowest MGT = 5.7 days, with GI = 8.11. The recommendations of this study support the conservation of alpine A. stracheyi via simple and cost-effective techniques for optimal seed germination.  相似文献   

10.
Concentrations of aluminum (Al) were determined in leaves of native terrestrial plants, macrophytes and fruit parts (watermelon and tomato) using inductively coupled plasma mass spectrometry. Al concentrations in water and soil were determined by inductively coupled plasma optical emission spectrometry. Potamogeton thunbergii (macrophyte) and Cynodon aethiopicus (terrestrial grass) had the highest leaf Al concentrations (2 and 1 g kg?1 dw, respectively). Transfer factors (mg kg?1 dw plants/mg kg?1 dw soil) based on total Al concentrations in soil varied from 2 × 10?3 to 0.05 and from 1.9 to 78 based on mobile Al concentrations determined after sequential extraction. Bioconcentration factors (mg kg?1 dw plants/mg L?1 water) varied from 19 to 9.5 × 103 L kg?1 dw. Plants can accumulate high concentrations of Al when growing in neutral pH soils and slightly alkaline lakes in the Ethiopian Rift Valley. Controlled experiments showed that C. aethiopicus can accumulate high levels of Al both in root and shoot. Compared to Arabidopsis thaliana, C. aethiopicus was more tolerant to Al exposure as ≥400 μM AlCl3 was needed to inhibit root growth compared to 200 μM in A. thaliana. After exposing C. aethiopicus and A. thaliana in 800 μM AlCl3, alkaline comet assay indicates significant DNA (deoxyribonucleic acid) damage in A. thaliana while C. aethiopicus was unaffected. No significant induction of reactive oxygen species (ROS), in terms of leaf H2O2 levels, could be observed in C. aethiopicus. C. aethiopicus has mechanisms to suppress both Al-induced ROS and DNA damage, thereby increasing tolerance of the species to high Al concentrations.  相似文献   

11.
This study reports bioavailability and metabolism of fucoxanthin (FUCO) from brown algae Padina tetrastromatica in rats. Rats were divided into two groups (n = 25/group). Group one was fed basal diet (control) while the group two received retinol deficient diet (RD group) for 8 weeks. After confirmed RD in blood (0.53 μmol/l), rats were further sub-grouped (n = 5/sub group), intubated a dose of FUCO (0.83 μmol) and killed after 0, 2, 4, 6 and 8 h. The plasma levels (area under curve/8 h) of FUCO (fucoxanthinol (FUOH) + amarouciaxanthin (AAx)) was 2.93 (RD group) and 2.74 pmol/dl (control), respectively. No newly formed retinol was detected in RD rats intubated with FUCO. Besides FUOH (m/z 617 (M+H)+) and AAx (m/z 617 (M+H?)+), other deacetylated, hydrolyzed and demethylated metabolites of bearing molecular mass at m/z 600.6 (FUOH–H2O), m/z 597 (AAx–H2O), m/z 579 (AAx–2H2O+1), m/z 551 (AAx–2H2O–2CH3+2) and m/z 523 (AAx–2H2O–4CH3+4) were also detected in plasma and liver by LC-MS (APCI). Although biological functions of FUCO metabolites need thorough investigation, this is the first detailed report on FUCO metabolites in rats.  相似文献   

12.
Although aluminum chronic neurotoxicity is well documented, there are no well-established experimental protocols of Al exposure. In the current study, toxic effects of sub-chronic Al exposure have been evaluated in outbreed male rats (gastrointestinal administration). Forty animals were used: 10 were administered with AlCl3 water solution (2 mg/kg Al per day) for 1 month, 10 received the same concentration of AlCl3 for 3 month, and 20 (10 per observation period) saline as control. After 30 and 90 days, the animals underwent behavioral tests: open field, passive avoidance, extrapolation escape task, and grip strength. At the end of the study, the blood, liver, kidney, and brain were excised for analytical and morphological studies. The Al content was measured by inductively coupled plasma mass-spectrometry. Essential trace elements—Co, Cr, Cu, Fe, Mg, Mn, Mo, Se, and Zn—were measured in whole blood samples. Although no morphological changes were observed in the brain, liver, or kidney for both exposure terms, dose-dependent Al accumulation and behavioral differences (increased locomotor activity after 30 days) between treatment and control groups were indicated. Moreover, for 30 days exposure, strong positive correlation between Al content in the brain and blood for individual animals was established, which surprisingly disappeared by the third month. This may indicate neural barrier adaptation to the Al exposure or the saturation of Al transport into the brain. Notably, we could not see a clear neurodegeneration process after rather prolonged sub-chronic Al exposure, so probably longer exposure periods are required.  相似文献   

13.
Aluminum (Al) is considered to be a potentially toxic metal and inhibits cartilage formation. Transforming growth factor β1 (TGF-β1) and bone morphogenetic protein 2 (BMP-2) are cartilage stimulatory growth factors, which play important roles in regulating the cartilage formation. To investigate the effects of aluminum trichloride (AlCl3) on the regulation of cartilage formation. Eighty Wistar rats were orally exposed to 0 (control group), 0.4 g/L (low-dose group), 0.8 g/L (mid-dose group) and 1.6 g/L (high-dose group) AlCl3 for 120 days, respectively. The rats body weight were decreased, the cartilage histological structure were disrupted, the cartilage and serum contents of Al and the serum level of C-telopeptide of type II collagen were all increased, the serum level of type II collagen (Col II) and alkaline phosphatase (ALP), and the mRNA expressions of TGF-β1, BMP-2, ALP and Col II were all decreased in the AlCl3-treated groups compared with those in control group. These results indicate that AlCl3 inhibits the cartilage formation through inhibition of the cartilage stimulatory growth factors expressions.  相似文献   

14.
The purpose of the study was to investigate the effect of subchronic aluminum (Al) exposure on iron (Fe) homeostasis in rats. One hundred Wistar rats were divided into two groups. Experimental rats were given drinking water containing aluminum chloride (AlCl3, 430 mg Al3+·L?1), while control rats were given distilled water for up to 150 days. Ten rats were sacrificed in each group every 30 days. Mean corpuscular hemoglobin (MCH), and serum levels of Al, Fe, transferrin (TF), total iron binding capacity (TIBC), and soluble transferrin receptor (sTfR) were measured. Al-treated rats showed significantly decreased bodyweight and increased Al and Al/Fe levels during the experimental period. Fe levels and MCH were higher on day 150 in the experimental group than in the control group. TF content and TIBC were higher, whereas erythrocyte counts and sTfR content were lower in the experimental group than in the control group from days 90 and 60, respectively. Longer duration of Al administration increased the serum levels of Al, TF, Al/Fe, and TIBC and decreased sTfR. MCH and Fe levels decreased first, and then increased. The results indicate that chronic exposure to Al disturbed Fe homeostasis.  相似文献   

15.
The effect of soil acidity on root and rhizosheath development in wheat and barley seedlings was investigated in an acid Ferrosol soil to which various amounts of lime (CaCO3) were applied to modify soil Al concentrations (pH (CaCl2): 4.22 to 5.35 and Al (CaCl2 extract): 17.7 to 0.4 mg kg?1 soil; respectively), and Ferrosol soil from an adjacent location at the same site which had a higher Al concentration (pH 4.19; 29.2 mg kg?1 Al). The cereal lines were selected on the basis of differences in their rate of root growth, Al-resistance and root hair morphology. Root morphology was assessed after 7 days of growth. The length of fine (mainly lateral) roots of Al-sensitive genotypes was more sensitive to soil Al concentrations than that of the coarse (mainly primary) roots. The experiments demonstrated that even where root growth was protected by expression of the TaALMT1 gene for Al-resistance, root-soil contact was diminished by soil acidity because root hair length (in many lines), and root hair density and rhizosheath formation (all lines) were adversely affected by soil acidity. In the case of Al-sensitive lines, fine root growth and rhizosheath mass were reduced over much the same range of soil Al concentrations (i.e. >3–6 mg kg?1 Al). Although Al-resistant lines could maintain fine root length under these conditions, they were similarly unable to maintain rhizosheath mass. This finding may help to explain why Al-resistant wheats which yield relatively well in deep acid soils, may also benefit from application of lime to the surface layers of the soil.  相似文献   

16.
To examine the effects of subsoil NaCl salinity in relation to water stress imposed at different growth stages, wheat was grown in a heavy texture clay soil (vertosol) under glasshouse conditions in polythene lined cylindrical PVC pots (100 cm long with 10.5 cm diameter) with very low salinity level (ECe 1.0 dS/m; ESP 1.0 and Cl 30 mg/kg soil) in top 10 cm soil (10–20 cm pot zone) and low salinity level (ECe 2.5 dS/m, ESP 5, and Cl 100 mg/kg soil) in top 10–20 cm soil (20–30 cm pot zone). The plants were exposed to three subsoil salinity levels in the 20–90 cm subsoil (30–100 cm pot zone) namely low salinity (ECe: 2.5 dS/m, ESP: 5, Cl: 100 mg/kg soil), medium salinity (ECe: 4.0 dS/m, ESP: 10, Cl: 400 mg/kg) and high salinity (ECe: 11.5 dS/m, ESP: 20, Cl: 1950 mg/kg) in the subsoil (20–90 cm soil layer: 30–100 cm pot zone). Watering of plants was withheld for 20 days commencing at either early booting or anthesis or mid grain filling, and then resumed until maturity, and these treatments were compared with no water stress. Water stress commencing at anthesis stage had the most depressing effect on grain yield and water use efficiency of wheat followed by water stress at grain filling stage and early booting stage. High subsoil salinity reduced grain yield by 39.1, 24.3%, and 13.4% respectively in plants water-stressed around anthesis, early booting, and mid grain filling compared with 36.6% in well-watered plants. There was a significant reduction in root biomass, rooting depth, water uptake and water use efficiency of wheat with increasing subsoil salinity irrespective of water regimes. Plants at high subsoil salinity had 64% of their root biomass in the top 0–30 cm soil and there was a marked reduction in subsoil water uptake. Roots also penetrated below the non-saline surface into salinised subsoil and led to attain high concentration of Na and Cl and reduced Ca/Na and K/Na ratio of flag leaf at anthesis stage. Results suggest that high subsoil salinity affects root growth and water uptake, grain yield and water use efficiency even in well water plants. Water stress at anthesis stage had the most depressing effect on wheat.  相似文献   

17.
Pharmacophore mapping, molecular docking and quantitative structure–activity relationship (QSAR) studies were carried out for a structurally diverse set of 48 compounds as CYP2B6 inhibitors. The generated best pharmacophore hypotheses from the three methods of conformer generation (FAST, BEST and conformer algorithm based on energy screening and recursive buildup) indicate the importance of two features, namely, hydrogen bond acceptor [electron-rich centre] and ring aromaticity. The distance between the two centres of the important features for ideal inhibitors varied from 5.82 to 6.03 Å. The chemometric tools used for the QSAR analysis were genetic function approximation (GFA) and genetic partial least squares. The developed QSAR models indicate the importance of an electron-rich centre, size of molecule, impact of branching and ring system and distribution of charges in the molecular surface. The docking study confirms the importance of an electron-rich centre for binding with the iron atom of the cytochrome enzyme. A GFA model with spline option was found to be the best model based on internal validation as well as the r 2 m (overall) criterion (Q 2 = 0.772, r 2 m (overall) = 0.774). According to the external prediction statistics (R 2 pred = 0.876), another GFA-derived model with spline option outperforms the remaining models.  相似文献   

18.
Ammonia transport and metabolism were investigated in the intestinal tract of freshwater rainbow trout which had been either fasted for 7 days, or fasted then fed a satiating meal of commercial trout pellets. In vivo, total ammonia concentrations (T amm) in the chyme were approximately 1 mmol L?1 across the entire intestine at 24 h after the meal. Highest chyme pH and P NH3 values occurred in the posterior intestine. In vitro gut sac experiments examined ammonia handling with mucosal (Jmamm) and serosal (Jsamm) fluxes under conditions of fasting and feeding, with either background (control ≤0.013 mmol L?1) or high luminal ammonia concentrations (HLA = 1 mmol L?1), the latter mimicking those seen in chyme in vivo. Feeding status (fasted or fed) appeared to influence ammonia handling by each individual section. The anterior intestine exhibited the greatest Jmamm and Jsamm values under fasted control conditions, but these differences tended to disappear under typical post-feeding conditions when total endogenous ammonia production (Jtamm = Jsamm ? Jmamm, signs considered) was greatly elevated in all intestinal sections. Under fasted conditions, glutamate dehydrogenase (GDH) and glutaminase (GLN) activities were equal across all sections, but the ammonia-trapping enzyme glutamine synthetase (GS) exhibited highest activity in the posterior intestine, in contradiction to previous literature. Feeding clearly stimulated the total rate of endogenous ammonia production (Jtamm), even in the absence of a high luminal ammonia load. This was accompanied by an increase in GDH activity of the anterior intestine, which was also the site of the largest Jtamm. In all sections, during HLA exposure, either alone or in combination with feeding, there were much larger increases in endogenous Jtamm, most of which was effluxed to the serosal solution. This is interpreted as a response to avoid potential cytotoxicity due to overburdened detoxification mechanisms in the face of elevated mucosal ammonia. Thus T amm of the intestinal tissue remained relatively constant regardless of feeding status and exposure to HLA. Ammonia production by the gut may explain up to 18 % of whole-body ammonia excretion in vivo under fasting conditions, and 47 % after feeding, of which more than half originates from endogenous production rather than from absorption from the lumen.  相似文献   

19.
The root apex is considered the first sites of aluminum (Al) toxicity and the reduction in root biomass leads to poor uptake of water and nutrients. Aluminum is considered the most limiting factor for plant productivity in acidic soils. Aluminum is a light metal that makes up 7 % of the earth’s scab dissolving ionic forms. The inhibition of root growth is recognized as the primary effect of Al toxicity. Seeds of wheat cv. Keumkang were germinated on petridish for 5 days and then transferred hydroponic apparatus which was treated without or with 100 and 150 μM AlCl3 for 5 days. The length of roots, shoots and fresh weight of wheat seedlings were decreased under aluminum stress. The concentration of K+, Mg2+ and Ca2+ were decreased, whereas Al3+ and P2O5 ? concentration was increased under aluminum stress. Using confocal microscopy, the fluorescence intensity of aluminum increased with morin staining. A proteome analysis was performed to identify proteins, which are responsible to aluminum stress in wheat roots. Proteins were extracted from roots and separated by 2-DE. A total of 47 protein spots were changed under Al stress. Nineteen proteins were significantly increased such as sadenosylmethionine, oxalate oxidase, malate dehydrogenase, cysteine synthase, ascorbate peroxidase and/or, 28 protein spots were significantly decreased such as heat shock protein 70, O-methytransferase 4, enolase, and amylogenin. Our results highlight the importance and identification of stress and defense responsive proteins with morphological and physiological state under Al stress.  相似文献   

20.
This paper focuses on the causes of zonation on agricultural land affected by secondary salinity between two halophytic grasses, puccinellia (Puccinellia ciliata Bor. cv. Menemen) and tall wheatgrass (Thinopyrum ponticum (Podp.) Z.-W. Liu & R.R.-C. Wang cv. Tyrrell). We hypothesized that the differences in zonation of puccinellia and tall wheatgrass were caused primarily by differences in the tolerance of these two species to waterlogging under saline conditions. This hypothesis was tested by conducting experiments in the field and in the glasshouse in irrigated sand cultures. At a saltland field site, locations dominated by puccinellia had ECe values that were consistently higher (11–12 dS/m in early spring, and 5–9 dS/m in late summer) than locations dominated by tall wheatgrass. However locations dominated by puccinellia also had a watertable that was shallower (0.07–0.09 m in the high rainfall season; 0.11–0.13 m in the low rainfall season) than locations dominated by tall wheatgrass. In the glasshouse both species had similar growth responses to salinity under drained conditions, with a 50% decrease in shoot dry mass (DM) at ~300 mM NaCl. However, the combination of salinity (250 mM NaCl) and waterlogging increased puccinellia shoot DM by 150% but decreased shoot DM of tall wheatgrass by 90% (compared with salinity alone). Under saline/waterlogged conditions, puccinellia showed better exclusion of Na+ and maintenance of K+/Na+ in the shoots than tall wheatgrass. We conclude that the zonation of puccinellia and tall wheatgrass is associated with differences in their ion regulation which leads to substantial differences in their growth under saline/waterlogged conditions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号