首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The Jesmond succession of the Cache Creek Terrane in southern British Columbia records late Early Triassic peritidal carbonate sedimentation on a mudflat of a buildup resting upon a Panthalassan seamount. Conodont and foraminiferal biostratigraphy dates the succession as the uppermost Smithian to mid-Spathian. The study section (ca. 91 m thick) is dominated by fine-grained carbonates and organized into at least 12 shallowing-upwards cycles, each consisting of shallow subtidal facies and overlying intertidal facies. The former includes peloidal and skeletal limestones, flat-pebble conglomerates, stromatolitic bindstones, and oolitic grainstone, whereas the latter consists mainly of dolomicrite. The scarcity of skeletal debris, prevalence of microbialite, and intermittent intercalation of flat-pebble conglomerate facies imply environmentally harsh conditions in the mudflat. The study section also records a rapid sea-level fall near the Smithian-Spathian boundary followed by a gradual sea-level rise in the early to mid-Spathian.  相似文献   

2.
Two important lagerstätten of Early Triassic gastropods, the Sinbad Limestone (Utah, USA) and the Gastropod Oolite (North Italy) yield about 40% of all described Early Triassic species. This great contribution to the global diversity and the exceptional good preservation render high information content, which characterizes fossil lagerstätten. The Smithian Sinbad Limestone contains the most diverse Early Triassic gastropod fauna. At the type locality, it occurs in single, probably storm-induced shell bed within a series of high energy deposits underlain by intertidal microbial mats and subtidal oolite/peloid shoals. The main shell bed contains about 40 invertebrate taxa. Gastropods, scaphopods, and bivalves are most abundant and form an assemblage, which is dominated by small neritaemorphs, the opisthobranch Cylindrobullina convexa and the scaphopod Plagioglypta (annulated tubes). This assemblage lived on shallow, subtidal soft-bottoms based on sedimentological and ecological characteristics. The Dienerian (to Smithian?) Gastropod Oolite Member (North Italy) has extremely abundant, probably salinity-controlled gastropod faunas with low species richness. Almost monospecific assemblages of Pseudomurchisonia kokeni as well as assemblages with about four species are present in the Gastropod Oolite. Modern hydrobiid mudsnail faunas which are adapted to strongly fluctuating salinity in intertidal to shallow subtidal coastal areas form probably a suitable model for the Gastropod Oolite biota. Gastropods from the Werfen- and Moenkopi-Formation lagerstätten are well preserved compared to other Early Triassic deposits. The high contribution to the global diversity of just two sites suggests very incomplete sampling and preservational bias. However, the low richness of the major faunas reflects depauperate Early Triassic faunas and slow recovery from the Permian/Triassic crisis.  相似文献   

3.
二叠纪末海洋生态环境的恶化导致海洋底栖生物的大灭绝及早三叠世蓝细菌的爆发,有关这一时期我国华南蓝细菌化石的报道主要来自早三叠世早期的微生物岩。四川江油渔洞子剖面下三叠统飞仙关组下部巨鲕灰岩中首次发现有丰富的疑似蓝细菌,在种类和结构上与以往所报道的蓝细菌有着明显区别。疑似蓝细菌在巨鲕内和围岩中的富集,表明巨鲕灰岩的成因与疑似蓝细菌的活动有关,与飞仙关组底部微生物岩在成因上有着密切联系,显示早三叠世早期在这一地区发生了疑似蓝细菌的双幕式爆发,同时,暗示着这一地区二叠纪-三叠纪之交至少发生了两次海洋环境恶化及动物灭绝事件。疑似蓝细菌的爆发性生长,对于海洋生态环境的修复和海洋含氧条件的改善,进而为早三叠世末、中三叠世的生物全面复苏、辐射有着重要意义。  相似文献   

4.
Microbial deposits in upper Miocene carbonates, Mallorca, Spain   总被引:1,自引:0,他引:1  
The Santanyí Limestone, a 30-35-m thick upper Miocene limestone succession cropping out in Mallorca, contains abundant microbialite deposits, the shape, microstructure and texture of which was controlled by environmental factors: depth, energy and salinity. Three main types of microbialites are distinguished: (1) domed (DNOS) and stratiform, mostly undulate (UNOS) non-oolitic stromatolites, (2) undulate oolitic laminites (UOL) and (3) domed-oolitic thrombolites (DOTs). Based on lithofacies associations and occurrence of microbialite types, the Santanyí Limestone succession is subdivided into five stratigraphic units (I to V) separated by sharp surfaces. Within units II, III and V, the vertical evolution of microbialites was induced by changes in accommodation space/depth: (1) intertidal/very-shallow subtidal conditions at the base were induced by flooding over a wide area, (2) continued sea-level rise caused submergence to subtidal conditions, and (3) a significant bathymetric decrease created the sharp surface bounding these units.In units II and III, NOS accumulated in variable energy and depth conditions, as buildups with thick, somewhat discontinuous and mostly non-isopachous lamination, surrounded by oolitic grainstones with wave and current structures and oolitic intraclasts. In contrast, thin and generally regular and smooth lamination of NOS in unit V suggests, along with the absence of oolite grainstones and macrobiota, calm and restricted, maybe more saline, conditions.UOL, consisting of oolitic layers separated by thin micritic laminae, developed adjacent to NOS in units II and III and to DOT at the lower part of unit III, in shallow-water and low-energy conditions. Both ooids and micrite laminae have evidence for biogenesis. Micritized ooids containing microbial remains are common. Micritic laminae in UOL and the dark micritic laminae in NOS are thought to represent bacterially enhanced calcite precipitation and lithification during periods of low sedimentation.Oolitic thrombolites containing macrobiota are only present in unit III. They represent deeper and open-marine conditions affected by high-energy events, in which microbially mediated precipitation favoured microbialite accretion and lithification.  相似文献   

5.
The late Early Triassic sedimentary–facies evolution and carbonate carbon-isotope marine record (δ13Ccarb) of ammonoid-rich, outer platform settings show striking similarities between the South China Block (SCB) and the widely distant Northern Indian Margin (NIM). The studied sections are located within the Triassic Tethys Himalayan belt (Losar section, Himachal Pradesh, India) and the Nanpanjiang Basin in the South China Block (Jinya section, Guangxi Province), respectively. Carbon isotopes from the studied sections confirm the previously observed carbon cycle perturbations at a time of major paleoceanographic changes in the wake of the end-Permian biotic crisis. This study documents the coincidence between a sharp increase in the carbon isotope composition and the worldwide ammonoid evolutionary turnover (extinction followed by a radiation) occurring around the Smithian–Spathian boundary.Based on recent modeling studies on ammonoid paleobiogeography and taxonomic diversity, we demonstrate that the late Early Triassic (Smithian and Spathian) was a time of a major climate change. More precisely, the end Smithian climate can be characterized by a warm and equable climate underlined by a flat, pole-to-equator, sea surface temperature (SST) gradient, while the steep Spathian SST gradient suggests latitudinally differentiated climatic conditions. Moreover, sedimentary evidence suggests a transition from a humid and hot climate during the Smithian to a dryer climate from the Spathian onwards. By analogy with comparable carbon isotope perturbations in the Late Devonian, Jurassic and Cretaceous we propose that high atmospheric CO2 levels could have been responsible for the observed carbon cycle disturbance at the Smithian–Spathian boundary. We suggest that the end Smithian ammonoid extinction has been essentially caused by a warm and equable climate related to an increased CO2 flux possibly originating from a short eruptive event of the Siberian igneous province. This increase in atmospheric CO2 concentrations could have additionally reduced the marine calcium carbonate oversaturation and weakened the calcification potential of marine organisms, including ammonoids, in late Smithian oceans.  相似文献   

6.
Mata SA  Bottjer DJ 《Geobiology》2012,10(1):3-24
Widespread development of microbialites characterizes the substrate and ecological response during the aftermath of two of the 'big five' mass extinctions of the Phanerozoic. This study reviews the microbial response recorded by macroscopic microbial structures to these events to examine how extinction mechanism may be linked to the style of microbialite development. Two main styles of response are recognized: (i) the expansion of microbialites into environments not previously occupied during the pre-extinction interval and (ii) increases in microbialite abundance and attainment of ecological dominance within environments occupied prior to the extinction. The Late Devonian biotic crisis contributed toward the decimation of platform margin reef taxa and was followed by increases in microbialite abundance in Famennian and earliest Carboniferous platform interior, margin, and slope settings. The end-Permian event records the suppression of infaunal activity and an elimination of metazoan-dominated reefs. The aftermath of this mass extinction is characterized by the expansion of microbialites into new environments including offshore and nearshore ramp, platform interior, and slope settings. The mass extinctions at the end of the Triassic and Cretaceous have not yet been associated with a macroscopic microbial response, although one has been suggested for the end-Ordovician event. The case for microbialites behaving as 'disaster forms' in the aftermath of mass extinctions accurately describes the response following the Late Devonian and end-Permian events, and this may be because each is marked by the reduction of reef communities in addition to a suppression of bioturbation related to the development of shallow-water anoxia.  相似文献   

7.
The Middle Albian sequence from the western marginal area of the Vasco-Cantabrian Basin contains calcified microbialites in different marine depositional environments, individually well defined by microstructure, lamina characteristics and mode of formation. Microbialites may form the primary framework of reefs, which occur as composite stacks in mid to lower slope environments or as isolated bodies in small intraplatform basins. In most areas microbialite reef growth was initiated below the photic zone. Stratiform intercalations of microbialites and composite microbialite/foraminifer oncoids are restricted to well bedded carbonate platform deposits (Urgonian). Three basis types of microbialites are recognized:
(i)  Dense micritic/fenestral microbialites corresponding to laterally linked, stacked stromatolitic hemispheroids. The development and preservation of stromatolitic structure is a function of sediment supply and secondary obliteration by succesive boring activities. They were calcified in situ at the surface with irregularly curved linings of microcrystalline carbonate. Dense micritic/ fenestral microbialites, variously developed and preserved, are the main contributors to microbialite reefs. Microbialites form hard substrates bored by lithophagous pelecypods and boring sponges (Aka sp.). The main associated faunal elements include lithistid and coralline demosponges, hexactinellid sponges, encrusting foraminifera, brachiopods, polychaetes, and bryozoans.
(ii)  Dense micritic/peloidal microbialites with subplanar, arhythmic lamination (binding habit). They were calcified in situ below the surface in conjunction with decaying organic matter. At large scale, they occur in shallow water, i.e. within the photic zone. They cover earlier microbialite reefs or occur on and in episodic deposits of coarse biodebris. At small scale they occur in protected microenvironments (e.g. intraparticle space, boring cavities).
(iii)  Peloidal/in situ ooid microbialites with subplanar/ wavy lamination occur as small-scale stratiform intercalations in carbonate platform deposits, episodically revealing physical reworking. Other features are very similar to dense micritic/peloidal microbialites.
The results of geochemical analyses indicate a rock-buffered diagenetic system during early diagenetic and burial history of microbialite reefs. Independent of microbialite type residual MgCO3-contents are in the range of 1.20 to 3.57 mole %, agreeing well with those from isopachous rim cements and indicating a high Mg-calcite precursor of microbialite micrites. Stable isotope values (δ13C) are in the range of 3.13 to 3.80 (permil, vs PDB), close to the internal standard, the coralline spongeAcanthochaetetes (Albian species=2.93; Recent species=3.27) and comparable with inorganically precipitated Mg-calcite.  相似文献   

8.
Ancient biologically mediated sedimentary carbonate deposits, including stromatolites and other microbialites, provide insight into environmental conditions on early Earth. The primary limitation to interpreting these records is our lack of understanding regarding microbial processes and the preservation of geochemical signatures in contemporary microbialite systems. Using a combination of metagenomic sequencing and isotopic analyses, this study describes the identity, metabolic potential and chemical processes of microbial communities from living microbialites from Cuatro Ciénegas, Mexico. Metagenomic sequencing revealed a diverse, redox-dependent microbial community associated with the microbialites. The microbialite community is distinct from other marine and freshwater microbial communities, and demonstrates extensive environmental adaptation. The microbialite metagenomes contain a large number of genes involved in the production of exopolymeric substances and the formation of biofilms, creating a complex, spatially structured environment. In addition to the spatial complexity of the biofilm, microbial activity is tightly controlled by sensory and regulatory systems, which allow for coordination of autotrophic and heterotrophic processes. Isotopic measurements of the intracrystalline organic matter demonstrate the importance of heterotrophic respiration of photoautotrophic biomass in the precipitation of calcium carbonate. The genomic and stable isotopic data presented here significantly enhance our evolving knowledge of contemporary biomineralization processes, and are directly applicable to studies of ancient microbialites.  相似文献   

9.
Unlike the high-abundance, low-diversity macrofaunas that characterize many Early Triassic benthic palaeocommunities, ichnofossils were relatively common in the aftermath of the end-Permian mass extinction worldwide. Ichnofossils therefore are a good proxy for ecosystem recovery after the end-Permian biotic crisis. This paper documents 14 ichnogenera and one problematic form from Lower Triassic successions exposed in the Lower Yangtze region, South China. Post-extinction ichnodiversity remained rather low throughout the Griesbachian–early Smithian period and abruptly increased in the late Smithian. However, several lines of evidence, including extent of bioturbation, burrow size, trace-fossil complexity, and tiering levels, indicate that diversification of ichnotaxa in the late Smithian did not signal full marine ecosystem recovery from the Permian/Triassic (P/Tr) mass extinction. Marine ichnocoenoses did not recover until the late Spathian in South China. The marginal sea provided hospitable habitats for tracemakers to proliferate in the aftermath of the end-Permian mass extinction.  相似文献   

10.
The late Smithian extinction represents a major event within the Early Triassic. This event generally corresponds to a succession of two, possibly three successively less diverse, cosmopolitan ammonoid assemblages, which when present, provide a robust biostratigraphic framework and precise correlations at different spatial scales. In the western USA basin, known occurrences of latest Smithian taxa are rare and until now, have only been documented from northeastern Nevada. Based on these restricted basinal occurrences, a regional zone representing the latest Smithian was postulated but not corroborated, as representative taxa had not yet been reported from outside Nevada. Here we document two new ammonoid assemblages from distant localities in northern Utah, overlying the late Smithian Anasibirites beds and characterized by the unambiguous co-occurrence of Xenoceltites subevolutus and Pseudosageceras augustum. The existence of a latest Smithian zone in the western USA basin is therefore validated, facilitating the identification of the Smithian/Spathian boundary and intra-basin correlation. This zone also correlates with the latest Smithian zone recognized from southern Tethyan basins. Additionally, these new data support other observed occurrences of Xenoceltites subevolutus throughout most of the late Smithian.  相似文献   

11.
《Palaeoworld》2016,25(2):188-198
Carbonate concretions with structures and fossil groups associated with microbialite developed in a dolostone crust at the Permian–Triassic boundary of the Xishan section in Jiangsu Province, South China. These structures include clotted fabrics and laminated carbonate needles, as well as abundant carbonate crystal fans. Fossil groups associated with microbialite include microconchids, small gastropods, and small foraminifers. These fabrics and fossils suggest that the concretions are carbonate microbialite blocks developed in the dolostone crust. On the basis of the analysis of the microfabrics and the fossil groups together with a comparison to modern analogues, we attribute the formation of the micritic patches in the microbialite concretions to the calcification of cyanobacterial mats via carbonate nanoparticles and we attribute the carbonate crystal fans to the direct recrystallization of micritic carbonates. The sparitic patches were interpreted as either the direct recrystallization of micritic carbonates or the precipitation of carbonate spars in the inter-/intra-spaces of metazoan shells together with the recrystallization of these shells. The similarities to modern stromatolites, both in morphology and in internal texture, suggest that the laminated carbonate needles are stromatolite laminae built by filamentous cyanobacteria. The preservation of these microbialite microfabrics indicates that early lithification by carbonate precipitation was widespread and intense following the end-Permian boundary events. The weak development of microbialites as small concretions may be attributed to the deeper water depth and the lower water energy in the Xishan area during the earliest Triassic.  相似文献   

12.
Offshore facies of the Mesoproterozoic Sulky Formation, Dismal Lakes Group, arctic Canada, preserve microbialites with unusual morphology. These microbialites grew in water depths greater than several tens of meters and correlate with high‐relief conical stromatolites of the more proximal September Lake reef complex. The gross morphology of these microbial facies consists of ridge‐like vertical supports draped by concave‐upward, subhorizontal elements, resulting in tent‐shaped cuspate microbialites with substantial primary void space. Morphological and petrographic analyses suggest a model wherein penecontemporaneous upward growth of ridge elements and development of subhorizontal draping elements initially resulted in a buoyantly supported, unlithified microbial form. Lithification began via precipitation within organic elements during microbialite growth. Mineralization either stabilized or facilitated collapse of initially neutrally buoyant microbialite forms. Microbial structures and breccias were then further stabilized by precipitation of marine herringbone cement. During late‐stage diagenesis, remaining void space was occluded by ferroan dolomite cement. Cuspate microbialites are most similar to those found in offshore facies of Neoarchean carbonate platforms and to unlithified, buoyantly supported microbial mats in modern ice‐covered Antarctic lakes. We suggest that such unusual microbialite morphologies are a product of the interaction between motile and non‐motile communities under nutrient‐limiting conditions, followed by early lithification, which served to preserve the resultant microbial form. The presence of marine herringbone cement, commonly associated with high dissolved inorganic carbon (DIC), low O2 conditions, also suggests growth in association with reducing environments at or near the seafloor or in conjunction with a geochemical interface. Predominance of coniform stromatolite forms in the Proterozoic—across a variety of depositional environments—may thus reflect a combination of heterogeneous nutrient distribution, potentially driven by variable redox conditions, and an elevated carbonate saturation state, which permits preservation of these unusual microbialite forms.  相似文献   

13.
Laguna Bacalar is a sulfate‐rich freshwater lake on the Yucatan Peninsula that hosts large microbialites. High sulfate concentrations distinguish Laguna Bacalar from other freshwater microbialite sites such as Pavilion Lake and Alchichica, Mexico, as well as from other aqueous features on the Yucatan Peninsula. While cyanobacterial populations have been described here previously, this study offers a more complete characterization of the microbial populations and corresponding biogeochemical cycling using a three‐pronged geobiological approach of microscopy, high‐throughput DNA sequencing, and lipid biomarker analyses. We identify and compare diverse microbial communities of Alphaproteobacteria, Deltaproteobacteria, and Gammaproteobacteria that vary with location along a bank‐to‐bank transect across the lake, within microbialites, and within a neighboring mangrove root agglomeration. In particular, sulfate‐reducing bacteria are extremely common and diverse, constituting 7%–19% of phylogenetic diversity within the microbialites, and are hypothesized to significantly influence carbonate precipitation. In contrast, Cyanobacteria account for less than 1% of phylogenetic diversity. The distribution of lipid biomarkers reflects these changes in microbial ecology, providing meaningful biosignatures for the microbes in this system. Polysaturated short‐chain fatty acids characteristic of cyanobacteria account for <3% of total abundance in Laguna Bacalar microbialites. By contrast, even short‐chain and monounsaturated short‐chain fatty acids attributable to both Cyanobacteria and many other organisms including types of Alphaproteobacteria and Gammaproteobacteria constitute 43%–69% and 17%–25%, respectively, of total abundance in microbialites. While cyanobacteria are the largest and most visible microbes within these microbialites and dominate the mangrove root agglomeration, it is clear that their smaller, metabolically diverse associates are responsible for significant biogeochemical cycling in this microbialite system.  相似文献   

14.
Earliest Triassic microbialites (ETMs) and inorganic carbonate crystal fans formed after the end-Permian mass extinction (ca. 251.4 Ma) within the basal Triassic Hindeodus parvus conodont zone. ETMs are distinguished from rarer, and more regional, subsequent Triassic microbialites. Large differences in ETMs between northern and southern areas of the South China block suggest geographic provinces, and ETMs are most abundant throughout the equatorial Tethys Ocean with further geographic variation. ETMs occur in shallow-marine shelves in a superanoxic stratified ocean and form the only widespread Phanerozoic microbialites with structures similar to those of the Cambro-Ordovician, and briefly after the latest Ordovician, Late Silurian and Late Devonian extinctions. ETMs disappeared long before the mid-Triassic biotic recovery, but it is not clear why, if they are interpreted as disaster taxa. In general, ETM occurrence suggests that microbially mediated calcification occurred where upwelled carbonate-rich anoxic waters mixed with warm aerated surface waters, forming regional dysoxia, so that extreme carbonate supersaturation and dysoxic conditions were both required for their growth. Long-term oceanic and atmospheric changes may have contributed to a trigger for ETM formation. In equatorial western Pangea, the earliest microbialites are late Early Triassic, but it is possible that ETMs could exist in western Pangea, if well-preserved earliest Triassic facies are discovered in future work.  相似文献   

15.
We describe a new Early Triassic (Griesbachian) succession of conodont faunas from a high‐resolution sampling of the basal Early Triassic microbial limestone and the base of the overlying unit at the Wuzhuan section (Nanpanjiang Basin, Guangxi, South China). The microbial limestone records the earliest phase of the Early Triassic biotic recovery after the end‐Permian mass extinction. For the first time, rich conodont faunas are reported from within the microbialite. The faunas from Wuzhuan are largely dominated by anchignathodontids, including several Isarcicella species, which were previously documented only from strata above the microbialite. A total of 14 conodont species assigned to three genera is recorded from the Wuzhuan section. Starting from the base of the microbialite upwards, several species are sequentially added to the conodont assemblage. The alpha diversity peaks at the top of the microbialite. The conodont record in the considered microbialite interval at Wuzhuan is presumably unaffected by local ecological changes. It therefore more likely represents an evolutionary rather than an ecological pattern. We compare the Wuzhuan's conodont record with a well‐supported phylogenetic model and suggest that the sequence of first occurrences at Wuzhuan is the closest to the ‘true’ sequence of evolutionary events that took place during this Griesbachian radiation of anchignathodontids. Based on comparisons with the GSSP section at Meishan, we suggest further that the first occurrence of Hindeodus parvus in Meishan does not correspond to its first appearance datum.  相似文献   

16.
A railroad causeway across Great Salt Lake, Utah (GSL), has restricted water flow since its construction in 1959, resulting in a more saline North Arm (NA; 24%–31% salinity) and a less saline South Arm (SA; 11%–14% salinity). Here, we characterized microbial carbonates collected from the SA and the NA to evaluate the effect of increased salinity on community composition and abundance and to determine whether the communities present in the NA are still actively precipitating carbonate or if they are remnant features from prior to causeway construction. SSU rRNA gene abundances associated with the NA microbialite were three orders of magnitude lower than those associated with the SA microbialite, indicating that the latter community is more productive. SSU rRNA gene sequencing and functional gene microarray analyses indicated that SA and NA microbialite communities are distinct. In particular, abundant sequences affiliated with photoautotrophic taxa including cyanobacteria and diatoms that may drive carbonate precipitation and thus still actively form microbialites were identified in the SA microbialite; sequences affiliated with photoautotrophic taxa were in low abundance in the NA microbialite. SA and NA microbialites comprise smooth prismatic aragonite crystals. However, the SA microbialite also contained micritic aragonite, which can be formed as a result of biological activity. Collectively, these observations suggest that NA microbialites are likely to be remnant features from prior to causeway construction and indicate a strong decrease in the ability of NA microbialite communities to actively precipitate carbonate minerals. Moreover, the results suggest a role for cyanobacteria and diatoms in carbonate precipitation and microbialite formation in the SA of GSL.  相似文献   

17.
Environmental fluctuations are recorded in a variety of sedimentary archives of lacustrine depositional systems. Geochemical signals recovered from bottom sediments in closed‐basin lakes are among the most sensitive paleoenvironmental indicators and are commonly used in reconstructing lake evolution. Microbialites (i.e., organosedimentary deposits accreted through microbial trapping and binding of detrital sediment or in situ mineral precipitation on organics [Palaios, 2, 1987, 241]), however, have been largely overlooked as paleoenvironmental repositories. Here, we investigate concentrically laminated mineralized microbialites from Laguna Negra, a high‐altitude (4,100 m above sea level) hypersaline, closed‐basin lake in northwestern Argentina, and explore the potential for recovery of environmental signals from these unique sedimentary archives. Spatial heterogeneity in hydrological regime helps define zones inside Laguna Negra, each with their own morphologically distinct microbialite type. Most notably, platey microbialites (in Zone 3A) are precipitated by evaporative concentration processes, while discoidal oncolites (in Zone 3C) are interpreted result from fluid mixing and biologically mediated nucleation. This spatial heterogeneity is reflected in petrographically distinct carbonate fabrics: micritic, botryoidal, and isopachous. Fabric type is interpreted to reflect a combination of physical and biological influences during mineralization, and paired C‐isotope measurement of carbonate and organic matter supports ecological differences as a dominant control on C‐isotopic evolution between zones. Laminae of Laguna Negra microbialites preserve a range of δ13Ccarb from +5.75‰ to +18.25‰ and δ18Ocarb from ?2.04‰ to +9.28‰. Temporal trends of lower carbon and oxygen isotopic compositions suggest that the influence of CO2 degassing associated with evaporation has decreased over time. Combined, these results indicate that microbialite archives can provide data that aid in interpretation of both lake paleohydrology and paleoenvironmental change.  相似文献   

18.
Modern microbialites in Pavilion Lake, BC, provide an analog for ancient non‐stromatolitic microbialites that formed from in situ mineralization. Because Pavilion microbialites are mineralizing under the influence of microbial communities, they provide insights into how biological processes influence microbialite microfabrics and mesostructures. Hemispherical nodules and micrite–microbial crusts are two mesostructures within Pavilion microbialites that are directly associated with photosynthetic communities. Both filamentous cyanobacteria in hemispherical nodules and branching filamentous green algae in micrite–microbial crusts were associated with calcite precipitation at microbialite surfaces and with characteristic microfabrics in the lithified microbialite. Hemispherical nodules formed at microbialite surfaces when calcite precipitated around filamentous cyanobacteria with a radial growth habit. The radial filament pattern was preserved within the microbialite to varying degrees. Some subsurface nodules contained well‐defined filaments, whereas others contained only dispersed organic inclusions. Variation in filament preservation is interpreted to reflect differences in timing and amount of carbonate precipitation relative to heterotrophic decay, with more defined filaments reflecting greater lithification prior to degradation than more diffuse filaments. Micrite–microbial crusts produce the second suite of microfabrics and form in association with filamentous green algae oriented perpendicular to the microbialite surface. Some crusts include calcified filaments, whereas others contained voids that reflect the filamentous community in shape, size, and distribution. Pavilion microbialites demonstrate that microfabric variation can reflect differences in lithification processes and microbial metabolisms as well as microbial community morphology and organization. Even when the morphology of individual filaments or cells is not well preserved, the microbial growth habit can be captured in mesoscale microbialite structures. These results suggest that when petrographic preservation is extremely good, ancient microbialite growth structures and microfabrics can be interpreted in the context of variation in community organization, community composition, and lithification history. Even in the absence of distinct microbial microfabrics, mesostructures can capture microbial community morphology.  相似文献   

19.
This short essay intends to provide insight into the concepts of ‘fossiliferous deposit’ and ‘palaeontological deposit’ by identifying some of their semantic differences. From the moment that fossiliferous deposits are technically accessible to the palaeontologist, they are ‘palaeontological’ ones, but not before. However, not all palaeontological deposits must inevitably be ‘fossiliferous’ deposits in the sense of containing mineralised remains of the anatomical parts of organisms. As a consequence of the existence of fossiliferous deposits, the science of palaeontology exists, with the result that fossiliferous deposits become ‘palaeontological deposits’, together with the non-fossiliferous strata that are able to provide data on the ecological and/or ethological conditions of fossil beings from remains that are not ‘fossils’. From the point of view of philosophy of science, fossiliferous and palaeontological deposits should be considered as two different epistemological (as well as ontological) categories. Consequently, by identifying semantic differences, the concepts of ‘fossiliferous deposit’ and ‘palaeontological deposit’ can be framed better within the philosophical development of the palaeontological sciences. In addition to the central issue addressed in this essay, a brief discussion on the epistemic value of the dichotomy ‘to deposit’ versus ‘to reposit’ applied to palaeontological museology is brought up.  相似文献   

20.
The Mersin Mélange (MM) as a part of the Mersin Ophiolitic Complex in southern Turkey is a sedimentary complex including blocks and tectonic slices within a Late Cretaceous matrix. Two blocks (Keven and Cingeypinari) within the MM originated from the northern branch of Neotethys (Izmir-Ankara-Erzincan Ocean) and have been studied in detail using foraminiferal assemblages to correlate them with coeval successions in the Taurides and to approach the Early Permian evolution of the northern branch of the Neotethys. The Keven block includes mainly slope deposits (poorly-sorted carbonate breccia and fossiliferous calcarenite) and dated as late Asselian-Sakmarian, whereas the Cingeypinari block consists of platform deposits (fossiliferous platform carbonate and quartz sandstone alternation) assigned to the Sakmarian-early Artinskian. These Early Permian Cingeypinari and Keven blocks from the Beysehir-Hoyran Nappes are biostratigraphically well correlated to the northerly originated Hadim nappe and its equivalents in the Tauride Belt. Considering recent studies on the Mersin Mélange, a possible mantle plume existed during the Late Carboniferous-Early Permian time interval along the northern Gondwanan margin. This event led to the opening of the northern Neotethys and deposition of the pelagic “Karincali” sequence with volcanic material in the basinal conditions. The data presented suggest that the Keven block relates to the slope and the Cingeypinari block to platform conditions deposited as a lateral equivalent of the Karincali sequences during the Early Permian.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号