首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Abstract: A rich coral‐associated decapod assemblage is recorded from the ‘Depiru Beds’ of the upper part of the Upper Coralline Limestone (Messinian, Upper Miocene), from the island of Malta. Nineteen species within 17 genera have been discovered, where 14 genera are new for Malta. Four new species are described, namely Micippa annamariae sp. nov., Pilumnus scaber sp. nov., Panopeus muelleri sp. nov. and Herbstia melitense sp. nov. Herbstia melitense sp. nov. constitutes the first record of the genus from the fossil record in the Mediterranean region. This discovery more than doubles the number of known fossil decapod species from Malta. The fossil bivalve Jouannetia (J.) semicaudata Des Moulins, 1830 and the extant decapod Maja goltziana D’Oliveira, 1888, are also recorded for the first time from Malta. Other Neogene coral‐associated decapod assemblages are investigated and correlated with the new assemblage from Malta. The migration of taxa between the Mediterranean region and the Paratethys, particularly during the Lower Badenian (Langhian), is evidenced by the strong affinity of the Maltese decapod assemblage with that of the Middle Miocene Badenian assemblages from Hungary, Poland and Ukraine. Upper Miocene, Messinian assemblages from Spain, Algeria and Morocco are also similar to that from Malta.  相似文献   

2.
Sedimentary facies of seven Posidonia oceanica meadows of western Mediterranean Sea were investigated. Five meadows are located in the Tyrrhenian coast, two are placed in the western coast of Sardinia and Corsica. These meadows develop on soft and hard substrates, often forming “mattes”, in areas characterized by different oceanography, morphology, and terrigenous inputs produced by coastal erosion and fluvial runoff. A total of five sedimentary facies have been recognized ranging from pure terrigenous to bioclastic: terrigenous sand to gravelly sand, bioclastic sands, skeletal gravelly sands, mixed siliciclastic–carbonate sands, well to moderately sorted skeletal siliciclastic sands. All of the sedimentary facies associated with P. oceanica are in the sand grain size. The gravelly fraction is generally subordinated and variable, whereas the muddy fraction is generally low. The very low frequencies of the muddy fraction can be attributed to re-suspension processes and to the lack of carbonate mud production. The rate of epiphytic carbonate production obtained by two of the investigated meadows averages 400 g m?2 year?1. This value is in the range of temperate Mediterranean as well as of tropical and subtropical seagrasses. The epiphytic carbonate production plus the calcareous biota living on seagrass substrate contributes to form mixed siliciclastic–carbonate sediments of the nearshore environment of the Mediterranean. Lastly, the carbonate production associated with seagrass was derived by biota belonging to the heterozoan assemblage, where aphotic organisms are dominant, together with oligophotic biota such as coralline algae and symbiont-bearing foraminifera. Consequently, in the well-illuminated seagrass settings, the prevalent skeletal assemblages is represented by the heterozoan association while the components of the photozoan assemblages are absent or subordinate. This a key point for the paleoenvironmental reconstruction of the photic zone in the fossil record. Because the skeletal components of many seagrass dwellers greatly contribute to the carbonate sediment production of photic shallow-water environments, the seagrass meadows became substantial places of carbonate production and C (organic and inorganic) sequestration during the Cenozoic.  相似文献   

3.
The raised coral reef sequences at Kish Island provide a rare window into the depositional setting and paleoenvironment of a high-latitude, shallow-water coral reef that developed under turbid conditions in the Persian Gulf during Marine Isotope Stage 7 (~200 to 250?ka). Six sedimentary facies and eight foraminiferal assemblages can be identified throughout the sequence. A ninth assemblage can be defined for the modern subtidal realm. At the base of the sequence is a marl rich in hyaline foraminifera (Elphidium, Ammonia, Asterorotalia, Bulimina, Nonion, and Quinqueloculina) and ostracods, which was deposited in about 30–40?m water depth in a turbid deltaic setting. Shallowing resulted in the marl becoming sandy, and changing to a mollusc-rich facies with rare foraminifera (mostly smaller miliolid taxa) that formed the substrate for coral recruitment. The coral marl layer contains many large corals embedded in situ in an aggregate and coralline algae-rich marl. Two abundance peaks in the foraminifera occur at the base and mid-way through this layer, which also correspond to a change from Murrayinella-dominated to Placopsilina-dominated assemblages, indicating deepening and more open-marine conditions, but elevated turbidity. Towards the top of the layer, abundance of foraminifera decreases and miliolid foraminifera become dominant. The top-most layer is dominated by coral and mollusc fragments and has an Amphistegina-rich reef-related assemblage. Of the Late Pleistocene foraminiferal assemblages, the Murrayinella-, Pararotalia-, and Placopsilina-dominated assemblages are no longer present in the modern gulf for unknown reasons. Of the other five assemblages, only the Amphistegina assemblage is found within proximity to the modern Kish Island. The Elphidium and Asterorotalia-Bulimina assemblages are from deeper areas of the gulf. The Ammonia and Quinqueloculina assemblages occur in lagoonal sediments on the Arabian side of the gulf. Like the modern Persian Gulf, the diversity of foraminifera was low (~80 common species) during the Pleistocene and does not correlate with foraminiferal abundance.  相似文献   

4.
Recent investigations of the Eastern Mediterranean Sea carried out during the GECO cruise with RV Urania provided a substantial number of new cold-water coral (CWC) records, including branching and solitary scleractinian species. These new sites are located along steep escarpments and on topographic highs along the margins of Crete, Karpathos, and Rhodes. The majority of the corals represent fossil occurrences, predominantly Late Pleistocene assemblages. Our research documents that the Eastern Mediterranean Basin has been colonized by CWC at favorable times during the Last Glacial, in particular during the Younger Dryas. Schizocyathus fissilis is reported for the first time for the Mediterranean, while the finding of Ceratotrochus magnaghii represents the first record for the Eastern Mediterranean. Various coral facies occur on the southerly island slopes of Crete, Karpathos, and Rhodes, including hardgrounds and loose skeletal sediments. Hardgrounds occur on steep topographies between ca. 500 and 1,700 m, and can conveniently be subdivided as (1) Neopycnodonte-Desmophyllum framestone, (2) Desmophyllum-Caryophyllia framestone, (3) Madrepora-Lophelia rudstone, (4) Pelagic mudstone and wackestone, and (5) Siliciclastic-carbonate conglomerate and breccia. Unconsolidated skeletal sediments containing corals mainly occur on gentler topographic situations between ca. 140 and 600 m and can be subdivided as: (A) Lophelia-Madrepora rubble, (B) Dendrophyllia rubble, (C) Stenocyathus rubble, (D) Caryophyllia calveri rubble, and (E) fine-grained sediment with octocoral axes. Many of these facies types are also present in the western part of the Mediterranean and have fossil representatives from the Pleistocene to the Recent. Radiocarbon dating (AMS-14C) reveals Younger Dryas ages between 12.4 and 12.0 ka cal BP for Lophelia pertusa and Madrepora oculata. Desmophyllum dianthus occurs during the Last Glacial Maximum (21.8 ka cal BP) and the Younger Dryas (11.7 ka cal BP), as well as during the Late Holocene and subrecent times (4.4?C0.6 ka cal BP). Caryophyllia sarsiae occurs during the Late Glacial (15.5 ka cal BP), while Caryophyllia calveri occurs during the Early Preboreal (10.8 ka cal BP). The ages for the framework-constructing corals L. pertusa and M. oculata are coherent with their temporal predominance during the Younger Dryas in other parts of the Mediterranean.  相似文献   

5.
Marly sediments of the early Messinian Abad Member of the Turre Formation from the northeastern sector of the Carboneras-Nijar Basin (southern Spain) have yielded a rich fossil assemblage, of which 60 taxa are documented herein. Besides nannoflora and microfauna, this assemblage includes the first autochthonous macrofauna described from the Abad Member. Based on the calcareous nannofossil assemblage, in particular the occurrence of the zonal index taxon Amaurolithus primus, the sediments are assigned to the Mediterranean calcareous nannofossil zone CNM17, corresponding to the latest Tortonian to earliest Messinian interval. This matches the age range generally reported for the Abad Member. Palaeoecological evidence from calcareous nannofossils (20 autochthonous taxa), planktic and benthic foraminifera (12 taxa), Porifera (3 taxa), Octocorallia (Keratoisis), Serpulidae (4 taxa), Bivalvia (5 taxa), Gastropoda (2 taxa), Brachiopoda (7 taxa), Cirripedia (Faxelepas) and Vertebrata (5 taxa) indicates an upper bathyal environment with an influx of neritic elements for the Abad Member near Carboneras. Additionally, several faunal components may represent allochthonous/parautochthonous elements from adjacent habitats, which were transported into the deep marine setting by turbiditic mass flows. Although similarities exist, the fossil assemblage from the marls is compositionally significantly different from the biota previously documented from a nearby exposed olistostrome, the ‘red breccia’. Similar fossil assemblages from the Mediterranean have so far mainly been reported from the Pliocene-Pleistocene of southern Italy and Greece. The Carboneras fauna thus adds to our knowledge of the development of these habitats and their biota prior to the Messinian salinity crisis. Beyond the novel palaeoenvironmental data, the range of the dyscoliid brachiopod Ceramisia meneghiniana, previously known only from the Pliocene of Italy, is extended to the Miocene of Spain. The cirripede crustacean Pycnolepas paronai De Alessandri, 1895 is transferred to the hitherto monospecific genus Faxelepas Gale, 2015, whereby the range of the latter (previously Maastrichtian to Danian) is extended to the late Miocene.  相似文献   

6.
Late Miocene Lago-Mare macrofossiliferous sediments were recovered in the northeastern Tyrrhenian Sea by dredging the continental slope off Gorgona Island, Tuscan Archipelago, at 300-470 m depth. The fossil assemblage consists of a rich lymnocardiid bivalve fauna dominated by Pontalmyra ex gr. P. incerta (Deshayes), associated with Dreissena ex gr. D. rostriformis (Deshayes), Pontalmyra cf. partschi (Mayer), “Limnocardium” sp., the gastropods Melanopsis narzolina (D’Archiac), Melanopsis sp. and cf. Saccoia sp. All bivalve taxa recognized at species level are of Paratethyan (Pontian) affinity and widespread in the Late Miocene of the Mediterranean Basin while M. narzolina has so far only recorded from the Mediterranean Basin. This finding represents the most diverse Lago-Mare macrofauna reported thus far from any submerged location in the Mediterranean Basin and documents that the post-evaporitic Cusercoli Formation contributes to the syn-rift neoautochthonous units of this sector of the Northern Tyrrhenian Sea.  相似文献   

7.
The Viséan succession of the Jerada Massif contains a relatively diverse rugose coral fauna, which comprises 12 genera. Only two of these (Siphonodendron and Lithostrotion) are reported to include more than one species. Most taxa show distinctive facies dependencies. Small solitary corals are found in shaly environments of the Oued Es-Sassi Formation. On the northern flank a coral patch reef formed on an oolitic shoal in the Koudiat Es-Senn Formation. Its core mainly consists of Lithostrotion vorticale colonies, whereas in its surroundings literally hundreds of specimens of Siphonophyllia samsonensis occur. Associated with these dominant taxa occur colonial and further large solitary taxa (Palaeosmilia, Dibunophyllum). Tizraia and Pareynia are restricted to microbial-dominated buildup facies. Their presence might be strongly controlled by the development of this buildup type, because further occurrences in Algeria, Morocco, and Belgium are all in the same facies. The coral fauna at Jerada is a typical Late Viséan assemblage for the Western European Province. The Eastern Moroccan Meseta may be an important pathway within the province for the connection between the Central Saharan basins and NW Europe. The biostratigraphic ages of the coral fauna partly contradict ages based on carbonate microfossils; the coral ages are slightly older and typical Brigantian coral taxa are absent.  相似文献   

8.
The Pennsylvanian Buckhorn Asphalt Quarry contains the best-preserved Palaeozoic mollusc fauna in the world. Early impregnation of mixed siliciclastic–carbonate rocks (mudstones, pack to grainstones, shell beds, and conglomerates) with hydrocarbons prevented aragonite destruction (“Impregnation Fossil Lagerstätte”). The exceptional preservation comprises shell microstructures, microornaments and early ontogenetic shells. Most gastropods had planktotrophic larval development indicating a high primary production although the remains of phytoplankton are very rare in this and other Late Palaeozoic deposits. Deposition occurred close to a shallow-water coastal area. Mass flow processes (density currents) triggered by storms were involved in the transport mechanisms of some units. Shells of benthic molluscs yield the most diverse known Palaeozoic microboring assemblage, indicating at least partly euphotic conditions. The invertebrate fauna comprises about 160 species and is dominated by molluscs, which is unusual for a Palaeozoic deposit, suggesting that aragonite dissolution produces a major bias in the fossil record. However, most mollusc genera in the Buckhorn deposit are also known from other Pennsylvanian occurrences as recrystallised shells. This shows that preservation bias via preferential aragonite dissolution may be overestimated.  相似文献   

9.
Information on spatial variability and distribution patterns of organisms in coral reef environments is necessary to evaluate the increasing anthropogenic disturbance of marine environments (Richmond 1993; Wilkinson 1993; Dayton 1994). Therefore different types of subtidal, reef-associated hard substrata (reef flats, reef slopes, coral carpets, coral patches, rock grounds), each with different coral associations, were investigated to determine the distribution pattern of molluscs and their life habits (feeding strategies and substrate relations). The molluscs were strongly dominated by taxa with distinct relations to corals, and five assemblages were differentiated. The Dendropoma maxima assemblage on reef flats is a discrete entity, strongly dominated by this encrusting and suspension-feeding gastropod. All other assemblages are arranged along a substrate gradient of changing coral associations and potential molluscan habitats. The Coralliophila neritoideaBarbatia foliata assemblage depends on the presence of Porites and shows a dominance of gastropods feeding on corals and of bivalves associated with living corals. The Chamoidea–Cerithium spp. assemblage on rock grounds is strongly dominated by encrusting bivalves. The Drupella cornus–Pteriidae assemblage occurs on MilleporaAcropora reef slopes and is strongly dominated by bivalves associated with living corals. The Barbatia setigeraCtenoides annulata assemblage includes a broad variety of taxa, molluscan life habits and bottom types, but occurs mainly on faviid carpets and is transitional among the other three assemblages. A predicted degradation of coral coverage to rock bottoms due to increasing eutrophication and physical damage in the study area (Riegl and Piller 2000) will result in a loss of coral-associated molluscs in favor of bivalve crevice dwellers in dead coral heads and of encrusters on dead hard substrata.  相似文献   

10.
Summary The shallow marine subtropical Northern Bay of Safaga is composed of a complex pattern of sedimentary facies that are generally rich in molluscs. Thirteen divertaken bulk-samples from various sites (reef slopes, sand between coral patches, muddy sand, mud, sandy seagrass, muddy seagrass, mangrove channel) at water depths ranging from shallow subtidal to 40m were investigated with regard to their mollusc fauna >1mm, which was separated into fragments and whole individuals. Fragments make up more than 88% of the total mollusc remains of the samples, and their proportions correspond to characteristics of the sedimentary facies. The whole individuals were differentiated into 622 taxa. The most common taxon,Rissoina cerithiiformis, represented more than 5% of the total mollusc content in the samples. The main part of the fauna consists of micromolluscs, including both small adults and juveniles. Based on the results of cluster-, correspondence-, and factor analyses the fauna was grouped into several associations, each characterizing a sedimentary facies: (1) “Rhinoclavis sordidula—Corbula erythraeensis-Pseudominolia nedyma association” characterizes mud. (2) “Microcirce sp.—Leptomyaria sp. association” characterizes muddy sand. (3)”Smaragdia spp.-Perrinia stellata—Anachis exilis—assemblage” characterizes sandy seagrass. (4) “Crenella striatissima—Rastafaria calypso—Cardiates-assemblage” characterizes muddy seagrass. (5) “Glycymeris spp.-Parvicardium sueziensis-Diala spp.-assemblage” characterizes sand between coral patches. (6) “Rissoina spp.-Triphoridae —Ostreoidea-assemblage” characterizes reef slopes. (7) “Potamides conicus—Siphonaria sp. 2—assemblage” characterizes the mangrove. The seagrass fauna is related to those of sand between coral patches and reef slopes with respect to gastropod assemblages, numbers of taxa and diversity indices, and to the muddy sand fauna on the basis of bivalve assemblages and feeding strategies of bivalves. The mangrove assemblage is related to those of sand between coral patches and the reef slope with respect to taxonomic composition and feeding strategies of bivalves, but has a strong relationship to those of the fine-grained sediments when considering diversity indices. Reef slope assemblages are closely related to that of sand between coral patches in all respects, except life habits of bivalves, which distincly separates the reef slope facies from all others.  相似文献   

11.
《Marine Micropaleontology》1988,13(3):213-237
The benthic foraminiferal assemblages of two cores from the late-Holocene, organic-carbon-rich and carbonate-poor, deep-sea sediments of the eastern depression of the Sea of Marmara have been studied. They were deposited under high level of primary productivity and poorly oxygenated bottom-water conditions; they show low diversity and are dominated by a group of species adapted to an infaunal life style with wide bathymetric distribution (ca. 70–2000 m) in the Mediterranean Sea. Oxygen deficiency down to about 0.5 ml/l does not seem adversely to affect the rate of reproduction of the dominant species belonging to Melonis, Chilostomella, buliminids, and bolivinitids. Their distribution is primarily controlled by substrate conditions.Faunal similarities with fossil assemblages in association with some late-Quaternary sapropels and related facies from the eastern Mediterranean basins suggest that they were deposited under palaeo-oceanographic conditions closely similar to those of the modern Sea of Marmara.  相似文献   

12.
Measures of diversity and ecology of marine invertebrate assemblages depend on a variety of factors including environmental conditions and methodological decisions. In this study, the influence of such factors on multi- and univariate assemblage parameters of molluscan death assemblages from the Gulf of Aqaba (Red Sea, Jordan) was evaluated. Sediment samples were collected at two coral reef types, a patch reef at 13 m of water depth characterized by fine-grained sediments and a Millepora-fringing reef with coarse-grained sediments at 5 m of water depth. The upper and lower 10 cm of the sediment column were separately removed and sieved with mesh sizes of 1 and 2 mm. A large dataset of 6400 bivalve and gastropod shells was compiled to evaluate how setting, sediment depth, and sieve size influenced taxonomic composition and species richness, species-abundance patterns and the Shannon–Wiener index, the number of drilled shells per species and drilling frequency (DF) of the assemblage. Setting had the strongest impact on all aspects, followed by sieve size, but sediment depth was insignificant, probably due to complete homogenization of the sediments by reworking and bioturbation. Multivariate assemblage parameters distinguished much better between categories (setting, sieve size) than univariate measures. Sieve size-related disagreements recognized between the two higher taxa are mostly due to the underlying difference in body-size distribution of bivalve and gastropod assemblages. We conclude that species richness and other ecological characteristics of molluscan death assemblages in coral reef-associated sediments will most strongly reflect habitat complexity of the sites chosen, are significantly influenced by methodological decisions (i.e., sieve size), will only poorly preserve temporal patterns, and the results will differ between bivalves and gastropods.  相似文献   

13.
Well‐preserved cold‐water corals are comparatively rare in the fossil record. This is partly due to the very low fossilization potential of the predominantly aragonitic corals but also due to the fact that coral ecosystems of deep water are a geologically young development. A Middle Danian cold‐water coral mound complex is well exposed in Faxe Quarry, Denmark. The coral mounds are intercalated with bryozoan mounds of various sizes and form the Faxe Formation. The coral limestone displays large variations in diagenesis, and this complicates the palaeoecological reconstructions. However, the Baunekule facies from the Faxe Formation contain a well‐preserved originally aragonitic and calcitic fauna. The aragonitic skeletons have been recrystallized to calcite during early diagenesis and the excellent preservation makes taxonomic identifications straightforward. A diverse fauna of ten scleractinian coral species, nine stylasterine coral species and seven octocoral species has been described from the Baunekule facies. The fossil fauna represents an ecological niche between the dead coral framework and coral rubble on a flank of a growing Dendrophyllia coral mound with multiple colonization events. The diversity and relative abundance of the fossil scleractinian corals are comparable to the modern settings in the NE Atlantic and Mediterranean. The distribution and diversity of the octocorals and the stylasterine corals are suggested to represent coral gardens as described from modern setting in the NE Pacific. The presence of a diverse and abundant stylasterine fauna suggests a stable palaeoenvironment, probably in a bathymetric depth range of 200–400 metre.  相似文献   

14.
An unusual fossil assemblage dominated by superabundant rhynchonellid brachiopods in a stromatactis mud-mound is recorded from the Hăghimaş Mountains (Eastern Carpathians), Romania. The mound mainly consists of bioclastic wackestones to packstones with a very rich macrofauna including crinoids, sponges, juvenile ammonites, and echinoids. The brachiopods represent a low-diversity but high-abundance association, dominated by the rhynchonellids Lacunosella and Septaliphoria. The taphonomical features of the fossil assemblage indicate an autochthonous fauna, with successive generations of brachiopods in life position and complete well-preserved individuals in different growth stage alongside an accessory population of crinoids and sponges. Brachiopod-brachiopod endosymbiotic life strategy is documented for the first time from a post-Paleozoic brachiopod assemblage. The mound reveals abundant stromatactis, filled by radiaxial fibrous or drusy calcite cement and internal polymud sediments. This is the first Late Jurassic (Kimmeridgian) stromatactis mud-mound identified in the Eastern Carpathians.  相似文献   

15.
Messinian (Uppermost Miocene) outcrops near the town of Oran in western Algeria yielded rich bryozoan faunas: 188 species and forms. Bryozoans were studied in ten different deposits and 27 horizons representing various marly and calcareous facies. The number of species is lowest in the coral reefs (51), intermediate in the coralline-algae limestones (95), and highest in the mark(167). Also, zoarial growth forms are more diverse in marly deposits than in calcareous ones. These differences are interpreted in terms of bottom substrate, depth, deposition rate, and hydrodynamic conditions. An analysis based on zoarial growth forms and known bathymetric ranges of species still living gives more precise depth indications for each studied assemblage. A detailed survey of these assemblages in several sections shows that a gradual lowering of regional sea level occurred during the Messinian. From the presence of a number of warm-water bryozoan taxa, a higher temperature than in the Present Mediterranean sea is also favored. □ Algeria, Bryozoa, calcareous algae, mark Messinian, paleoecology, reefs.  相似文献   

16.
Many sedimentary processes can lead to the formation of mixed carbonate–siliciclastic sediments in shallow shelf environments. The Miocene Saint-Florent Basin (Corsica), and in particular the Monte S. Angelo Formation, offers the possibility to analyze coarse mixed sediments produced by erosion of a rocky coast, ephemeral stream input, and shallow-water carbonate production dominated by red algae. The Monte S. Angelo Formation was deposited during the Burdigalian to Langhian interval. During this interval, the island of Corsica experienced increased subsidence related to the development of the Ligurian-Provençal Basin and associated Sardinia-Corsica block rotation. Four main rhodolith-rich subfacies have been recognized: conglomerate with rhodoliths, massive rhodolith rudstone, well-bedded rhodolith rudstone, and rhodolith floatstone. The four facies have been interpreted as having been deposited in different environments of a gravel-dominated, nearshore to offshore prograding wedge. Deep-water melobesioids dominate the red algal assemblage from shoreface to offshore. Shallow-water subfamilies of lithophylloids and mastophoroids occur in only accessory amounts. Poor illumination is believed to be due to terrigenous input by ephemeral streams and wave- and current-resuspension. Resuspension processes are favored by the limited occurrence of seagrasses. Two types of siliciclastic–carbonate mixing processes characterize the investigated rhodolith-rich deposits: (1) punctuated mixing, produced by the re-deposition of terrigenous sediments by debris-flow processes during flooding events onto carbonate sediments together with rhodoliths of the shoreface environments, and (2) in situ mixing, produced by growth of coralline algae on siliciclastic pebbles to form the rhodoliths.  相似文献   

17.
Intertidal corals have been under-studied yet they provide scope for understanding adaptation and acclimatisation of corals to marginal conditions. Corals in intertidal rock pools along the east coast of South Africa withstand large temperature fluctuations, and marginal conditions for survival and growth. Four sites along the KwaZulu-Natal (KZN) coastline were sampled to determine latitudinal differences in coral communities, from 27°S to 31°S. Water temperature of rock pools at each site was monitored to see if temperature determined coral diversity in intertidal pools. Sixteen coral species were present in rock pools overall. Each of three sites in northern and central KZN hosted 12 coral taxa whereas only six taxa occurred at the most southern site. Anomastrea irregularis was the most abundant species at all sites, followed by Pocillopora verrucosa and P. damicornis. Unexpectedly, rock pool temperatures did not show a trend with latitude and thus cannot explain this decline in coral diversity. Temperatures in isolated rock pools showed large summer day time fluctuations of more than 10 °C at spring tide. However, temperatures drop substantially at high tide, lowering the mean rock pool temperature and possibly allowing these coral communities to persist in the marginal conditions of rock pools in South Africa.  相似文献   

18.
《Palaeoworld》2015,24(3):293-323
A diverse assemblage of plant macrofossils and the associated representative palynofloral elements are documented from the early Eocene subsurface beds of the Cambay Shale Formation exposed in an open cast lignite mine at Vastan Village in the Surat District, western India. The Vastan mine succession is cyclic, each cycle representing a transgressive burial event terminating in the low energy lagoonal conditions. The higher energy cycle begins with sandy lenses having rich biotic remains, followed by mudstones and molluscan shell beds and ends with lignite seams. The dominantly muddy facies and the associated biota demonstrate predominantly low energy near shore or coastal plain depositional setting with conditions varying from dominantly marine (shallow) through brackish to fresh water. The Vastan mine is a well dated fossil locality with a rich and diverse biota of mammals, birds, snakes, lizards, fish, insects, molluscs, foraminifers, dinoflagellates, and plants. The plants comprise leaf and fruit impressions, seeds, fruits, wood fragments, mangrove rooting structures, fungal thalli and spores, pteridophytic spores, and angiosperm pollen grains. Thirteen macrofossil species, including several morphotaxa, are represented by the families Calophyllaceae, Rutaceae, Anacardiaceae, Rubiaceae, Combretaceae, Lythraceae, Sapindaceae, Malvaceae, and Ebenaceae. The palynological assemblage representing fourteen taxa includes the new species, Notothyrites undulatus, Callimothallus semicircularis, and Carallioipollenites integerrimoides. Habitat and distribution of modern taxa comparable with the fossil assemblage from Vastan suggest a terrestrial lowland environment. The macrofossil taxa are indicative of mesophytic, mixed forest growing under tropical to subtropical climate with sufficient humidity. The occurrence of dipterocarp elements along with taxa such as Swintonia, Pterospermum and Diospyros, etc. seems to suggest the presence of a tropical rain forest in the vicinity of Vastan.  相似文献   

19.
A small assemblage of macro- and micro floral remains comprising fossil leaf impressions, silicified wood, spores, and pollen grains is reported from the Paleocene–lower Eocene Vagadkhol Formation (=Olpad Formation) exposed around Vagadkhol village in the Bharuch District of Gujarat, western India. The fossil leaves are represented by five genera and six species, namely, Polyalthia palaeosimiarum (Annonaceae), Acronychia siwalica (Rutaceae), Terminalia palaeocatapa and T. panandhroensis (Combretaceae), Lagerstroemia patelii (Lythraceae), and a new species, Gardenia vagadkholia (Rubiaceae). The lone fossil wood has been attributed to a new species, Schleicheroxylon bharuchense (Sapindaceae). The palynological assemblage, consisting of pollen grains and spores, comprises eleven taxa with more or less equal representation of pteridophytes, gymnosperms, and angiosperms. Angiospermous pollen grains include a new species Palmidites magnus. Spores are mostly pteridophytic but some fungal spores were also recovered. All the fossil species have been identified in the extant genera. The present day distribution of modern taxa comparable to the fossil assemblage recorded from the Vagadkhol area mostly indicate terrestrial lowland environment. Low frequency of pollen of two highland temperate taxa (Pinaceae) in the assemblage suggests that they may have been transported from a distant source. The wood and leaf taxa in the fossil assemblage are suggestive of tropical moist or wet forest with some deciduousness during the Paleocene–early Eocene. The presence of many fungal taxa further suggests the prevalence of enough humidity at the time of sedimentation.  相似文献   

20.
Stemann, T. A. & Johnson, K. G. 1992 07 15: Coral assemblages, biofacies. and ecological zones in the mid-Holocene reef deposits of the Enriquillo Valley, Dominican Republic. A large, subaerially exposed mid-Holocene reef in the Enriquillo Valley (southwest Dominican Republic) provides an excellent opportunity to examine the relationship between reefal ecology and reefal deposits. Coral species richness and diversity in the Enriquillo reef are comparable to that found in the recent of the Caribbean, and ecological zonation comprised of a shallow-water branching coral zone and a deeper water mixed-coral zone is apparent. Similar zonation and diversity patterns have been recognized on living Caribbcan reefs with moderate wave exposure. Three statistically discrete biopdcies can be discriminated in the Enriquillo deposits using quadrat point-counting techniques commonly used to census modern reefs. They include a facies dominated by Acropora cervicornis, a low diversity assemblage with abundant, large colonies of Siderastrea siderea and Stephanocoenia intersepta, and a higher diversity assembbdge composed of various taxa including Montastraea spp., Colpophyllia spp., and Agaricia spp. Each facies can be recognized at scales of 1–3 m2, though in some cases they extend for more than 20 m2. In general, the A. cervicornis facies is spatially segregated from the other two biofacies. although neither the shallow nor the deep-water ecological zone is comprised of a single reef biofacies. Rather, the biofacies described here appear to represent distinct micro-environments resulting from ecological variation at a subzonal scale. Micro-environments of similar scale are most likely preserved in other reef deposits. Recognition of these subzonal biofacies may have important consequences for the stratigraphical and paleoccological interpretation of fossil reefs. Corals, biofacies, reef zonation, coral communities, fossil reefs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号