首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Density (age) separated rabbit erythrocytes were examined for differences in the activities of calmodulin and the protein inhibitor of membrane (Ca2+ + Mg2+)-ATPase (Lee, K.S. and Au, K.S. (1983) Biochim. Biophys. Acta 742, 54–62) as well as response of the ATPase towards these protein modulators. It was found that activities of the cytosol protein-bound and free inhibitor as well as membrane-bound inhibitor were higher in top (young) cells as compared to bottom (old) cells. Though the activity of the divalent cation associated membrane calmodulin pool was also higher in young cells, calmodulin activity in the erythrosol remained constant in cells from both age groups. The pool of membrane-associated inhibitor was shown to have greater influence on the ATPase than the membrane-associated calmodulin pool. The influence was more pronounced with inhibitor derived from old than from young cell membranes. Response of the young cell ATPase towards the protein inhibitor was better than the old cell enzyme at low inhibitor concentration. At higher inhibitor concentration, however, response of the ATPase from both cell types was similar.  相似文献   

2.
Density (age) separated rabbit erythrocytes were examined for differences in the activities of calmodulin and the protein inhibitor of membrane (Ca2+ + Mg2+)-ATPase (Lee, K.S. and Au, K.S. (1983) Biochim. Biophys. Acta 742, 54-62) as well as response of the ATPase towards these protein modulators. It was found that activities of the cytosol protein-bound and free inhibitor as well as membrane-bound inhibitor were higher in top (young) cells as compared to bottom (old) cells. Though the activity of the divalent cation associated membrane calmodulin pool was also higher in young cells, calmodulin activity in the erythrosol remained constant in cells from both age groups. The pool of membrane-associated inhibitor was shown to have greater influence on the ATPase than the membrane-associated calmodulin pool. The influence was more pronounced with inhibitor derived from old than from young cell membranes. Response of the young cell ATPase towards the protein inhibitor was better than the old cell enzyme at low inhibitor concentration. At higher inhibitor concentration, however, response of the ATPase from both cell types was similar.  相似文献   

3.
Trifluoperazine dihydrochloride-induced inhibition of calmodulin-activated Ca2+-ATPase and calmodulin-insensitive (Na+ + K+)- and Mg2+-ATPase activities of rat and human red cell lysates and their isolated membranes was studied. Trifluoperazine inhibited both calmodulin-sensitive and calmodulin-insensitive ATPase activities in these systems. The concentration of trifluoperazine required to produce 50% inhibition of calmodulin-sensitive Ca2+-ATPase was found to be slightly lower than that required to produce the same level of inhibition of other ATPase activities. Drug concentrations which inhibited calmodulin-sensitive ATPase completely, produced significant reduction in calmodulin-insensitive ATPases as well. The data presented in this report suggest that trifluoperazine is slightly selective towards calmodulin-sensitive Ca2+-ATPase but that it is also capable of inhibiting calmodulin-insensitive (Na+ + K+)-ATPase and Mg2+-ATPase activities of red cells at relatively low concentrations. Thus the action of the drug is not due entirely to its interaction with calmodulin-mediated processes, and trifluoperazine cannot be assumed to be a selective inhibitor of calmodulin interactions under all circumstances.  相似文献   

4.
Specific activity and Ca2+-affinity of (Ca2++Mg2+)ATPase of calmodulin-depleted ghosts progressively increase during preincubation with 0.1–2 mM Ca2+. Concomitantly, the increment in ATPase activity caused by calmodulin and the binding of calmodulin to ghosts decrease. The effects of calcium ions are abolished by the addition of calmodulin. ATP protects the enzyme from a Ca2+-dependent decrease of the maximum activity but does not seem to influence the Ca2+-dependent transformation of the low Ca2+-affinity enzyme into a high Ca2+-affinity form.  相似文献   

5.
Calmodulin-depleted isotonic erythrocyte ghosts contain 200 ng residual calmodulin/mg protein which is not removed by extensive washings at pCa2+ > 7. Specific activity and Ca2+-affinity of the (Ca2+ + Mg2+)ATPase increase at increasing calmodulin, with K0.5 Ca of 0.38 μM at calmodulin concentrations corresponding to that in erythrocytes. High Ca2+ concentrations inhibit the enzyme. Specific activity and Ca2+-affinity of the enzyme decrease at increasing Mg2+ concentrations. The Ca2+ ? Mg2+ antagonism is likewise observed at inhibitory Ca2+ concentrations.  相似文献   

6.
Calmodulin stimulated 45Ca2+ uptake into a plasma membrane enriched fraction from ox neurohypophysial nerve endings and into a microsome fraction. The 45Ca2+ uptake and the (Ca2+-Mg2+) ATPase activity in the plasma membrane fraction exhibited similar pCa and calmodulin sensitivities, suggesting that the enzyme activity is the biochemical expression of a high affinity Ca2+ pump. Calmodulin thus seems to play a role in regulation of the intracellular free Ca2+ concentration in the neurohypophysis.  相似文献   

7.
The membrane Ca2+Mg2+ ATPase of density (age) separated human erythrocytes was examined for its stimulation by the cytosols of these cell groups. On the assumption that the stimulatory activity in the cytosol is only calmodulin, it was consistently observed that the young cytosol had a significantly higher activity towards the membrane Ca2+Mg2+ ATPase activity (from any age group) than did the old cell cytosol. The data clearly demonstrates decided differences in the expression of calmodulin activity in cytosols from young and old erythrocytes and would support the conclusion that calmodulin activity is altered during in vivo aging of these cells. Possible mechanisms for these alterations are discussed.  相似文献   

8.
Although acute alterations in Ca2+ fluxes may mediate the skeletal responses to certain humoral agents, the processes subserving those fluxes are not well understood. We have sought evidence for Ca2+-dependent ATPase activity in isolated osteoblast-like cells maintained in primary culture. Two Ca2+-dependent ATPase components were found in a plasma membrane fraction: a high affinity component (half-saturation constant for Ca2+ of 280 nM, Vmax of 13.5 nmol/mg per min) and a low affinity component, which was in reality a divalent cation ATPase, since Mg2+ could replace Ca2+ without loss of activity. The high affinity component exhibited a pH optimum of 7.2 and required Mg2+ for full activity. It was unaffected by potassium or sodium chloride, ouabain or sodium azide, but was inhibited by lanthanum and by the calmodulin antagonist trifluoperazine. This component was prevalent in a subcellular fraction which was also enriched in 5′-nucleotidase and adenylate cyclase activities, suggesting the plasma membrane as its principal location. Osteosarcoma cells, known to resemble osteoblasts in their biological characteristics and responses to bone-seeking hormones, contained similar ATPase activities. Inclusion of purified calmodulin in the assay system caused small non-reproducible increases in the Ca2+-dependent ATPase activity of EGTA-washed membranes. Marked, consistent calmodulin stimulation was demonstrated in membranes exposed previously to trifluoperazine and then washed in trifluoperazine-free buffer. These results indicate the presence of a high affinity, calmodulin-sensitive Ca2+-dependent ATPase in osteoblast-like bone cells. As one determinant of Ca2+ fluxes in bone cells, this enzyme may participate in the hormonal regulation of bone cell function.  相似文献   

9.
The calmodulin activation of the (Ca2+ + Mg2+)-ATPase (ATP phosphohydrolase, EC 3.6.1.3) in human erythrocyte membranes was studied in the range of 1 nM to 40 μM of purified calmodulin. The apparent calmodulin-affinity of the ATPase was strongly dependent on Ca2+ and decreased approx. 1000-times when the Ca2+ concentration was reduced from 112 to 0.5 μM. The data of calmodulin (Z) activation were analyzed by the aid of a kinetic enzyme model which suggests that 1 molecule of calmodulin binds per ATPase unit and that the affinities of the calcium-calmodulin complexes (CaiZ) decreases in the order of Ca3Z >Ca4Z >Ca2Z ? CaZ. Furthermore, calmodulin dissociates from the calmodulin-saturated Ca2+-ATPase in the range of 10?7–10?6 M Ca2+, even at a calmodulin concentration of 5 μM. The apparent concentration of calmodulin in the erythrocyte cytosol was determined to be 3 to 5 μM, corresponding to 50–80-times the cellular concentration of Ca2+-ATPase, estimated to be approx. 10 nmol/g membrane protein. We therefore conclude that most of the calmodulin id dissociated from the Ca2+-transport ATPase in erythrocytes at the prevailing Ca2+ concentration (probably 10?7 – 10?8 M) in vivo, and that the calmodulin-binding and subsequent activation of the Ca2+-ATPase requires that the Ca2+ concentration rises to 10?6 – 10?5 M.  相似文献   

10.
Abstract: With a partially purified, membrane-bound (Ca + Mg)-activated ATPase preparation from rat brain, the K0.5 for activation by Ca2+ was 0.8 p μm in the presence of 3 mm -ATP, 6 mm -MgCl2, 100 mM-KCI, and a calcium EGTA buffer system. Optimal ATPase activity under these circumstances was with 6-100 μm -Ca2+, but marked inhibition occurred at higher concentrations. Free Mg2+ increased ATPase activity, with an estimated K0.5, in the presence of 100 μm -CaCl2, of 2.5 mm ; raising the MgCl2 concentration diminished the inhibition due to millimolar concentrations of CaCl2, but antagonized activation by submicromolar concentrations of Ca2+. Dimethylsulfoxide (10%, v/v) had no effect on the K0.5 for activation by Ca2+, but decreased activation by free Mg2+ and increased the inhibition by millimolar CaCl2. The monovalent cations K+, Na+, and TI+ stimulated ATPase activity; for K+ the K0.5 was 8 mm , which was increased to 15 mm in the presence of dimethylsulfoxide. KCI did not affect the apparent affinity for Ca2+ as either activator or inhibitor. The preparation can be phosphorylated at 0°C by [γ-32P]-ATP; on subsequent addition of a large excess of unlabeled ATP the calcium dependent level of phosphorylation declined, with a first-order rate constant of 0.12 s?1. Adding 10 mm -KCI with the unlabeled ATP increased the rate constant to 0.20 s?1, whereas adding 10 mm -NaCl did not affect it measurably. On the other hand, adding dimethyl-sulfoxide slowed the rate of loss, the constant decreasing to 0.06 s?1. Orthovanadate was a potent inhibitor of this enzyme, and inhibition with 1 μm -vanadate was increased by both KCI and dimethylsulfoxide. Properties of the enzyme are thus reminiscent of the plasma membrane (Na + K)-ATPase and the sarcoplasmic reticulum (Ca + Mg)-ATPase, most notably in the K+ stimulation of both dephosphorylation and inhibition by vanadate.  相似文献   

11.
(Mg2+ + Ca2+)-ATPase activity has been found to be significantly reduced in EDTA-washed erythrocyte membrane preparations from cystic fibrosis patients compared to aged-matched controls. Calmodulin was found to be present in erythrocytes from cystic fibrosis patients and characterized similarly to calmodulin isolated from control preparations. Calmodulin from control erythrocyte preparations stimulated the (Mg2+ + Ca2+)-ATPase activity of EDTA-washed erythrocyte membranes derived from cystic fibrosis patients to the same extent as those membranes derived from controls. Similarly, calmodulin obtained from erythrocytes of cystic fibrosis patients stimulated the (Mg2+ + Ca2+)-ATPase activity of control and cystic fibrosis erythrocyte membrane preparations to a similar extent. These results indicate that this decrease in (Mg2+ + Ca2+)-ATPase activity in erythrocytes from cystic fibrosis patients is not due to an alteration in the regulatory function of calmodulin.  相似文献   

12.
Dynamic light scattering studies have been conducted on the delipidated and detergent-removed (Ca2+ + Mg2+)-ATPase protein assemblies. Specific characterization of the state of aggregation and the extent of conformation change upon delipidation and detergent removal has been made. The results show that the prominent species are dimers and tetramers of very globular nature, with axial ratios of less than 2 : 1. The hydrodynamic radii of the dimers and the tetramers are, respectively, 57.5 Å and 74.5 Å.The globular nature of these observed entities differ from the delipidated ATPase proteins recently obtained (LeMaire, M., Jorgensen, K.E., Roigaard-Petersen, H. and Moller, J.V. (1976) Biochemistry 15, 5805–5812). Present results suggest that upon the removal of detergents from the lipid-free ATPase protein assembly, only a rather limited degree of aggregation takes place. Such a condition is consistent with models of the membrane protein system which has limited regions of hydrophobic contact. Oligomeric assemblies with aqueous channels is a possible active Ca2+ transport model consistent with results of the present data, as well as the data from several other recent studies.  相似文献   

13.
We report here characterization of calmodulin-stimulated Ca2+ transport activities in synaptic plasma membranes (SPM). The calcium transport activity consists of a Ca2+-stimulated, Mg2+-dependent ATP hydrolysis coupled with ATP-dependent Ca2+ uptake into membraneous sacs on the cytosolic face of the synaptosomal membrane. These transport activities have been found in synaptosomal subfractions to be located primarily in SPM-1 and SPM-2. Both Ca2+-ATPase and ATP-dependent Ca2+ uptake require calmodulin for maximal activity (KCm for ATPase = 60 nM; KCm for uptake = 50 nM). In the reconstituted membrane system, KCa was found to be 0.8 microM for Ca2+-ATPase and 0.4 microM for Ca2+ uptake. These results demonstrate for the first time the calmodulin requirements for the Ca2+ pump in SPM when Ca2+ ATPase and Ca2+ uptake are assayed under functionally coupled conditions. They suggest that calmodulin association with the membrane calcium pump is regulated by the level of free Ca2+ in the cytoplasm. The activation by calmodulin, in turn, regulates the cytosolic Ca2+ levels in a feedback process. These studies expand the calmodulin hypothesis of synaptic transmission to include activation of a high-affinity Ca2+ + Mg2+ ATPase as a regulator for cytosolic Ca2+.  相似文献   

14.
(Ca2+ + Mg2+)-ATPase activator protein associated with human erythrocyte membranes could be extracted with EDTA under isotonic condition at pH 7.6. No activator was released, however, using isotonic buffer alone. Like calmodulin, the activator in the EDTA extract migrated as a fast moving band on polyacrylamide gel electrophoresis. It was also heat-stable, was capable of stimulating active calcium transport and could stimulate (Ca2+ + Mg2+)-ATPase to the same extent. When chromatographed on a Sephacryl S-200 column, it was eluted in the same position as calmodulin and a membrane associated (Ca2+ + Mg2+)-ATPase activator prepared according to Mauldin and Roufogalis (Mauldin, D. and Roufogalis, B.D. (1980) Biochem. J. 187, 507–513). Furthermore, both Mauldin and Roufogalis protein and the activator in the EDTA extract exhibited calcium-dependent binding to a fluphenazine-Sepharose affinity column. On the basis of these data, it is concluded that the activator protein released from erythrocyte membranes by EDTA is calmodulin. A further pool of the ATPase activator could be released by boiling but not by Triton X-100 treatment of the EDTA-extracted membranes. This pool amounted to 8.9% of the EDTA-extractable pool.  相似文献   

15.
Kinetic studies of a microsomal, dithiotreitol treated, homogenate from sugar beet roots led to the following conclusions about its ATPase activity: (1) MgATP in complex appears to be the primary substrate for the reaction. The reciprocal equilibrium constant for the binding to the enzyme is estimated to be approximately 0.2 × 10?3M. (2) Free ATP acts as a competitive inhibitor of the MgATP. The binding constant is about twice as high as for MgATP. Consequently the enzyme has less affinity for ATP than for MgATP. (3) Free Mg2+ has little influence on the velocity, as the binding affinity of the enzyme for Mg2+ is almost negligible.  相似文献   

16.
17.
Kinetic studies of a dithiothreitol treated membrane ATPase fraction from sugar beet roots led to the following conclusions: 1) In the presence of MgATP, Na+ and K+ stimulate the ATPase activity in different ways following simple Michaelis-Menten kinetics. Thus separate sites for Na+ and K+ are suggested. 2) In the absence of K+, Na+ acts as an uncompetitive modifier raising the apparent Km and Vmax for MgATP. 3) In the absence of Na+, K+ activates non-competitively with respect to MgATP. Thus K+ increases Vmax but does not affect the apparent affinity constant. 4) K+ and Na+ double the rate constants. 5) In the presence of Na+ or K+, Mg2+ in excess acts as a weak inhibitor to Na+ and/or K+ activity. 6) The temperature-activity dependence in the 5–40°C interval shows biphasic Arrhenius plots with the transition point between 15–18°C. The activation energy is lowered at temperatures > 18°C.  相似文献   

18.
Fluorescein isothiocyanate was used to covalently label the gastric (H+ + K+)-ATPase. FITC treatment of the enzyme inhibited the ATPase activity while largely sparing partial reactions such as the associated p-nitrophenylphosphatase activity. ATP protected against inhibition suggesting the ligand binds at or near an ATP binding site. At 100% inhibition the stoichiometry of binding was 1.5 nmol FITC per mg Lowry protein a value corresponding to maximal phosphoenzyme formation. Binding occurred largely to a peptide of 6.2 isoelectric point, although minor labelling of a peptide of pI 5.6 was also noted. Fluorescence was quenched by K+, Rb+ and Tl+ in a dose-dependent manner, and the K0.5 values of 0.28, 0.83 and 0.025 mM correspond rather well to the values required for dephosphorylation at a luminal site. Vanadate, a known inhibitor of the gastric ATPase produced a slow Mg2+-dependent fluorescent quench. Ca2+ reversed the K+-dependent loss of fluorescence and inhibited it when added prior to K+. This may relate to the slow phosphorylation in the presence of ATP found when Ca2+ was substituted for Mg2+ and the absence of K+-dependent dephosphorylation. The results with FITC-modified gastric ATPase provide evidence for a conformational change with K+ binding to the enzyme.  相似文献   

19.
Liver plasma membranes enriched in bile canaliculi were isolated from rat liver by a modification of the technique of Song et al. (J. Cell Biol. (1969) 41, 124–132) in order to study the possible role of ATPase in bile secretion. Optimum conditions for assaying (Na+ + K+)-activated ATPase in this membrane fraction were defined using male rats averaging 220 g in weight. (Na+ + K+)-activated ATPase activity was documented by demonstrating specific cation requirements for Na+ and K+, while the divalent cation, Ca2+, and the cardiac glycosides, ouabain and scillaren, were inhibitory. (Na+ + K+)-activated ATPase activity averaged 10.07 ± 2.80 μmol Pi/mg protei per h compared to 50.03 ± 11.41 for Mg2+-activated ATPase and 58.66 ± 10.07 for 5′-nucleotidase. Concentrations of ouabain and scillaren which previously inhibited canalicular bile secretion in the isolated perfused rat liver produced complete inhibition of (Na+ + K+)-activated ATPase without any effect on Mg2+-activated ATPase. Both (Na+ + K+)-activated ATPase and Mg2+-activated ATPase demonstrated temperature dependence but differed in temperature optima. Temperature induced changes in specific activity of (Na+ + K+)-activated ATPase directly paralleled previously demonstrated temperature optima for bile secretion. These studies indicate that (Na+ + K+)-activated ATPase is present in fractions of rat liver plasma membranes that are highly enriched in bile canaliculi and provide a model for further study of the effects of various physiological and chemical modifiers of bile secretion and cholestasis.  相似文献   

20.
Steady state kinetics were used to examine the influence of Cd2+ both on K+ stimulation of a membrane-bound ATPase from sugar beet roots (Beta vulgaris L. cv. Monohill) and on K+(86Rb+) uptake in intact or excised beet roots. The in vitro effect of Cd2+ was studied both on a 12000–25000 g root fraction of the (Na++K++Mg2+)ATPase and on the ATPase when further purified by an aqueous polymer two-phase system. The observed data can be summarized as follows: 1) Cd2+ at high concentrations (>100 μM) inhibits the MgATPase activity in a competitive way, probably by forming a complex with ATP. 2) Cd2+ at concentrations <100 μM inhibits the specific K+ activation at both high and low affinity sites for K+. The inhibition pattern appears to be the same in the two ATPase preparations of different purity. In the presence of the substrate MgATP, and at K+ <5 mM, the inhibition by Cd2+ with respect to K+ is uncompetitive. In the presence of MgATP and K+ >10 μM, the inhibition by Cd2+ is competitive. 3) At the low concentrations of K+, Cd2+ also inhibits the 2,4-dinitrophenol(DNP)-sensitive (metabolic) K+(86Rb+) uptake uncompetitively both in excised roots and in roots of intact plants. 4) The DNP-insensitive (non metabolic) K+(86Rb+) uptake is little influenced by Cd2+. As Cd2+ inhibits the metabolic uptake of K+(86Rb+) and the K+ activation of the ATPase in the same way at low concentrations of K+, the same binding site is probably involved. Therefore, under field conditions, when the concentration of K+ is low, the presence of Cd2+ could be disadvantageous.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号