首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Hessian fly is one of the world's most destructive insect pests of wheat Triticum aestivum L. We have used the combination of near-isogenic lines (NIL) and random amplified polymorphic DNA (RAPD) analysis to screen up to 2,000 primers to identify DNA markers that are linked to gene H6 that confers resistance to biotype B of the insect. This screen produced six primers that show polymorphic fragments associated with resistance by H6. We have screened 440 F2 individuals from a cross of the susceptible cultivar Newton and a NIL that contains H6 to verify the linkage between these markers and the resistance gene. A high-resolution genetic map was constructed based on recombination frequency. Two of the markers were tightly linked to the gene with no recombination observed, three were within 2.0 cM, and one was 11 cM from the gene. Three of the six markers were successfully converted to sequence tagged site (STS) markers. Both RAPD and STS primers were used to screen for the presence or absence of the resistance gene in wheat varieties. The identification of markers and construction of the genetic high resolution map provide the first steps toward localization of this resistance gene.  相似文献   

2.
Bulked segregant analysis was used to identify random amplified polymorphic DNA (RAPD) markers linked to the Sw-5 gene for resistance to tomato spotted wilt virus (TSWV) in tomato. Using two pools of phenotyped individuals from one segregating population, we identified four RAPD markers linked to the gene of interest. Two of these appeared tightly linked to Sw-5, whereas another, linked in repulsion phase, enabled the identification of heterozygous and susceptible plants. After linkage analysis of an F2 population, the RAPD markers were shown to be linked to Sw-5 within a distance of 10.5 cM. One of the RAPD markers close to Sw-5 was used to develop a SCAR (sequence characterized amplified region) marker. Another RAPD marker was stabilized into a pseudo-SCAR marker by enhancing the specificity of its primer sequence without cloning and sequencing. RAPD markers were mapped to chromosome 9 on the RFLP tomato map developed by Tanksley et al. (1992). The analysis of 13 F3 families and eight BC2 populations segregating for resistance to TSWV confirmed the linkage of the RAPD markers found. These markers are presently being used in marker-assisted plant breeding.  相似文献   

3.
Microsatellite and random amplified polymorphic DNA (RAPD) primers were used to identify molecular markers linked to the Yr15 gene which confer resistance to stripe rust (Puccina striiformis Westend) in wheat. By using near isogenic lines (NILs) for the Yr15 gene and a F2 mapping population derived from crosses of these lines and phenotyped for resistance, we identified one microsatellite marker (GWM33) and one RAPD marker (OPA19(800)) linked to Yr15. Then, bulked segregant analysis was used in addition to the NILs to identify RAPD markers linked to the target gene. Using this approach, two RAPD markers linked to Yr15 were identified, one in coupling (UBC199(700)) and one in repulsion phase (UBC212(1200)). After MAPMAKER linkage analysis on the F2 population, the two closest markers were shown to be linked to Yr15 within a distance of about 12 cM. The recombination rates were recalculated using the maximum likelihood technique to take into account putative escaped individuals from the stripe rust resistance test and obtain unbiased distance estimates. As a result of this study, the stripe rust resistance gene Yr15 is surrounded by two flanking PCR markers, UBC199(700) and GWM33, at about 5 cM from each side.  相似文献   

4.
 RAPD (random amplified polymorphic DNA) analysis was used to identify molecular markers linked to the Dn2 gene conferring resistance to the Russian wheat aphid (Diuraphis noxia Mordvilko). A set of near-isogenic lines (NILs) was screened with 300 RAPD primers for polymorphisms linked to the Dn2 gene. A total of 2700 RAPD loci were screened for linkage to the resistance locus. Four polymorphic RAPD fragments, two in coupling phase and two in repulsion phase, were identified as putative RAPD markers for the Dn2 gene. Segregation analysis of these markers in an F2 population segregating for the resistance gene revealed that all four markers were closely linked to the Dn2 locus. Linkage distances ranged from 3.3 cM to 4.4 cM. Southern analysis of the RAPD products using the cloned RAPD markers as probes confirmed the homology of the RAPD amplification products. The coupling-phase marker OPB10880c and the repulsion-phase marker OPN1400r were converted to sequence characterized amplified region (SCAR) markers. SCAR analysis of the F2 population and other resistant and susceptible South African wheat cultivars corroborated the observed linkage of the RAPD markers to the Dn2 resistance locus. These markers will be useful for marker-assisted selection of the Dn2 gene for resistance breeding and gene pyramiding. Received: 1 July 1997 / Accepted: 20 October 1997  相似文献   

5.
Bulk segregant analysis was used to identify random amplified polymorphic DNA (RAPD) markers linked to a gene determining hypersensitive resistance in Vicia faba line 2N52 against race 1 of the rust fungus Uromyces viciae-fabae. The monogenic nature of the resistance was determined by analyzing the F(2) population from a cross between resistant line 2N52 and susceptible line VF-176, and further confirmed in the F(2:3)-derived families. Linkage of the RAPD markers was confirmed by screening 55 F(2) plants segregating for resistance. Three RAPD markers (OPD13(736), OPL18(1032) and OPI20(900)) were mapped in coupling phase to the resistance gene for race 1 ( Uvf-1). No recombinants between OPI20(900) and Uvf-1 were detected. Two additional markers (OPP02(1172) and OPR07(930)) were linked to the gene in repulsion phase at a distance of 9.9 and 11.5 cM, respectively. The application of marker-assisted selection to develop new faba bean varieties with rust resistance genes is discussed.  相似文献   

6.
 In tomato, Bulked Segregant Analysis was used to identify random amplified polymorphic DNA (RAPD) markers linked to a quantitative trait locus (QTL) involved in the resistance to the Tomato Yellow Leaf Curl Virus. F4 lines were distributed into two pools, each consisting of the most resistant and of the most susceptible individuals, respectively. Both pools were screened using 600 random primers. Four RAPD markers were found to be linked to a QTL responsible for up to 27.7% of the resistance. These markers, localized in the same linkage group within a distance of 17.3 cM, were mapped to chromosome 6 on the tomato RFLP map. Received: 21 August 1996 / Accepted: 4 April 1997  相似文献   

7.
Genetic linkage maps for two apricot cultivars have been constructed using AFLP, RAPD, RFLP and SSR markers in 81 F1 individuals from the cross 'Goldrich' x 'Valenciano'. This family segregated for resistance to 'plum pox virus' (PPV), the most-important virus affecting Prunus species. Of the 160 RAPD arbitrary primers screened a total of 44 were selected. Sixty one polymorphic RAPD markers were scored on the mapping population: 30 heterozygous in 'Goldrich', 19 heterozygous in 'Valenciano', segregating 1:1, and 12 markers heterozygous in both parents, segregating 3:1. A total of 33 and 19 RAPD markers were mapped on the 'Goldrich' and 'Valenciano' maps respectively. Forteen primer combinations were used for AFLPs and all of them detected polymorphism. Ninety five markers segregating 1:1 were identified, of which 62 were heterozygous in the female parent 'Goldrich' and 33 in the male parent 'Valenciano'. Forty five markers were present in both parents and segregated 3:1. A total of 82 and 48 AFLP markers were mapped on the 'Goldrich' and 'Valenciano' maps. Twelve RFLPs probes were screened in the population, resulting in five loci segregating in the family, one locus heterozygous for 'Valenciano' and four heterozygous for both, segregating 1:2:1. Of the 45 SSRs screened 17 segregated in the mapping family, resulting in seven loci heterozygous for the maternal parent and ten heterozygous for both, segregating 1:2:1 or 1:1:1:1. A total of 16 and 13 co-dominant markers were mapped in the female and male parent maps respectively. A total of 132 markers were placed into eight linkage groups on the 'Goldrich' map, defining 511 cM of the total map-length. The average distance between adjacent markers was 3.9 cM. A total of 80 markers were placed into seven linkage groups on the 'Valenciano' map, defining 467.2 cM of the total map-distance, with an average interval of 5.8 cM between adjacent markers. Thirty six marker loci heterozygous in both parents revealed straightforward homologies between five linkage groups in both maps. The sharka resistance trait mapped on linkage group 2. The region containing sharka resistance is flanked by two co-dominant markers that will be used for targeted SSR development employing a recently constructed complete apricot BAC library. SSRs tightly linked to sharka resistance will facilitate MAS in breeding for resistance in apricot.  相似文献   

8.
 Pearl millet [Pennisetum glaucum (L.) R.Br.] is a warm-season grass used for food, feed, fodder and forage, primarily in countries of Africa and India but grown around the world. The two most-destructive diseases to pearl millet in the United States are rust (caused by Puccinia substriata var. indica) and pyricularia leaf spot (caused by Pyricularia grisea). Genes for disease resistance to both pathogens have been transferred into agronomically acceptable forage and grain cultivars. A study was undertaken to identify molecular markers for three rust loci and one pyricularia resistance locus. Three segregating populations were screened for RAPDs using random decamer primers and for RFLPs using a core set of probes detecting single-copy markers on the pearl millet map. The rust resistance gene Rr 1 from the pearl millet subspecies P. glaucum ssp. monodii was linked 8.5 cM from the RAPD OP-G8350. The linkage of two RFLP markers, Xpsm108 (15.5 cM) and Xpsm174 (17.7 cM), placed the Rr 1 gene on linkage-group 3 of the pearl millet map. Rust resistance genes from both Tift 89D2 and ICMP 83506 were placed on linkage-group 4 by determining genetic linkage to the RFLP marker Xpsm716 (4.9 and 0.0 cM, respectively). Resistance in ICMP 83506 was also linked to the RFLP marker Xpsm306 (10.0 cM), while resistance in Tift 89D2 was linked to RAPD markers OP-K19350 (8.8 cM) and OP-O8350 (19.6 cM). Fragments from OP-K19 and OP-O8 in the ICMP 83506 population, and Xpsm306 in the Tift 89D2 population, were monomorphic. Only one RAPD marker (OP-D11700, 5.6 cM) was linked to pyricularia leaf spot resistance. Attempts to detect polymorphisms with rice RFLP probes linked to rice blast resistance (Pyricularia oryzae; syn=P. grisea) were unsuccessful. Received: 19 May 1997 / Accepted: 21 October 1997  相似文献   

9.
Three genetically independent avirulence genes, AVR1-Irat7, AVRI-MedNoi; and AVR1-Ku86, were identified in a cross involving isolates Guy11 and 2/0/3 of the rice blast fungus, Magnaporthe grisea. Using 76 random progeny, we constructed a partial genetic map with restriction fragment length polymorphism (RFLP) markers revealed by probes such as the repeated sequences MGL/MGR583 and Pot3/MGR586, cosmids from the M. grisea genetic map, and a telomere sequence oligonucleotide. Avirulence genes AVR1-MedNoi and AVR1-Ku86 were closely linked to telomere RFLPs such as marker TelG (6 cM from AVR1-MedNoi) and TelF (4.5 cM from AVR1-Ku86). Avirulence gene AVR1-Irat7 was linked to a cosmid RFLP located on chromosome 1 and mapped at 20 cM from the avirulence gene AVR1-CO39. Using bulked segregant analysis, we identified 11 random amplified polymorphic DNA (RAPD) markers closely linked (0 to 10 cM) to the avirulence genes segregating in this cross. Most of these RAPD markers corresponded to junction fragments between known or new transposons and a single-copy sequence. Such junctions or the whole sequences of single-copy RAPD markers were frequently absent in one parental isolate. Single-copy sequences from RAPD markers tightly linked to avirulence genes will be used for positional cloning.  相似文献   

10.
A consensus molecular linkage map of 61.9 cM containing the Or5 gene, which confers resistance to race E of broomrape orobanche cumana, five SCAR markers (three dominant, two codominant) and one RAPD marker were identified based on segregation data scored from two F2 populations of susceptible×resistant sunflower line crosses. Bulked segregant analysis was carried out to generate the five SCAR markers, while the single RAPD marker in the group was identified from 61 segregating RAPD markers that were directly screened on one of the two F2 populations. The five SCAR markers, RTS05, RTS28, RTS40, RTS29 and RTS41, were significantly (LOD≥4.0) linked to the Or5 gene and mapped separately at 5.6, 13.6, 14.1, 21.4 and 39.4 cM from the Or5 locus on one side, while the RAPD marker, UBC120_660, was found at 22.5 cM (LOD=1.4) on the opposite side. These markers should facilitate the efficient transfer of the resistance gene among sunflower breeding lines. As the first report on molecular markers linked to a broomrape resistance gene, the present work provides a starting point to study other genes and to examine the hypothesis of the clustering of broomrape resistance genes in sunflower. Received: 16 September 1998 / Accepted: 22 June 1999  相似文献   

11.
Rust is one of the most-damaging eucalypt diseases in Brazil and is considered a potential threat to eucalypt plantations worldwide. To determine the mode of inheritance of resistance in the Eucalyptus grandisPuccinia psidii pathosystem, ten full-sib families, generated from crosses between susceptible and resistant trees, were inoculated with a single-pustule isolate of the pathogen and rust severity was scored. The observed segregation ratios in segregating families suggested major gene control of rust resistance, although clearly incomplete penetrance, variable expressivity and minor genes are also involved in the global rust-resistance response. To identify markers linked to the resistance locus, screening of RAPD polymorphisms was conducted using bulked segregant analysis in a large full-sib family. A linkage group was built around the Ppr1 gene (P. psidii resistance gene 1) encompassing six RAPD markers, with a genetic window spanning 5 cM with the two most-closely linked flanking markers. Besides these two flanking markers, RAPD marker AT9/917 co-segregated with Ppr1 without a single recombinant in 994 meioses. This tightly linked marker should prove useful for marker-assisted introgression and will provide an initial lead for a positional cloning effort of this resistance allele. This is the first report of a disease resistance gene identified in Eucalyptus, and one of the few examples of the involvement of a major gene in a non-coevolved pathosystem.Communicated by D.B. Neale  相似文献   

12.
Anthracnose, caused by Colletotrichum gloeosporioides, is the most severe foliar disease of water yam (Dioscorea alata) worldwide. The tetraploid breeding line, TDa 95/00328, is a source of dominant genetic resistance to the moderately virulent fast growing salmon (FGS) strain of C. gloeosporioides. Bulked segregant analysis was used to search for random amplified polymorphic DNA (RAPD) markers linked to anthracnose resistance in F1 progeny derived from a cross between TDa 95/00328 and the susceptible male parent, TDa 95–310. Two hundred and eighty decamer primers were screened using bulks obtained from pooled DNA of individuals comprising each extreme of the disease phenotype distribution. A single locus that contributes to anthracnose resistance in TDa 95/00328 was identified and tentatively named Dcg‐1. We found two RAPD markers closely linked in coupling phase with Dcg‐1, named OPI71700 and OPE6950, both of which were mapped on the same linkage group. OPI71700 appeared tightly linked to the Dcg‐1 locus; it was present in all the 58 resistant F1 individuals and absent in all but one of the 13 susceptible genotypes (genetic distance of 2.3 cM). OPE6950 was present in 56 of the 58 resistant progeny and only one susceptible F1 plant showed this marker (6.8 cM). Both markers successfully identified Dcg‐1 in resistant D. alata genotypes among 34 breeding lines, indicating their potential for use in marker‐assisted selection. OPI71700 and OPE6950 are the first DNA markers for yam anthracnose resistance. The use of molecular markers presents a valuable strategy for selection and pyramiding of anthracnose resistance genes in yam improvement.  相似文献   

13.
Macrogametophytes derived from the seeds of a tree resistant to pine needle gall midge (PGM) were analyzed using amplified fragment length polymorphism (AFLP). A total of 244 segregating loci were detected among 71 macrogametophytes. Combining the AFLP results with previously reported segregation data for 127 random amplified polymorphic DNA (RAPD) markers, 157 AFLP and 50 RAPD markers with confirmed map positions were assigned to 20 linkage groups and three pairs covering 2085.5 cM with an average distance of 10.1 cM. The total map distance covers about 77.1–78.4% of the total genome, estimated to be approximately 2665–2719 cM in length. Thus, using AFLP markers, the previous RAPD map of this tree was improved in terms of the average distance between markers, the total map distance, and coverage of the genome. Three RAPD markers linked to a gene associated with resistance to PGM were also located on this map. Rceived: 14 April 2000 / Accepted: 21 August 2000  相似文献   

14.
Marker-assisted selection for two rust resistance genes in sunflower   总被引:5,自引:0,他引:5  
In this study we report on the identification of molecular markers, OX20600 and OO04950, linked to the geneR Adv in the proprietary inbred line P2. This gene confers resistance to most of the pathotypes of Puccinia helianthi identified in Australia. Analysis indicates these RAPD markers are linked to the resistance locus at 0.0 cM and 11 cM respectively. SCAR markers SCX20600 and SCO04950 derived from these two RAPD markers, and SCT06950 derived from a previously reported RAPD marker linked at 4.5 cM from the R 1 rust resistance gene were developed. SCX20600 and SCO04950 were linked at similar distances from their resistance locus as the RAPD markers. SCTO6950 co-segregated completely with rust resistance. The robustness of the R 1 SCAR marker was demonstrated through the amplification of the marker in a diverse range of sunflower germplasm considered to possess the R 1 gene. The SCAR markers forR Adv were not amplified in the sunflower rust differential set thereby supporting the contention that this is a novel resistance gene. They did amplify in a number of proprietary lines closely related to the line P2. This locus is under further investigation as it will be useful in our attempts to use molecular-assisted breeding to produce durable resistance in sunflower to P. helianthi.  相似文献   

15.
A linkage map for European hazelnut (Corylus avellana L.) was constructed using random amplified polymorphic DNA (RAPD) and simple sequence repeat (SSR) markers and the 2-way pseudotestcross approach. A full-sib population of 144 seedlings from the cross OSU 252.146 x OSU 414.062 was used. RAPD markers in testcross configuration, segregating 1:1, were used to construct separate maps for each parent. Fifty additional RAPD loci were assigned to linkage groups as accessory markers whose exact location could not be determined. Markers in intercross configuration, segregating 3:1, were used to pair groups in one parent with their homologues in the other. Eleven groups were identified for each parent, corresponding to the haploid chromosome number of hazelnut (n = x = 11). Thirty of the 31 SSR loci were able to be assigned to a linkage group. The maternal map included 249 RAPD and 20 SSR markers and spanned a distance of 661 cM. The paternal map included 271 RAPD and 28 SSR markers and spanned a distance of 812 cM. The maps are quite dense, with an average of 2.6 cM between adjacent markers. The S-locus, which controls pollen-stigma incompatibility, was placed on chromosome 5S where 6 markers linked within a distance of 10 cM were identified. A locus for resistance to eastern filbert blight, caused by Anisogramma anomala, was placed on chromosome 6R for which two additional markers tightly linked to the dominant allele were identified and sequenced. These maps will serve as a starting point for future studies of the hazelnut genome, including map-based cloning of important genes. The inclusion of SSR loci on the map will make it useful in other populations.  相似文献   

16.
小麦抗白粉病基因Pm23对世界上很多麦区流行的白粉病表现高抗或免疫.本研究以Pm23和Chancellor为抗感亲本,用集群分离分析法对抗性基因Pm23进行了RAPD分析,从320个十碱基随机引物中筛选到一个与Pm23紧密连锁的相引相标记OPE051100. 对F2分离群体进行RAPD分析表明,该标记与Pm23基因之间的连锁距离为10.65±3.25 cM.该标记可以有效用于小麦育种分子标记辅助选择中.  相似文献   

17.
Rice blast, caused byPyricularia grisea, is a major production constraint in many parts of the world. The Korean rice variety Tongil showed high levels of resistance for about six years when widely planted under highly disease-conducive conditions, before becoming susceptible. Tongil was found to carry a single dominant gene, designatedPi-10t, conferring resistance to isolate 106 of the blast pathogen from the Philippines. We report here the use of bulked segregant RAPD analysis for rapid identification of DNA markers linked toPi-10t. Pooled DNA extracts from five homozygous blast-resistant (RR) and five susceptible (rr) BC3F2 plants, derived from a CO39 × Tongil cross, were analyzed by RFLP using 83 polymorphic probes and by RAPD using 468 random oligomers. We identified two RAPD markers linked to thePi-10t locus: RRF6 (3.8 ± 1.2 cM) and RRH18 (2.9 ± 0.9 cM). Linkage of these markers withPi-10t was verified using an F2 population segregating forPi-10t. The two linked RAPD markers mapped 7 cM apart on chromosome 5. Chromosomal regions surrounding thePi-10t gene were examined with additional RFLP markers to define the segment introgressed from the donor genome.Pi-10t is likely to be a new blast-resistance locus, because no other known resistance gene has been mapped on chromosome 5. These tightly linked RAPD markers could facilitate early selection of thePi-10t locus in rice breeding programmes.  相似文献   

18.
Construction of a genetic linkage map in celery using DNA-based markers.   总被引:1,自引:0,他引:1  
X Yang  C F Quiros 《Génome》1995,38(1):36-44
A F2 population of two celery cultivated types (Apium graveolens L. var. rapaceum and A. graveolens L. var. secalinum) was used to construct a linkage map consisting of 29 RFLP (restriction fragment length polymorphism), 100 RAPD (random amplified polymorphic DNA), four isozyme, one disease resistance, and one growth habit markers. The map contains 11 major groups and 9 small groups and has a total length of 803 cM with an average distance of 6.4 cM between two adjacent loci. Ten percent of the RAPDs segregated as codominant markers and their allelic homologies were tested by Southern hybridization. One-quarter of the dominant RAPDs were linked in repulsion phase, whereas the majority of them were linked to either codominant or dominant markers in coupling phase. About 10% of the markers showed significant segregation distortion. The detectable level of duplications in the celery genome was relatively low.  相似文献   

19.
Random amplified polymorphic DNA(RAPD) was employed to detect a molecular marker linked to Fusarium wilt resistant gene in the wild watermelon ( Citrullus lanatus (Thunb.) Mansfeld var. citroides ) germplasm P1296341. The resistance to race 1 Fusarium wilt of PI296341 was controlled by one dominant gene. A RAPD marker OPPO1/700 was proved to be linked to the resistant gene. The genetic distance is 3.0 cM (centimorgan). This work has provided a solid basis for molecular marker-assisted selection (MAS) for disease resistance, and made location and cloning of disease resistant genes possible.  相似文献   

20.
Linkage Map of the Honey Bee, Apis Mellifera, Based on Rapd Markers   总被引:15,自引:1,他引:14       下载免费PDF全文
G. J. Hunt  R. E. Page-Jr 《Genetics》1995,139(3):1371-1382
A linkage map was constructed for the honey bee based on the segregation of 365 random amplified polymorphic DNA (RAPD) markers in haploid male progeny of a single female bee. The X locus for sex determination and genes for black body color and malate dehydrogenase were mapped to separate linkage groups. RAPD markers were very efficient for mapping, with an average of about 2.8 loci mapped for each 10-nucleotide primer that was used in polymerase chain reactions. The mean interval size between markers on the map was 9.1 cM. The map covered 3110 cM of linked markers on 26 linkage groups. We estimate the total genome size to be ~3450 cM. The size of the map indicated a very high recombination rate for the honey bee. The relationship of physical to genetic distance was estimated at 52 kb/cM, suggesting that map-based cloning of genes will be feasible for this species.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号