首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Aim

The pro-atherogenic role of RANTES, a chemokine expressing pleiotropic activities, in the course of type 2 diabetes-related atherosclerosis has been well documented. However, it is not known which of the diabetes-related factors primarily influence serum RANTES levels in patients with type 2 diabetes. Our aim was to investigate relationships between several factors known to be related to an increased risk of atherosclerosis and serum RANTES levels in type 2 diabetic patients.

Methods

A total of 168 subjects were examined, which included 138 patients with type 2 diabetes and 30 non-diabetic controls. Measurements of venous, fasting, plasma glucose, HbA1c, lipid profile, 1,5-anhydro-D-glucitol (1,5-AG) plasma levels, homocysteine and the fasting, serum C-peptide levels were performed. Serum concentrations of RANTES were assayed using BD? Cytometric Bead Array tests. Peripheral insulin resistance was expressed according to a new index defined by Ohkura et al.

Results

RANTES levels in type 2 diabetic patients correlated with 1,5-AG, fasting glycaemia, HbA1c and the Ohkura index. Multivariate regression analysis was performed taking into consideration several factors related to the inflammatory process and atherosclerosis, namely the patient’s age, diabetes duration, waist circumference, 1,5-AG, HbA1c, lipid profile parameters, serum homocysteine levels and Ohkura index, as independent variables potentially influencing serum RANTES levels in type 2 diabetic patients. It is shown that RANTES concentrations in the serum is primarily dependent upon 1,5-AG plasma levels.

Conclusion

Our results suggest that increased serum levels of RANTES in type 2 diabetic patients are closely related to postprandial (acute) hyperglycaemia.
  相似文献   

2.
Resistin, secreted from adipocytes, causes insulin resistance and diabetes in rodents. To determine the relation between serum resistin and diabetic microangiopathies in humans, we analyzed 238 Japanese T2DM subjects. Mean serum resistin was higher in subjects with either advanced retinopathy (preproliferative or proliferative) (P=0.0130), advanced nephropathy (stage III or IV) (P=0.0151), or neuropathy (P=0.0013). Simple regression analysis showed that serum resistin was positively correlated with retinopathy stage (P=0.0212), nephropathy stage (P=0.0052), and neuropathy (P=0.0013). Multiple regression analysis adjusted for age, gender, and BMI, revealed that serum resistin was correlated with retinopathy stage (P=0.0144), nephropathy stage (P=0.0111), and neuropathy (P=0.0053). Serum resistin was positively correlated with the number of advanced microangiopathies, independent of age, gender, BMI, and either the duration of T2DM (P=0.0318) or serum creatinine (P=0.0092). Therefore, serum resistin was positively correlated with the severity of microangiopathies in T2DM.  相似文献   

3.
Mammalian Genome - Type 2 diabetes (T2D) is a complex metabolic disorder with no cure and high morbidity. Exposure to inorganic arsenic (iAs), a ubiquitous environmental contaminant, is associated...  相似文献   

4.
5.

Introduction

Little is known about the association of urine metabolites with structural lesions in persons with diabetes.

Objectives

We examined the relationship between 12 urine metabolites and kidney structure in American Indians with type 2 diabetes.

Methods

Data were from a 6-year clinical trial that assessed renoprotective efficacy of losartan, and included a kidney biopsy at the end of the treatment period. Metabolites were measured in urine samples collected within a median of 6.5 months before the research biopsy. Associations of the creatinine-adjusted urine metabolites with kidney structural variables were examined by Pearson’s correlations and multivariable linear regression after adjustment for age, sex, diabetes duration, hemoglobin A1c, mean arterial pressure, glomerular filtration rate (iothalamate), and losartan treatment.

Results

Participants (n?=?62, mean age 45?±?10 years) had mean?±?standard deviation glomerular filtration rate of 137?±?50 ml/min and median (interquartile range) urine albumin:creatinine ratio of 34 (14–85) mg/g near the time of the biopsy. Urine aconitic and glycolic acids correlated positively with glomerular filtration surface density (partial r?=?0.29, P?=?0.030 and r?=?0.50, P?<?0.001) and total filtration surface per glomerulus (partial r?=?0.32, P?=?0.019 and r?=?0.43, P?=?0.001). 2-ethyl 3-OH propionate correlated positively with the percentage of fenestrated endothelium (partial r?=?0.32, P?=?0.019). Citric acid correlated negatively with mesangial fractional volume (partial r=-0.36, P?=?0.007), and homovanillic acid correlated negatively with podocyte foot process width (partial r=-0.31, P?=?0.022).

Conclusions

Alterations of urine metabolites may associate with early glomerular lesions in diabetic kidney disease.
  相似文献   

6.

Background

Obesity and type 2 diabetes (T2DM) are associated with increased circulating free fatty acids and triacylglycerols. However, very little is known about specific molecular lipid species associated with these diseases. In order to gain further insight into this, we performed plasma lipidomic analysis in a rodent model of obesity and insulin resistance as well as in lean, obese and obese individuals with T2DM.

Methodology/Principal Findings

Lipidomic analysis using liquid chromatography coupled to mass spectrometry revealed marked changes in the plasma of 12 week high fat fed mice. Although a number of triacylglycerol and diacylglycerol species were elevated along with of a number of sphingolipids, a particularly interesting finding was the high fat diet (HFD)-induced reduction in lysophosphatidylcholine (LPC) levels. As liver, skeletal muscle and adipose tissue play an important role in metabolism, we next determined whether the HFD altered LPCs in these tissues. In contrast to our findings in plasma, only very modest changes in tissue LPCs were noted. To determine when the change in plasma LPCs occurred in response to the HFD, mice were studied after 1, 3 and 6 weeks of HFD. The HFD caused rapid alterations in plasma LPCs with most changes occurring within the first week. Consistent with our rodent model, data from our small human cohort showed a reduction in a number of LPC species in obese and obese individuals with T2DM. Interestingly, no differences were found between the obese otherwise healthy individuals and the obese T2DM patients.

Conclusion

Irrespective of species, our lipidomic profiling revealed a generalized decrease in circulating LPC species in states of obesity. Moreover, our data indicate that diet and adiposity, rather than insulin resistance or diabetes per se, play an important role in altering the plasma LPC profile.  相似文献   

7.
In experimental glomerulonephritis, inhibition of renal prostaglandin (PG) synthesis by nonsteroidal-anti-inflammatory drugs (NSAIDs) moderates proteinuria, yet can induce harmful effects on renal blood flow and Na+ - K+ - water balance thereby implicating 1 or more prostanoid receptor subtypes. We investigated the role of the PGE2 EP1 receptor in nephritis since it is expressed in the glomerulus, collecting duct and vasculature in which its activity might contribute to adaptive or maladaptive responses. Accordingly, a mouse model of accelerated antiglomerular basement membrane (anti-GBM) nephrotoxic serum (NTS) nephritis was induced in mice with targeted-deletion of the EP1 receptor (EP1-/-). Proteinuria was similar between wild-type (wt) and EP1-/- NTS groups, thus negating a role for this subtype in modulating the glomerular permeability barrier in this model of anti-GBM NTS. However, overall renal damage was more acute in NTS EP1-/- mice, as evidenced by the degree of glomerular mesangial matrix expansion and the frequency of tubular dilatations. These changes in renal pathology were accompanied by stronger impairment of renal function in NTS EP1-/- mice, such that levels of serum creatinine, urea, Na+, and K+ were each significantly higher than those observed in NTS wt mice. Lastly, compared with wt mice, induction of NTS more severely reduced urine osmolality and body mass in EP1-/- mice. Taken together, the increased renal impairment seen in NTS EP1-/- mice suggests that the EP1 subtype plays a compensatory role in the context of acute nephritis.  相似文献   

8.
The typical dyslipidaemia in type 2 diabetes mellitus shows high levels of triglycerides, low levels of highdensity lipoprotein cholesterol (HDL-c) and small dense low-density lipoprotein (LDL) particles. In these patients low-dose atorvastatin (10 mg) results in a significant and relevant reduction in triglycerides and LDL-c. High-dose atorvastatin (80 mg) results in a better LDL-c reduction.The endothelial dysfunction is likely to be caused by factors related to insulin resistance and not by dyslipidaemia alone.The results from the DALI study (Diabetes Atorvastatin Lipid Intervention) on lipids and endothelial function are discussed, together with two invasive endothelial function studies in diabetics and hypertriglyceridaemic patients. The subgroup of diabetics in the large secondary prevention trials using statins are analysed with respect to total cholesterol lowering and death due to coronary heart disease and nonfatal myocardial infarction.  相似文献   

9.
Failure of pancreatic beta-cells is the common characteristic of type 1 and type 2 diabetes. Type 1 diabetes mellitus is induced by destruction of pancreatic beta-cells which is mediated by an autoimmune mechanism and consequent inflammatory process. Various inflammatory cytokines and oxidative stress are produced during this process, which has been proposed to play an important role in mediating beta-cell destruction. The JNK pathway is also activated by such cytokines and oxidative stress, and is involved in beta-cell destruction. Type 2 diabetes is the most prevalent and serious metabolic disease, and beta-cell dysfunction and insulin resistance are the hallmark of type 2 diabetes. Under diabetic conditions, chronic hyperglycemia gradually deteriorates beta-cell function and aggravates insulin resistance. This process is called "glucose toxicity". Under such conditions, oxidative stress is provoked and the JNK pathway is activated, which is likely involved in pancreatic beta-cells dysfunction and insulin resistance. In addition, oxidative stress and activation of the JNK pathway are also involved in the progression of atherosclerosis which is often observed under diabetic conditions. Taken together, it is likely that oxidative stress and subsequent activation of the JNK pathway are involved in the pathogenesis of type 1 and type 2 diabetes.  相似文献   

10.
AimsSex-specific medicine has been highlighted as a different approach to the diagnosis and treatment of diseases between men and women. Type 2 diabetes has been reported to be a risk factor for cognitive impairment. Here, we investigated the sex difference in cognitive function associated with diabetes using KKAy mice.Main methodsCognitive function was evaluated by shuttle avoidance test and Morris water maze test. Changes in gene expression in the brain were evaluated by PCR array and confirmed by quantitative RT-PCR. To evaluate the effect of estradiol, some female KKAy were ovariectomized and treated with or without estradiol.Key findingsIn KKAy mice, female significantly exhibited impaired cognitive function compared with male, while there was no sex difference in these cognitive functions in C57BL6, wild-type mice. Female KKAy mice showed hyperinsulinemia, impaired glucose tolerance and increased oxidative stress compared with male KKAy mice. Female KKAy also showed a significant decrease in peroxisome proliferators-activated receptor (PPAR)-γ expression in the brain compared with male KKAy. Estradiol treatment improved the insulin resistance and higher superoxide production, but failed to improve the cognitive task performance, serum insulin level and lower expression of PPAR-γ.SignificanceIn diabetic mice, female showed significantly impaired cognitive function, with greater insulin resistance, lower expression of PPAR-γ and higher superoxide production compared with male. Estrogen had little effect on cognitive function. These results indicate that a sex-specific approach to cognitive impairment is necessary for diabetic patients, especially for women.  相似文献   

11.
目的:观察二氢杨梅素(DHM)对2型糖尿病(T2DM)小鼠认知功能障碍及海马中BDNF蛋白表达的影响。方法:将40只C57BL/6J小鼠首先随机分为两组:正常对照组(n=8):普通饲料喂养;2型糖尿病模型组(n=32):高糖高脂联合100 mg/kg的STZ处理(造模过程中死亡5只,不成功3只)。24只建模成功的小鼠随机分成3组:T2DM组、T2DM+L-DHM组和T2DM+H-DHM组,3组小鼠高糖高脂喂养,同时分别用等体积生理盐水、125 mg/(kg·d)的DHM和250 mg/(kg·d)的DHM (1次/天,灌胃)处理16周。正常对照小鼠继续普通饲料喂养,同时用等体积生理盐水(1次/天,灌胃)处理16周。16周后测定小鼠体重、空腹血糖、进行腹腔注射葡萄糖耐量实验和相关行为学实验。最后,Western blot检测各组小鼠海马中BDNF蛋白的表达。结果:高糖高脂联合100 mg/kg的STZ成功建立2型糖尿病小鼠模型。16周后,与正常对照组相比,T2DM组小鼠体重明显下降,空腹血糖显著升高,糖耐量显著异常;而T2DM+DHM组相比T2DM组小鼠体重却显著增加、空腹血糖降低,且H-DHM可显著改善T2DM小鼠糖耐量异常。行为学实验结果显示:与正常对照组相比,T2DM组小鼠学习记忆能力明显下降;与T2DM组相比,T2DM+DHM组小鼠学习记忆能力得到改善,且H-DHM组更为明显。Western blot结果显示:与对照组相比,T2DM组小鼠海马中BDNF蛋白表达显著下降,而DHM组相比T2DM组小鼠其BDNF蛋白的表达明显增加。结论:二氢杨梅素可改善2型糖尿病小鼠认知功能障碍,其机制可能通过降血糖作用,并激活海马中BDNF蛋白表达。  相似文献   

12.
We examined the in vivo antioxidative effect of a polyphenol-rich walnut extract on oxidative stress in mice with type 2 diabetes. C57BL/KsJ-db/db mice were used as an accelerated oxidative animal model. The oral administration of the walnut polyphenol fraction at 200 mg/kg body weight for 4 weeks caused a significant decrease in the level of urinary 8-hydroxy-2'-deoxyguanosin, which is an in vivo marker of oxidative stress. These results imply that walnut polyphenols have both in vitro and in vivo antioxidant effects.  相似文献   

13.
14.
We have tested the effects of TEM in 3 strains of mice using the sperm morphology assay. In addition, we have made an attempt to evaluate this test system with respect to experimental design, statistical problems and possible interlaboratory differences. Treatment with TEM results in significant increases in the percent of abnormally shaped sperm. These increases are readily detectable in sperm treated as spermatocytes and spermatogonial stages. Our data indicate possible problems associated with inter-laboratory variation in slide analysis. We have found that despite the introduction of such sources of variation, our data were consistent with respect to the effects of TEM. Another area of concern in the sperm morphology test is the presence of "outlier" animals. In our study, such animals comprised 4% of the total number of animals considered. Statistical analysis of the slides from these animals have shown that this problem can be dealt with and that when recognized as such, "outliers" do not effect the outcome of the sperm morphology assay.  相似文献   

15.
Cardiovascular disease is a major cause of morbidity and premature mortality in diabetes. HDL plays an important role in limiting vascular damage by removing cholesterol and cholesteryl ester hydroperoxides from oxidized low density lipoprotein and foam cells. Methionine (Met) residues in apolipoprotein A-I (apoA-I), the major apolipoprotein of HDL, reduce peroxides in HDL lipids, forming methionine sulfoxide [Met(O)]. We examined the extent and sites of Met(O) formation in apoA-I of HDL isolated from plasma of healthy control and type 1 diabetic subjects to assess apoA-I exposure to lipid peroxides and the status of oxidative stress in the vascular compartment in diabetes. Three tryptic peptides of apoA-I contain Met residues: Q(84)-M(86)-K(88), W(108)-M(112)-R(116), and L(144)-M(148)-R(149). These peptides and their Met(O) analogs were identified and quantified by mass spectrometry. Relative to controls, Met(O) formation was significantly increased at all three locations (Met(86), Met(112), and Met(148)) in diabetic patients. The increase in Met(O) in the diabetic group did not correlate with other biomarkers of oxidative stress, such as N(epsilon)-malondialdehyde-lysine or N(epsilon)-(carboxymethyl)lysine, in plasma or lipoproteins. The higher Met(O) content in apoA-I from diabetic patients is consistent with increased levels of lipid peroxidation products in plasma in diabetes. Using the methods developed here, future studies can address the relationship between Met(O) in apoA-I and the risk, development, or progression of the vascular complications of diabetes.  相似文献   

16.
The cerebrospinal fluid (CSF) is thought to protect the spinal cord from physiologic loading; however, it is unclear whether this protective role extends to traumatic events in which bone fragments enter the canal at high velocity. A synthetic model of the spinal neural anatomy, with mechanical properties similar to native tissues, was constructed to determine if the thickness of the CSF layer (0, 12.8, 19.2 and 24.8 mm, 10 mm cord) and the velocity (1.2, 2.4, 3.7 and 4.8 m/s) of a 20 g impactor affect mechanical predictors of spinal cord injury (SCI) severity. Cord compression was directly proportional to impact velocity, inversely proportional to CSF dimension and zero for the largest dura size. The cord was compressed by more than 18% of its original diameter for the "no CSF" condition and the small dura size for all velocities. Impact loads were directly proportional to velocity, and inversely proportional to the thickness of the CSF layer. Peak cord tension increased with dura size and velocity. Peak CSF pressure decreased with distance from the impact epicenter for all dura sizes; attenuation was proportional to the velocity and greatest for the smallest dura. Increased CSF dimension led to reduced CSF pressure near the impact epicenter but had little effect at the remote sites. The results suggest that a thicker CSF layer may reduce the stress induced in the cord, and therefore metrics of SCI risk may be improved by incorporating thecal sac dimensions. Computational, synthetic, cadaveric and animal models may better simulate the biomechanics of human SCI if fluid interaction is incorporated.  相似文献   

17.
The lack of sensitive and relatively non-invasive measures has hampered monitoring the clinical course of spontaneously developing colitis in IL-2-deficient (-/-) mice. We selected (i) to study the correlation of the acute phase plasma proteins serum amyloid A (SAA) and serum amyloid P component (SAP) levels with colonic disease and (ii) to characterize the amyloidosis in the IL-2(-/-)animals. IL-2(-/-)mice exhibited increasing severity of gross intestinal inflammation with age, confined to the distal colon. Histologically, the colonic disease score increased serially in IL-2(-/-)animals. Wild-type mice showed no activity, while 16-week-old IL-2(+/-)animals had minimal colitis with small ulcers and lamina propria inflammatory infiltrate. Periportal hepatitis was present and positive Congo red staining indicated amyloidosis of the liver and spleen in 16 week IL-2(-/-)mice. SAA immunostaining in the liver and spleen was increased in the 8 week and 16 week IL-2(-/-)and 16 week IL-2(+/-)animals indicating AA amyloid deposits. Plasma SAA and SAP levels were markedly elevated, and generally preceded the onset of colitis and reflected its severity. Northern analysis showed markedly increased SAA expression in the liver and intestine of IL-2(-/-)and intestine of IL-2(+/-)16-week-old animals. Increased intestinal expression of SAA3 (lamina propria macrophages) indicates local inflammation in IL-2(+/-)animals at 16 weeks. Treatment of 3-week-old animals with systemic IL-2 or IL-1 receptor antagonist (IL-1ra) delayed inflammation, postponed the increase in SAA levels and minimized disease onset. These results further demonstrate that IL-2 plays a significant role in normal immune responses in the body and that plasma SAA levels both reflect colonic disease severity and may indicate subclinical disease in both IL-2(-/-)and IL-2(+/-)mice. Furthermore. The mechanism of IL-2-deficient induced colitis appears to be mediated in part through the increase in IL-1. In addition, the IL-2(-/-)mouse of spontaneous enterocolitis may provide a unique system for studying spontaneously developing AA amyloidosis.  相似文献   

18.
Tuberculosis (TB)-type 2 diabetes mellitus (T2D) comorbidity is re-emerging as a global public health problem. T2D is a major risk factor for increased susceptibility to TB infection and reactivation leading to higher morbidity and mortality. The pathophysiological mechanisms of T2D contributing to TB susceptibility are not fully understood, but likely involve dysregulated immune responses. In this study, a diet-induced murine model that reflects the cardinal features of human T2D was used to assess the immune responses following an intravenous Mycobacterium tuberculosis (Mtb) infection. In this study, T2D significantly increased mortality, organ bacillary burden and inflammatory lesions compared to non-diabetic controls. Organ-specific pro-inflammatory cytokine responses were dysregulated as early as one day post-infection in T2D mice. Macrophages derived from T2D mice showed reduced bacterial internalization and killing capacity. An early impairment of antimycobacterial functions of macrophages in diabetes is a key mechanism that leads to increased susceptibility of T2D.  相似文献   

19.
Exosomes contain regulatory signals such as lipids, proteins, and nucleic acids which can be transferred to adjacent or remote cells to mediate cell-to-cell communication. Exercise is a positive lifestyle for metabolic health and a nonpharmacological treatment of insulin resistance and metabolic diseases. Moreover, exercise is a stressor that induces cellular responses including gene expression and exosome release in various types of cells. Exosomes can carry the characters of parent cells by their modified cargoes, representing novel mechanisms for the effects of exercise. Here, we present a review of exosomes as the perspective players in mediating exercise's beneficial impacts on type 2 diabetes (T2D).  相似文献   

20.

Background

Patients suffering from diabetes show defective bacterial clearance. This study investigates the effects of elevated plasma glucose levels during diabetes on leukocyte recruitment and function in established models of inflammation.

Methodology/Principal Findings

Diabetes was induced in C57Bl/6 mice by intravenous alloxan (causing severe hyperglycemia), or by high fat diet (moderate hyperglycemia). Leukocyte recruitment was studied in anaesthetized mice using intravital microscopy of exposed cremaster muscles, where numbers of rolling, adherent and emigrated leukocytes were quantified before and during exposure to the inflammatory chemokine MIP-2 (0.5 nM). During basal conditions, prior to addition of chemokine, the adherent and emigrated leukocytes were increased in both alloxan- (62±18% and 85±21%, respectively) and high fat diet-induced (77±25% and 86±17%, respectively) diabetes compared to control mice. MIP-2 induced leukocyte emigration in all groups, albeit significantly more cells emigrated in alloxan-treated mice (15.3±1.0) compared to control (8.0±1.1) mice. Bacterial clearance was followed for 10 days after subcutaneous injection of bioluminescent S. aureus using non-invasive IVIS imaging, and the inflammatory response was assessed by Myeloperoxidase-ELISA and confocal imaging. The phagocytic ability of leukocytes was assessed using LPS-coated fluorescent beads and flow cytometry. Despite efficient leukocyte recruitment, alloxan-treated mice demonstrated an impaired ability to clear bacterial infection, which we found correlated to a 50% decreased phagocytic ability of leukocytes in diabetic mice.

Conclusions/Significance

These results indicate that reduced ability to clear bacterial infections observed during experimentally induced diabetes is not due to reduced leukocyte recruitment since sustained hyperglycemia results in increased levels of adherent and emigrated leukocytes in mouse models of type 1 and type 2 diabetes. Instead, decreased phagocytic ability observed for leukocytes isolated from diabetic mice might account for the impaired bacterial clearance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号