首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Serpentine receptors such as smoothened and frizzled play important roles in cell fate determination during animal development. In Dictyostelium discoideum, four serpentine cyclic AMP (cAMP) receptors (cARs) regulate expression of multiple classes of developmental genes. To understand their function, it is essential to know whether each cAR is coupled to a specific gene regulatory pathway or whether specificity results from the different developmental regulation of individual cARs. To distinguish between these possibilities, we measured gene induction in car1 car3 double mutant cell lines that express equal levels of either cAR1, cAR2, or cAR3 under a constitutive promoter. We found that all cARs efficiently mediate both aggregative gene induction by cAMP pulses and induction of postaggregative and prespore genes by persistent cAMP stimulation. Two exceptions to this functional promiscuity were observed. (i) Only cAR1 can mediate adenosine inhibition of cAMP-induced prespore gene expression, a phenomenon that was found earlier in wild-type cells. cAR1’s mediation of adenosine inhibition suggests that cAR1 normally mediates prespore gene induction. (ii) Only cAR2 allows entry into the prestalk pathway. Prestalk gene expression is induced by differentiation-inducing factor (DIF) but only after cells have been prestimulated with cAMP. We found that DIF-induced prestalk gene expression is 10 times higher in constitutive cAR2 expressors than in constitutive cAR1 or cAR3 expressors (which still have endogenous cAR2), suggesting that cAR2 mediates induction of DIF competence. Since in wild-type slugs cAR2 is expressed only in anterior cells, this could explain the so far puzzling observations that prestalk cells differentiate at the anterior region but that DIF levels are actually higher at the posterior region. After the initial induction of DIF competence, cAMP becomes a repressor of prestalk gene expression. This function can again be mediated by cAR1, cAR2, and cAR3.Recent years have seen the discovery of critical roles in animal development for serpentine receptors, which are usually coupled to heterotrimeric G proteins. The insect sigaling peptides hedgehog and wingless and their mammalian counterparts sonic hedgehog, desert hedgehog, and indian hedgehog and the wnt factors control a multitude of inductive events during all stages of embryogenesis. The hedgehog signal is detected by two different serpentine receptors, smoothened (1, 40) and patched (21, 38), whereas the wingless or wnt signal is detected by the serpentine receptor D-frizzled-2 (3). In the social amoeba Dictyostelium discoideum, serpentine cyclic AMP (cAMP) receptors (cARs) control induction of cell differentiation during the entire course of development. Starving cells secrete cAMP pulses that induce chemotaxis and expression of genes required for the aggregation process. Cells aggregate to form mounds, which ultimately transform into fruiting structures that consist of a globular spore mass supported by a column of stalk cells. cAMP induces entry into the spore differentiation pathway as well as synthesis of a lipophilic factor, differentiation-inducing factor (DIF), which induces entry into the stalk differentiation pathway (see reference 5). At an early stage of development cAMP synergizes with DIF to induce prestalk genes, but later it becomes an inhibitor of stalk gene expression (2). cARs were shown previously to mediate induction of aggregative genes by cAMP pulses (20) as well as cAMP induction of prespore genes and repression of prestalk genes (31, 37). Remarkably, the target for the latter critical step in cell fate determination is glycogen synthase kinase 3 (GSK-3), a zeste white-3 homolog, which is the target for the effects of wingless and wnt in insects and vertebrates, respectively (7, 34).Four cARs, showing 54 to 69% amino acid identity, are expressed in a stage- and cell-type-specific manner. cAR1 is predominantly expressed before and during aggregation (18). cAR3 is expressed at late aggregation, and expression is later restricted to the prespore cell population (13, 44). cAR2 and cAR4 are both expressed exclusively in the prestalk cell population after aggregation (19, 30). cAR knockout cell lines were generated to examine the role of the individual cARs in Dictyostelium development. car1 null cells neither aggregate nor express developmental genes but can be triggered to express aggregative and postaggregative genes by stimulation with cAMP (37, 39). car3 null cells aggregate and develop normally (13). car1 car3 double gene disruptants do not aggregate, and developmental gene expression cannot be restored with cAMP, indicating that cAR1 or cAR3 shows functional redundancy and that either one or the other has to be present for gene induction to occur (10, 36). car2 null cells are blocked in the mound stage, while car4 null cells show abnormal slug morphogenesis and culmination. Both lines show reduced expression of prestalk genes and enhanced expression of prespore genes (19, 29).To understand the function of the four cARs, it is essential to know whether each receptor is coupled to a specific signal transduction pathway that controls a specific cell differentiation event or whether each receptor can activate multiple cell differentiation pathways. In the latter case, it is not the presence of a specific receptor that determines whether a response occurs but the availability of the downstream signaling pathway. To determine whether individual receptors have unique functions in developmental gene expression, we examined gene regulation in cell lines that display about equal levels of cAR1, cAR2, and cAR3 in a car1 car3 mutant background. Our results show that with two exceptions, all three receptors can transduce both the excitation and adaptation components of the different cAMP-regulated gene induction events with almost equal levels of efficiency.  相似文献   

2.
《The Journal of cell biology》1996,134(6):1543-1549
Starving Dictyostelium cells aggregate by chemotaxis to cAMP when a secreted protein called conditioned medium factor (CMF) reaches a threshold concentration. Cells expressing CMF antisense mRNA fail to aggregate and do not transduce signals from the cAMP receptor. Signal transduction and aggregation are restored by adding recombinant CMF. We show here that two other cAMP-induced events, the formation of a slow dissociating form of the cAMP receptor and the loss of ligand binding, which is the first step of ligand-induced receptor sequestration, also require CMF. Vegetative cells have very few CMF and cAMP receptors, while starved cells possess approximately 40,000 receptors for CMF and cAMP. Transformants overexpressing the cAMP receptor gene cAR1 show a 10-fold increase of [3H]cAMP binding and a similar increase of [125I]CMF binding; disruption of the cAR1 gene abolishes both cAMP and CMF binding. In wild-type cells, downregulation of cAR1 with high levels of cAMP also downregulates CMF binding, and CMF similarly downregulates cAMP and CMF binding. This suggests that the cAMP binding and CMF binding are closely linked. Binding of approximately 200 molecules of CMF to starved cells affects the affinity of the majority of the cAR1 cAMP receptors within 2 min, indicating that an amplifying mechanism allows one activated CMF receptor to regulate many cARs. In cells lacking the G-protein beta subunit, cAMP induces a loss of cAMP binding, but not CMF binding, while CMF induces a reduction of CMF binding without affecting cAMP binding, suggesting that the linkage of the cell density-sensing CMF receptor and the chemoattractant cAMP receptor is through a G-protein.  相似文献   

3.
Activation of surface folate receptors or cyclic AMP (cAMP) receptor (cAR) 1 in Dictyostelium triggers within 5-10 s an influx of extracellular Ca2+ that continues for 20 s. To further characterize the receptor-mediated Ca2+ entry, we analyzed 45Ca2+ uptake in amoebas overexpressing cAR2 or cAR3, cARs present during multicellular development. Both receptors induced a cAMP-dependent Ca2+ uptake that had comparable kinetics, ion selectivity, and inhibitor profiles as folate- and cAR1-mediated Ca2+ uptake. Analysis of mutants indicated that receptor-induced Ca2+ entry does not require G protein alpha subunits G alpha 1, G alpha 2, G alpha 3, G alpha 4, G alpha 7, or G alpha 8. Overexpression of cAR1 or cAR3 in g alpha 2- cells did not restore certain G alpha 2-dependent events, such as aggregation, or cAMP-mediated activation of adenylate and guanylate cyclases, but these strains displayed a cAMP-mediated Ca2+ influx with kinetics comparable to wild-type aggregation-competent cells. These results suggest that a plasma membrane-associated Ca(2+)-influx system may be activated by at least four distinct chemoreceptors during Dictyostelium development and that the response may be independent of G proteins.  相似文献   

4.
5.
cAR1, the cAMP receptor expressed normally during the early aggregation stage of the Dictyostelium developmental program, has been expressed during the growth stage, when only low amounts of endogenous receptors are present. Transformants expressing cAR1 have 7-40 times over growth stage and 3-5-fold over aggregation stage levels of endogenous receptors. The high amounts of cAR1 protein expressed constitutively throughout early development did not drastically disrupt the developmental program; the onset of aggregation was delayed by 1-3 h, and then subsequent stages proceeded normally. The affinity of the expressed cAR1 was similar to that of the endogenous receptors in aggregation stage cells when measured either in phosphate buffer (two affinity states with Kd's of approximately 30 and 300 nM) or in 3 M ammonium sulfate (one affinity state with a Kd of 2-3 nM). When expressed during growth, cAR1 did not appear to couple to its normal effectors since these cells failed to carry out chemotaxis or to elevate cGMP or cAMP levels when stimulated with cAMP. However, cAMP stimulated phosphorylation, and loss of ligand binding of cAR1 did occur. Like aggregation stage control cells, the cAR1 protein shifted in apparent molecular mass from 40 to 43 kDa and became highly phosphorylated when exposed to cAMP. In addition, the number of surface cAMP binding sites in cAR1 cells was reduced by over 80% during prolonged cAMP stimulation. These results define a useful system to express altered cAR1 proteins and examine their regulatory functions.  相似文献   

6.
cAMP receptors mediate signal transduction pathways during development in Dictyostelium. A cAMP receptor (cAR1) has been cloned and sequenced (Klein, P., Sun, T. J., Saxe, C. L., Kimmel, A. R., Johnson, R. L., and Devreotes, P. N. (1988) Science 241, 1467-1472) and recently several other cAR genes have been identified (Saxe, C. L., Johnson, R., Devreotes, P. N., and Kimmel, A. R. (1991a) Dev. Genet. 12, 6-13; Saxe, C. L., Johnson, R. L., Devreotes, P. N., and Kimmel, A. R. (1991b) Genes Dev. 5, 1-8). We have expressed three receptor subtypes, cAR1, cAR2, and cAR3, in growing cells and have investigated their affinity and pharmacological specificity in a series of [3H]cAMP binding studies. In phosphate buffer, there were two affinity states of about 30 and 300 nM for cAR1 and 20 and 500 nM for cAR3 but no detectable affinity for cAR2. In the presence of 3 M ammonium sulfate, there was one affinity state of 4 nM for cAR1 and 11 nM for cAR2 and two affinity states of approximately 4 and 200 nM for cAR3. The relative affinities of 14 cyclic nucleotide derivatives were tested for each cAR in ammonium sulfate. These studies suggest a model (Van Haastert, P. J. M., and Kien, E. (1983) J. Biol. Chem. 258, 9636-9642) in which cAMP binds to all three receptor subtypes by maintaining hydrogen bond interactions at the N6 and O3' positions. Interactions at the exocyclic oxygens of cAMP varied between the receptors; cAR2 and cAR3 lacked a stereoselective interaction at the axial oxygen which was present in cAR1. The cleft, which binds the adenine ring of cAMP, was hydrophobic in cAR1 and cAR3 but relatively polar in cAR2. The analog specificity of cAR1 and cAR3 in phosphate buffer was similar to that measured in ammonium sulfate though the derivatives' relative affinity to cAMP was reduced. We conclude that these cAMP receptor subtypes can be distinguished by distinct pharmacological properties which will allow selective activation of each cAR during development.  相似文献   

7.
cAR1, a G protein-coupled receptor (GPCR) for cAMP, is required for the multicellular development of Dictyostelium. The activation of multiple pathways by cAR1 is transient because of poorly defined adaptation mechanisms. To investigate this, we used a genetic screen for impaired development to isolate four dominant-negative cAR1 mutants, designated DN1-4. The mutant receptors inhibit multiple cAR1-mediated responses known to undergo adaptation. Reduced in vitro adenylyl cyclase activation by GTPgammaS suggests that they cause constitutive adaptation of this and perhaps other pathways. In addition, the DN mutants are constitutively phosphorylated, which normally requires cAMP binding and possess cAMP affinities that are approximately 100-fold higher than that of wild-type cAR1. Two independent activating mutations, L100H and I104N, were identified. These residues occupy adjacent positions near the cytoplasmic end of the receptor's third transmembrane helix and correspond to the (E/D)RY motif of numerous mammalian GPCRs, which is believed to regulate their activation. Taken together, these findings suggest that the DN mutants are constitutively activated and block development by turning on natural adaptation mechanisms.  相似文献   

8.
G protein–coupled receptors trigger the reorganization of the actin cytoskeleton in many cell types, but the steps in this signal transduction cascade are poorly understood. During Dictyostelium development, extracellular cAMP functions as a chemoattractant and morphogenetic signal that is transduced via a family of G protein–coupled receptors, the cARs. In a strain where the cAR2 receptor gene is disrupted by homologous recombination, the developmental program arrests before tip formation. In a genetic screen for suppressors of this phenotype, a gene encoding a protein related to the Wiskott-Aldrich Syndrome protein was discovered. Loss of this protein, which we call SCAR (suppressor of cAR), restores tip formation and most later development to cAR2 strains, and causes a multiple-tip phenotype in a cAR2+ strain as well as leading to the production of extremely small cells in suspension culture. SCARcells have reduced levels of F-actin staining during vegetative growth, and abnormal cell morphology and actin distribution during chemotaxis. Uncharacterized homologues of SCAR have also been identified in humans, mouse, Caenorhabditis elegans, and Drosophila. These data suggest that SCAR may be a conserved negative regulator of G protein-coupled signaling, and that it plays an important role in regulating the actin cytoskeleton.  相似文献   

9.
Multiple signal transduction pathways within a single cell may share common components. In particular, seven different transmembrane helix receptors may activate identical pathways by interacting with the same G-proteins. Dictyostelium cells respond to cAMP using one such receptor, cAR1, coupled by a typical heterotrimeric G-protein to intracellular effectors. However, cells in which the gene for cAR1 has been deleted are unexpectedly still able to respond to cAMP. This implies either that certain responses are mediated by a different receptor than cAR1, or alternatively that a second, partially redundant receptor shares some of the functions of cAR1. We have examined the dose response and ligand specificity of one response, cAMP relay, and the dose response of another, cyclic GMP synthesis. In each case, the EC50 was approximately 100-fold higher and the maximal response was smaller in car1- than wild-type cells. These data indicate that cAR1 normally mediates responses to cAMP. The ligand specificity suggests that the responses seen in car1- mutants are mediated by a second receptor, cAR3. To test this hypothesis, we constructed a cell line containing deletions of both cAR1 and cAR3 genes. As predicted, these lines are totally insensitive to cAMP. We conclude that the functions of the cAR1 and cAR3 receptors are partially redundant and that both interact with the same heterotrimeric G-protein to mediate these and other responses.  相似文献   

10.
Reduced glutathione (GSH) is an essential metabolite that performs multiple indispensable roles during the development of Dictyostelium. We show here that disruption of the gene (gcsA¯) encoding γ-glutamylcysteine synthetase, an essential enzyme in GSH biosynthesis, inhibited aggregation, and that this developmental defect was rescued by exogenous GSH, but not by other thiols or antioxidants. In GSH-depleted gcsA¯ cells, the expression of a growth-stage-specific gene (cprD) was not inhibited, and we did not detect the expression of genes that encode proteins required for early development (cAMP receptor, carA/cAR1; adenylyl cyclase, acaA/ACA; and the catalytic subunit of protein kinase A, pkaC/PKA-C). The defects in gcsA¯ cells were not restored by cAMP stimulation or by cAR1 expression. Further, the expression of yakA, which initiates development and induces the expression of PKA-C, ACA, and cAR1, was regulated by the intracellular concentration of GSH. Constitutive expression of YakA in gcsA¯ cells (YakAOE/gcsA¯) rescued the defects in developmental initiation and the expression of early developmental genes in the absence of GSH. Taken together, these findings suggest that GSH plays an essential role in the transition from growth to development by modulating the expression of the genes encoding YakA as well as components that act downstream in the YakA signaling pathway.  相似文献   

11.
cAMP receptor 1 and G-protein alpha-subunit 2 null cell lines (car1- and g alpha 2-) were examined to assess the roles that these two proteins play in cAMP stimulated adenylyl cyclase activation in Dictyostelium. In intact wild-type cells, cAMP stimulation elicited a rapid activation of adenylyl cyclase that peaked in 1-2 min and subsided within 5 min; in g alpha 2- cells, this activation did not occur; in car1- cells an activation occurred but it rose and subsided more slowly. cAMP also induced a persistent activation of adenylyl cyclase in growth stage cells that contain only low levels of cAMP receptor 1 (cAR1). In lysates of untreated wild-type, car1-, or g alpha 2- cells, guanosine 5'-O-'(3-thiotriphosphate) (GTP gamma S) produced a similar 20-fold increase in adenylyl cyclase activity. Brief treatment of intact cells with cAMP reduced this activity by 75% in control and g alpha 2- cells but by only 8% in the car1- cells. These observations suggest several conclusions regarding the cAMP signal transduction system. 1) cAR1 and another cAMP receptor are linked to activation of adenylyl cyclase in intact cells. Both excitation signals require G alpha 2. 2) cAR1 is required for normal adaptation of adenylyl cyclase. The adaptation reaction caused by cAR1 is not mediated via G alpha 2. 3) Neither cAR1 nor G alpha 2 is required for GTP gamma S-stimulation of adenylyl cyclase in cell lysates. The adenylyl cyclase is directly coupled to an as yet unidentified G-protein.  相似文献   

12.
cAR1, a G protein-coupled cAMP receptor, is essential for multicellular development of Dictyostelium. We previously identified a cAR1-Ile(104) mutant that appeared to be constitutively activated based on its constitutive phosphorylation, elevated affinity for cAMP, and dominant-negative effects on development as well as specific cAR1 pathways that are subject to adaptation. To investigate how Ile(104) might regulate cAR1 activation, we assessed the consequences of substituting it with all other amino acids. Constitutive phosphorylation of these Ile(104) mutants varied broadly, suggesting that they are activated to varying extents, and was correlated with polarity of the substituting amino acid residue. Remarkably, all Ile(104) substitutions, except for the most conservative, dramatically elevated the receptor's cAMP affinity. However, only a third of the mutants (those with the most polar substitutions) blocked development. These findings are consistent with a model in which polar Ile(104) substitutions perturb the equilibrium between inactive and active cAR1 conformations in favour of the latter. Based on homology with rhodopsin, Ile(104) is likely buried within inactive cAR1 and exposed to the cytoplasm upon activation. We propose that the hydrophobic effect normally promotes burial of Ile(104) and hence cAR1 inactivation, while polar substitution of Ile(104) mitigates this effect, resulting in activation.  相似文献   

13.
Oscillation of chemical signals is a common biological phenomenon, but its regulation is poorly understood. At the aggregation stage of Dictyostelium discoideum development, the chemoattractant cAMP is synthesized and released at 6-min intervals, directing cell migration. Although the G protein–coupled cAMP receptor cAR1 and ERK2 are both implicated in regulating the oscillation, the signaling circuit remains unknown. Here we report that D. discoideum arrestins regulate the frequency of cAMP oscillation and may link cAR1 signaling to oscillatory ERK2 activity. Cells lacking arrestins (adcBC) display cAMP oscillations during the aggregation stage that are twice as frequent as for wild- type cells. The adcBC cells also have a shorter period of transient ERK2 activity and precociously reactivate ERK2 in response to cAMP stimulation. We show that arrestin domain–containing protein C (AdcC) associates with ERK2 and that activation of cAR1 promotes the transient membrane recruitment of AdcC and interaction with cAR1, indicating that arrestins function in cAR1-controlled periodic ERK2 activation and oscillatory cAMP signaling in the aggregation stage of D. discoideum development. In addition, ligand-induced cAR1 internalization is compromised in adcBC cells, suggesting that arrestins are involved in elimination of high-affinity cAR1 receptors from cell surface after the aggregation stage of multicellular development.  相似文献   

14.
To study the dynamics and mechanisms controlling activation of the heterotrimeric G protein Gα2βγ in Dictyostelium in response to stimulation by the chemoattractant cyclic AMP (cAMP), we monitored the G protein subunit interaction in live cells using bioluminescence resonance energy transfer (BRET). We found that cAMP induces the cAR1-mediated dissociation of the G protein subunits to a similar extent in both undifferentiated and differentiated cells, suggesting that only a small number of cAR1 (as expressed in undifferentiated cells) is necessary to induce the full activation of Gα2βγ. In addition, we found that treating cells with caffeine increases the potency of cAMP-induced Gα2βγ activation; and that disrupting the microtubule network but not F-actin inhibits the cAMP-induced dissociation of Gα2βγ. Thus, microtubules are necessary for efficient cAR1-mediated activation of the heterotrimeric G protein. Finally, kinetics analyses of Gα2βγ subunit dissociation induced by different cAMP concentrations indicate that there are two distinct rates at which the heterotrimeric G protein subunits dissociate when cells are stimulated with cAMP concentrations above 500 nM versus only one rate at lower cAMP concentrations. Quantitative modeling suggests that the kinetics profile of Gα2βγ subunit dissociation results from the presence of both uncoupled and G protein pre-coupled cAR1 that have differential affinities for cAMP and, consequently, induce G protein subunit dissociation through different rates. We suggest that these different signaling kinetic profiles may play an important role in initial chemoattractant gradient sensing.  相似文献   

15.
16.
Chemoattractant-mediated Rap1 activation requires GPCR/G proteins   总被引:1,自引:0,他引:1  
Cha I  Lee SH  Jeon TJ 《Molecules and cells》2010,30(6):563-567
Rap1 is rapidly activated upon chemoattractant stimulation and plays an important role in cell adhesion and cytoskeletal reorganization during chemotaxis. Here, we demonstrate that G-protein coupled receptors and G-proteins are essential for chemoattractant-mediated Rap1 activation in Dictyostelium. The rapid Rap1 activation upon cAMP chemoattractant stimulation was absent in cells lacking chemoattractant cAMP receptors cAR1/cAR3 or a subunit of the heterotrimeric G-protein complex Gα2. Loss of guanylyl cyclases GCA/SGC or a cGMP-binding protein GbpC exhibited no effect on Rap1 activation kinetics. These results suggest that Rap1, a key regulator for the regulation of cytoskeletal reorganization during cell movement, is activated through the G-protein coupled receptors cAR1/cAR3 and Gα2 proteins in a way independent of the cGMP signaling pathway.  相似文献   

17.
Heterotrimeric G proteins and protein kinase A (PKA) are regulators of development in Dictyostelium discoideum. It has been reported that disruption of the Dictyostelium Galpha3 gene (galpha3-) blocks development and expression of several early development genes, characteristics that are reminiscent of mutants lacking the catalytic subunit of PKA (pkac-). The hypothesis that Galpha3 and PKA signaling pathways may interact to control developmental gene expression was tested by comparing the regulation of seven genes expressed early in development in the wild-type and in galpha3- and pkac- mutants, and comparing PKA activity in the wild-type and in a galpha3- mutant. The expression patterns of six genes were affected similarly by the Galpha3 and PKA mutations, while the expression of only one gene, the cAMP receptor 1 (cAR1), differed between the mutants. PKA activity, measured by phosphorylation of the PKA-specific substrate Kemptide, was higher in galpha3- cells than in wild-type cells, suggesting that Galpha3 normally exerts an inhibitory effect on PKA activity. Although some early development genes appear to require both Galpha3 and PKA for expression, the differing response of cAR1 expression and the inhibitory effect of Galpha3 on PKA activity suggest that Galpha3 and PKA are members of interacting pathways controlling gene expression early in development.  相似文献   

18.
Migration and behaviour of Dictyostelium slugs results from coordinated movement of its constituent cells. It has been proposed that cell movement is controlled by propagating waves of cAMP as during aggregation and in the mound. We report the existence of optical density waves in slugs; they are initiated in the tip and propagate backwards. The waves reflect periodic cell movement and are mediated by cAMP, as injection of cAMP or cAMP phosphodiesterase disrupts wave propagation and results in effects on cell movement and, therefore, slug migration. Inhibiting the function of the cAMP receptor cAR1 blocks wave propagation, showing that the signal is mediated by cAR1. Wave initiation is strictly dependent on the tip; in decapitated slugs no new waves are initiated and slug movement stops until a new tip regenerates. Isolated tips continue to migrate while producing waves. We conclude from these observations that the tip acts as a pacemaker for cAMP waves that coordinate cell movement in slugs.  相似文献   

19.
Signaling cascades are initiated in the plasma membrane via activation of one molecule by another. The interaction depends on the mutual availability of the molecules to each other and this is determined by their localization and lateral diffusion in the cell membrane. The cytoskeleton plays a very important role in this process by enhancing or restricting the possibility of the signaling partners to meet in the plasma membrane. In this study we explored the mode of diffusion of the cAMP receptor, cAR1, in the plasma membrane of Dictyostelium discoideum cells and how this is regulated by the cytoskeleton. Single-particle tracking of fluorescently labeled cAR1 using Total Internal Reflection Microscopy showed that 70% of the cAR1 molecules were mobile. These receptors showed directed motion and we demonstrate that this is not because of tracking along the actin cytoskeleton. Instead, destabilization of the microtubules abolished cAR1 mobility in the plasma membrane and this was confirmed by Fluorescence Recovery after Photobleaching. As a result of microtubule stabilization, one of the first downstream signaling events, the jump of the PH domain of CRAC, was decreased. These results suggest a role for microtubules in cAR1 dynamics and in the ability of cAR1 molecules to interact with their signaling partners.  相似文献   

20.
Throughout growth, Dictyostelium cells continuously produce an autocrine factor, PSF, that accumulates in proportion to cell density. Production of PSF declines rapidly when cells are shifted to starvation conditions, and the properties of PSF are distinct from those of regulatory factors produced by starving cells. During late exponential growth, PSF induces expression of several early developmental genes, including those for proteins important in cAMP signaling and cell aggregation. Examples are the aggregation stage cAMP receptor (cAR1), the aggregation-specific form of cyclic nucleotide phosphodiesterase, and gp24 (contact sites B). Through PSF, growing cells detect environmental conditions (cell number high, food approaching depletion) that are appropriate for production of the gene products needed to initiate aggregation and development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号