首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In the starfish Astropecten aurantiacus the acrosome reaction occurs when the spermatozoon contacts the outer surface of the jelly layer. A long thin acrosomal filament is extruded from the anterior region of the spermatozoon and establishes contact with the oocyte surface. This latter interaction initiates the movement of the spermatozoon to the oocyte surface, formation of the fertilization cone and the cortical reaction. The first detectable electrical change across the oocyte plasma membrane during interaction with the spermatozoon is the fertilization potential (FP) which occurs simultaneously with the cortical reaction. The FP is probably the electrical result of the modification of the oocyte plasma membrane during cortical exocytosis. There are no primary step-like depolarizations during fertilization of starfish oocytes, which contrasts with the situation in sea urchin eggs [see 13]. We suggest that the difference in electrical response to fertilization of starfish oocytes and sea urchin eggs may be attributed to the location of the acrosome reaction in these animals and not to their different meiotic states.  相似文献   

2.
Actin-plasma membrane associations in mouse eggs and oocytes   总被引:1,自引:0,他引:1  
Using rhodamine-phalloidin stained preparations and extracted specimens labeled with heavy meromyosin or run on polyacrylamide gels, actin-plasma membrane associations in mouse mature eggs at the second metaphase of meiosis and oocytes at meiotic prophase have been examined. Cortices of extracted oocytes possessed numerous actin filaments that emanated from the plasma membrane delimiting regions between microvilli and from microvillar apices. The membrane anchorage sites of actin filaments were marked by an electron dense material on the inner leaflet of the plasma membrane. The free ends of filaments emanating from the plasma membrane of oocytes intermeshed to form a dense, cortical layer. With meiotic maturation, changes in the organization of cortical actin were first noted approximately 3 hr after the chromosomes had become localized at the oocyte's periphery. Fewer and shorter actin filaments, which did not form a well-defined layer as in oocytes, were connected with electron-dense material to the inner leaflet of the plasma membrane of extracted egg cortices in regions other than that associated with the meiotic spindle. Cortical actin adjacent to the meiotic spindle, however, was organized into a dense, cresentic aggregation in which clusters of filaments emanated from electron-dense regions associated with both the inner and outer leaflets of the plasma membrane. These observations indicate that mouse oocyte maturation not only involves changes in the distribution of cortical actin but also local alterations in the association of actin with the plasma membrane.  相似文献   

3.
Following PEG (polyethylene glycol) treatment of ovulated metaphase II mouse oocytes aggregated with thymocytes, fusion of cell membranes occurs. Prerequisites for cell fusion are: close apposition of lectin-agglutinated (phytohemagglutinin-treated) membranes of both cells, formation of firm punctual adhesion sites, and expansion of adhesion sites over a certain area. Establishment of the firm cell-cell contact is associated with development of actin-like filaments along both of the adhering plasma membranes. Membrane fusion occurs at single or multiple sites, and is followed by internalization of thymocyte-oocyte membrane complexes decorated with actin filaments into the hybrid cell cytoplasm. A filamentous actin layer forms also along the inner surface of newly formed hybrid oocyte-thymocyte plasma membrane. Thymocyte nuclei incorporated into oocyte cytoplasm undergo nuclear envelope breakdown and premature chromosome condensation (PCC) leading, eventually, to formation of single chromatids complete with kinetochores. Concomitantly with chromatin condensation an extensive polymerization of microtubules starts in the center of the chromatin mass which leads to the formation of an apparently non-functional spindle-like structure.  相似文献   

4.
Extracellular matrices (ECM) present around unfertilized and fertilized mammalian oocytes were studied ultrastructurally in samples prepared in the presence of ruthenium red to facilitate stabilization of extracellular materials. Unfertilized mouse, hamster, and human oocytes have an ECM comprising granules and filaments in their perivitelline spaces (PVS). This matrix is more abundant in the human than in hamsters and mice. The granule/filament matrix appears identical to the matrix seen between cumulus and corona radiata cells following ruthenium red processing and previously shown to comprise protein and hyaluronic acid. By including ruthenium red during fixation, it is possible to demonstrate the existence of cortical granule exudate in the PVS of fertilized oocytes from hamsters, mice, and humans. Much of the cortical granule exudate is trapped in the PVS and forms a new coat around the fertilized oocyte. This material is particulate when stained with ruthenium red and appears to be uniformly dispersed around the entire oocyte surface. We refer to this new coat as the cortical granule envelope. This envelope is observed in the PVS of all developmental stages up to and including blastocysts in all three species. Following hatching of mouse and hamster blastocysts, the cortical granule envelope is no longer present. Possible functions of this envelope are discussed.  相似文献   

5.
Tropomyosins are actin-binding cytoskeletal proteins that play a pivotal role in regulating the function of actin filaments in muscle and non-muscle cells; however, the roles of non-muscle tropomyosins in mouse oocytes are unknown. This study investigated the expression and functions of non-muscle tropomyosin (Tpm3) during meiotic maturation of mouse oocytes. Tpm3 mRNA was detected at all developmental stages in mouse oocytes. Tpm3 protein was localized at the cortex during the germinal vesicle and germinal vesicle breakdown stages. However, the overall fluorescence intensity of Tpm3 immunostaining was markedly decreased in metaphase II oocytes. Knockdown of Tpm3 impaired asymmetric division of oocytes and spindle migration, considerably reduced the amount of cortical actin, and caused membrane blebbing during cytokinesis. Expression of a constitutively active cofilin mutant and Tpm3 overexpression confirmed that Tpm3 protects cortical actin from depolymerization by cofilin. The data indicate that Tpm3 plays crucial roles in maintaining cortical actin integrity and asymmetric cell division during oocyte maturation, and that dynamic regulation of cortical actin by Tpm3 is critical to ensure proper polar body protrusion.  相似文献   

6.
Extensive arrays of microfilaments, microtubules and cytokeratin-type intermediate filaments were detected in the cortex of Strongylocentrotus droebachiensis oocytes using fluorescently labeled antibodies on both cortex and whole mount preparations. All three filament systems undergo dramatic structural reorganization during meiotic maturation of the egg. Microfilaments form a dense meshwork within the cortex of the oocyte. After meiosis, the filaments rearrange and shorten, resulting in a more loosely organized network. Both cortical microtubules and microtubules associated with a microtubule-organizing center are observed within the oocyte. After meiosis, the number and length of the cortical microtubules gradually diminish. A microtubule organizing center is found situated between the germinal vesicle and the plasma membrane in many oocytes. A network of filaments extends from the microtubule organizing center and radiates peripherally toward the germinal vesicle, presumably marking the animal pole. Cytokeratin-like intermediate filaments form a reticular network within the oocyte cortex, then solubilize during meiosis. In whole mounts of oocytes there is a single focal center of cytokeratin staining from which filaments radiate. Indirect immunofluorescence experiments, using anti-tubulin and anti-cytokeratin antibodies simultaneously, reveal the intermediate filament focal center to be localized within the microtubule organizing center. These results demonstrate the presence of a complex cortical cytoskeleton in premeiotic eggs of the sea urchin, Strongylocentrotus droebachiensis.  相似文献   

7.
SKAP2 (Src kinase-associated phosphoprotein 2), a substrate of Src family kinases, has been suggested to be involved in actin-mediated cellular processes. However, little is known about its role in mouse oocyte maturation. In this study, we thus investigated the expression, localization, and functions of SKAP2 during mouse oocyte asymmetric division. SKAP2 protein expression was detected at all developmental stages in mouse oocytes. Immunofluorescent staining showed that SKAP2 was mainly distributed at the cortex of the oocytes during maturation. Treatment with cytochalasin B in oocytes confirmed that SKAP2 was co-localized with actin. Depletion of SKAP2 by injection with specific short interfering RNA caused failure of spindle migration, polar body extrusion, and cytokinesis defects. Meanwhile, the staining of actin filaments at the oocyte membrane and in the cytoplasm was significantly reduced after these treatments. SKAP2 depletion also disrupted actin cap and cortical granule-free domain formation, and arrested a large proportion of oocytes at the telophase stage. Moreover, Arp2/3 complex and WAVE2 expression was decreased after the depletion of SKAP2 activity. Our results indicate that SKAP2 regulates the Arp2/3 complex and is essential for actin-mediated asymmetric cytokinesis by interacting with WAVE2 in mouse oocytes.  相似文献   

8.
The ultrastructure of oocyte and sperm nuclei was studied in mouse ovarian oocytes inseminated in vitro and cultured for 1 1/2 and 3 h in a medium containing dbcAMP or lacking the maturation inhibitor. In oocytes blocked at the germinal vesicle (GV) stage, certain maturation-linked changes were noted. Sperm apposition and sperm-oocyte fusion were similar to that during fertilization of ovulated oocytes. The sperm nucleus and its nuclear envelope remained intact after penetrating into the ovarian oocyte. One and a half h after removal of the drug (time 0 of maturation) the germinal vesicle (GV) and sperm nucleus remained intact. In oocytes maturing for 3 h, the nuclear envelopes of the GV and sperm nucleus had fragmented. The NE of the oocyte formed quadruple membranes while the NE of the sperm remained as flat vesicles. Oocyte chromatin condensed to form chromosomes, whereas at the same time the sperm chromatin was in the process of decondensation and was surrounded by fragments of the sperm NE. The sperm chromatin, composed of DNA complexed with protamines, consisted of thin fibrils; the individual fibrils measured 3.8 nm in diameter. Near the penetrated spermatozoa only occasional Mts were detected which were not related to the proximal centriole which was recognizable in the neck-piece of the flagellum. Thus in mouse oocytes the introduced sperm centriole is not capable of behaving as a centrosome and organizing microtubules in the form of an aster.  相似文献   

9.
We provide histological details of the development of oocytes in the cyprinodontid flagfish, Jordanella floridae. There are six stages of oogenesis: Oogonial proliferation, chromatin nucleolus, primary growth (previtellogenesis [PG]), secondary growth (vitellogenesis), oocyte maturation and ovulation. The ovarian lamellae are lined by a germinal epithelium composed of epithelial cells and scattered oogonia. During primary growth, the development of cortical alveoli and oil droplets, are initiated simultaneously. During secondary growth, yolk globules coalesce into a fluid mass. The full‐grown oocyte contains a large globule of fluid yolk. The germinal vesicle is at the animal pole, and the cortical alveoli and oil droplets are located at the periphery. The disposition of oil droplets at the vegetal pole of the germinal vesicle during late secondary growth stage is a unique characteristic. The follicular cell layer is composed initially of a single layer of squamous cells during early PG which become columnar during early vitellogenesis. During primary and secondary growth stages, filaments develop among the follicular cells and also around the micropyle. The filaments are seen extending from the zona pellucida after ovulation. During ovulation, a space is evident between the oocyte and the zona pellucida. Asynchronous spawning activity is confirmed by the observation that, after ovulation, the ovarian lamellae contain follicles in both primary and secondary growth stages; in contrast, when the seasonal activity of oogenesis and spawning ends, after ovulation, the ovarian lamellae contain only follicles in the primary growth stage. J. Morphol. 277:1339–1354, 2016. © 2016 Wiley Periodicals, Inc.  相似文献   

10.
In mammals, oocyte acquires a series of competencies sequentially during folliculogenesis that play critical roles at fertilization and early stages of embryonic development. In mouse, chromatin in germinal vesicle (GV) undergoes dynamic changes during oocyte growth and its progressive condensation has been related to the achievement of developmental potential. Cumulus cells are essential for the acquisition of meiotic competence and play a role in chromatin remodeling during oocyte growth. This study is aimed to characterize the chromatin configuration of growing and fully grown bovine oocytes, the status of communications between oocyte and cumulus cells and oocyte developmental potential. Following nuclear staining, we identified four discrete stages of GV, characterized by an increase of chromatin condensation. GV0 stage represented 82% of growing oocytes and it was absent in fully grown oocytes. GV1, GV2, and GV3 represented, respectively, 24, 31, and 45% of fully grown oocytes. Our data indicated a moderate but significant increase in oocyte diameter between GV0 and GV3 stage. By dye coupling assay the 98% of GV0 oocytes showed fully open communications while the number of oocytes with functionally closed communications with cumulus cells was significantly higher in GV3 group than GV1 and GV2. However, GV0 oocytes were unable to progress through metaphase II while GV2 and GV3 showed the highest developmental capability. We conclude that in bovine, the progressive chromatin condensation is related to the sequential achievement of meiotic and embryonic developmental competencies during oocyte growth and differentiation. Moreover, gap-junction-mediated communications between oocyte and cumulus cells could be implicated in modulating the chromatin remodeling process.  相似文献   

11.
Meiotic chromosomes in an oocyte are not only a maternal genome carrier but also provide a positional signal to induce cortical polarization and define asymmetric meiotic division of the oocyte, resulting in polar body extrusion and haploidization of the maternal genome. The meiotic chromosomes play dual function in determination of meiosis: 1) organizing a bipolar spindle formation and 2) inducing cortical polarization and assembly of a distinct cortical cytoskeleton structure in the overlying cortex for polar body extrusion. At fertilization, a sperm brings exogenous paternal chromatin into the egg, which induces ectopic cortical polarization at the sperm entry site and leads to a cone formation, known as fertilization cone. Here we show that the sperm chromatin-induced fertilization cone formation is an abortive polar body extrusion due to lack of spindle induction by the sperm chromatin during fertilization. If experimentally manipulating the fertilization process to allow sperm chromatin to induce both cortical polarization and spindle formation, the fertilization cone can be converted into polar body extrusion. This suggests that sperm chromatin is also able to induce polar body extrusion, like its maternal counterpart. The usually observed cone formation instead of ectopic polar body extrusion induced by sperm chromatin during fertilization is due to special sperm chromatin compaction which restrains it from rapid spindle induction and therefore provides a protective mechanism to prevent a possible paternal genome loss during ectopic polar body extrusion.  相似文献   

12.
To enhance preservation of the extracellular materials, we have fixed hamster and mouse oocyte cumulus complexes (OCC) for transmission electron microscopy in the presence of ruthenium red. Ruthenium red had four effects on the extracellular components of the freshly ovulated hamster OCC. It interacted with the surface of cumulus and corona radiata cells; it stabilized the extracellular matrix (ECM) that was comprised of granules and filaments; it produced moderate electron density and good structural definition in the zona pellucida, and it revealed occasional smalls granular depsits on the oolemma. The ECM observed between cells of the cumulus and corona radiata layers extended into the outer one third of the zona pellucida. The granule and filament matrix was removed from the cumulus layer, corona radiata, and pores of the zona pellucida by brief treatment with hyaluronidase. The extracellular components of oviducal OCC from hamsters and mice appeared similar to OCC removed from follicles of the hamster shortly before ovulation. However, oviducal OCC did show increased aggregation of granules in the ECM. In most cases where females had been mated and oocytes were fertilized, the extracellular components appeared similar to those seen in fresh OCC. Exceptions were noted in some oocytes that lacked cumulus and corona radiata cells. In these instances, the zona pellucida generally lacked the granule/filament matrix. After fertilization numerous small electrondense granules were noted in the perivitelline space. These were presumed to originate in the cortical granules and formed a new investing layer around the zygote. Our data suggest that the OCC becomes more difficult for a sperm to penetrate as it approaches the oocyte. The significance of these results is discussed with respect to sperm traffic in the OCC and the cortical reaction.  相似文献   

13.
The effect of dimethylsulphoxide (DMSO) on microfilament organisation has been studied in the mouse oocyte after staining with (NBD)-phallacidin. The cortical actin meshwork was disrupted by exposure of oocytes to 1.5 M DMSO at 37 degrees C, and this disruption was associated with changes in the cell surface, especially microvilli length and distribution, as observed by scanning electron microscopy. The irregular distribution of actin filaments observed also appears to lead to an irregular expansion of the cell after DMSO removal. However, when exposure to DMSO was combined with cooling, the effects on the microfilament system were much reduced. The reversibility of DMSO action is considered and the potential implications of microfilament disruption on the viability and functions of the oocyte discussed.  相似文献   

14.
Female meiotic divisions in higher organisms are asymmetric and lead to the formation of a large oocyte and small polar bodies. These asymmetric divisions are due to eccentric spindle positioning which, in the mouse, requires actin filaments. Recently Formin-2, a straight actin filaments nucleator, has been proposed to control spindle positioning, chromosome segregation as well as first polar body extrusion in mouse oocytes. We reexamine here the possible role of Formin-2 during mouse meiotic maturation by live videomicroscopy. We show that Formin-2 controls first meiotic spindle migration to the cortex but not chromosome congression or segregation. We also show that the lack of first polar body extrusion in fmn2(-/-) oocytes is not due to a lack of cortical differentiation or central spindle formation but to a defect in the late steps of cytokinesis. Indeed, Survivin, a component of the passenger protein complex, is correctly localized on the central spindle at anaphase in fmn2(-/-) oocytes. We show here that attempts of cytokinesis in these oocytes abort due to phospho-myosin II mislocalization.  相似文献   

15.
Wave of cortical actin polymerization in the sea urchin egg   总被引:2,自引:0,他引:2  
The distribution of actin filaments in the cortical layer of sea urchin eggs during fertilization has been investigated by light microscopy using fluorescently labeled phallotoxins. The cortical layer of both whole eggs and cortices isolated on a glass surface was examined. In cortices of unfertilized eggs, numerous fluorescent spots were seen, which may correspond to short actin filament cores in microvilli. After insemination, one of the sperm-attaching points on the egg surface first became strongly fluorescent. This fluorescence grew around the point of sperm penetration with the growth of the fertilization cone. Then, the cortical layer of the egg around the fertilization cone became strongly fluorescent and the fluorescence propagated in a wavelike manner over the entire cortex. The mechanism of the propagation of actin polymerization is discussed.  相似文献   

16.
When mouse ovulated oocytes were exposed to 1.5 M-dimethylsulphoxide (DMSO) the resultant hardening of the zona pellucida was not a direct effect but required the presence of an oocyte. The hardening of the zona pellucida when zonae used were aged in vitro was also dependent upon the presence of the oocyte. Protocols of DMSO exposure that induce zona-hardening also caused depletion of the numbers of cortical granules underlying the oocyte surface, whereas protocols without effect on the zona did not reduce significantly the cortical granule count. It is proposed that the effects of DMSO may be mediated by a release of cortical granule contents.  相似文献   

17.
Chromatin transformation from a diffused or NSN configuration to a compacted or SN shape that forms a ring around the nucleolus is regarded as one of the modifications necessary for successful embryonic development. But the process of the transformation is poorly understood. In this study we cultured mouse antral oocytes under meiotic arrest with IBMX for periods between 3 and 24 hr. We observed the chromatin status of the oocytes before and after culture under UV illumination. We reported here that the NSN configured oocytes transformed temporally through an intermediate form into the SN configuration while under meiotic arrest in vitro. Meiotic rate was improved in the NSN oocytes after the meiotic arrest but decreased in the SN oocytes. We also reported that chromatin of both the NSN and SN oocytes was acetylated and the two groups underwent the same pattern of H4/K5 deacetylation during meiotic maturation. We hypothesized that the transformation of mouse oocyte from the NSN to SN type may be time rather than oocyte size specific and the abrupt deacetylation of NSN oocyte during spontaneous maturation may explain its poor meiotic and developmental competence.  相似文献   

18.
Zona-free oocytes of the mouse were inseminated at prometaphase I or metaphase I of meiotic maturation in vitro, and the behavior of the sperm nuclei within the oocyte cytoplasm was examined. If the oocytes were penetrated by up to three sperm, maturation continued during subsequent incubation and became arrested at metaphase II. Meanwhile, each sperm nucleus underwent the following changes. First, the chromatin became slightly dispersed. By 6 h after insemination, this dispersed chromatin had become coalesced into a small mass, from which short chromosomal arms later became projected. Between 12 and 18 h after insemination, each mass of chromatin became resolved into 20 discrete metaphase chromosomes. In contrast, if oocytes were penetrated by four to six sperm, oocyte meiosis was arrested at metaphase I, and each sperm nucleus was transformed into a small mass of chromatin rather than into metaphase chromosomes. If oocytes were penetrated by more than six sperm, the maternal chromosomes became either decondensed or pycnotic, and the sperm nuclei were transformed into larger masses of chromatin. As control experiments, immature and fully mature metaphase II oocytes were inseminated. In the immature oocytes, which were kept immature by exposure to dibutyryl cyclic AMP, no morphological changes in the sperm nucleus were observed. On the other hand, in the fully mature oocytes, which were activated by sperm penetration, the sperm nucleus was transformed into the male pronucleus. Therefore, the cytoplasm of the maturing oocyte develops an activity that can transform the highly condensed chromatin of the sperm into metaphase chromosomes. However, the capacity of an oocyte is limited, such that it can transform a maximum of three sperm nuclei into metaphase chromosomes. Furthermore, the presence of more than six sperm causes a loss of the ability of the oocyte to maintain the maternal chromosomes in a metaphase state.  相似文献   

19.
Evidence from several cell types indicates that chromatin can induce microtubule assembly in its vicinity. To determine whether this activity is present in sperm chromatin, whose biochemical composition differs from somatic chromatin, mouse oocytes that were undergoing meiotic maturation were inseminated. Maturing oocytes are not activated by sperm penetration but remain arrested at metaphase. The sperm chromatin within the oocyte cytoplasm initially became dispersed and later, under the influence of oocyte cytoplasmic factors, recondensed into a small mass of individual chromosomes. When inseminated oocytes were processed for immunofluorescence using an anti--tubulin antibody, microtubules were never associated with dispersed sperm chromatin, although the chromosomes of the oocyte were arranged on a spindle. In contrast, microtubules were associated with the majority of sperm nuclei that had become recondensed, and were frequently arranged into a spindle-like structure. When oocytes had been penetrated by more than three sperm, most sperm nuclei remained at the dispersed chromatin stage and these were never associated with microtubules. Exposure of polyspermic oocytes to taxol, which promotes microtubule assembly, failed to induce microtubule assembly around dispersed sperm chromatin. Exposure of monospermic oocytes to nocodazole, which inhibits tubulin polymerization, prevented resolution of the recondensed sperm chromatin into individual chromosomes. These results suggest that sperm chromatin lacks an activity that can induce local microtubule assembly, and that it acquires this activity once modified by oocyte cytoplasmic factors.  相似文献   

20.
The cortical zone of oocyte of Nandus nandus has been studied by cytological and histochemical techniques. In an early stage of oocyte development some granular substances appear in the juxtanuclear region which during oocyte growth move to the peripheral ooplasm and forms a thick cortical granular layer. Cytochemically, this cortical granular layer consists of proteins and carbohydrates along with RNA positive material, lipids, mitochondria and Golgi bodies. This cortical granular layer, later on, converts into the cortical vacuolar layer and ultimately forms the cortical alveolar structures in the vitellogenic oocyte of Nandus nandus. The results suggest that the cortical zone plays an important role in the storage of substances transported from the follicular epithelium to the oocyte. Further, the cortical granular substances which are rich in proteins, carbohydrates and lipoidal material, also help in the formation of jelly layers of the developing oocytes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号