首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this review we discuss data obtained by our group regarding the entry of toxins, especially ricin, diphtheria toxin (DT) and Pseudomonas exotoxin A (PE) into animal cells. We studied the translocation process of these toxins using endosomes purified from lymphocytes. This process is rate-limiting for toxicity and enables these toxins to reach the cytosol where they will inactivate the protein synthesis system and kill the cell. We could show that each of these toxins uses a different strategy to cross the endosome membrane. Whereas ricin transmembrane transport only relies on cytosolic ATP hydrolysis, PE first requires exposure to the low endosomal pH (pH-6), presumably to insert into the endosome membrane, before being translocated via a process which also requires cytosolic ATP hydrolysis. DT translocation is directly triggered and energized by the endosome-cytosol pH gradient. Using conjugates with dihydrofolate reductase we could indirectly show that ricin and PE require unfolding for translocation. A deletion approach enabled to produce a more cytotoxic PE mutant by increasing its translocation activity.  相似文献   

2.
Thrombomodulin (TM), or its epidermal growth factor-like domains 456 (TM456), enhances the catalytic efficiency of thrombin toward both protein C and protein C inhibitor (PCI) by 2-3 orders of magnitude. Structural and mutagenesis data have indicated that the interaction of basic residues of the heparin-binding exosite of protein C with the acidic residues of TM4 is partially responsible for the efficient activation of the substrate by the thrombin-TM456 complex. Similar to protein C, PCI has a basic exosite (H-helix) that constitutes the heparin-binding site of the serpin. To determine whether TM accelerates the reactivity of thrombin with PCI by providing a binding site for the H-helix of the serpin, an antithrombin (AT) mutant was constructed in which the H-helix of the serpin was replaced with the same region of PCI (AT-PCIH-helix). Unlike PCI, the H-helix of AT is negatively charged. It was discovered that TM456 slightly (<2-fold) impaired the reactivity of AT with thrombin; however, it enhanced the reactivity of AT-PCIH-helix with the protease by an order of magnitude. Further studies revealed that the substitution of Arg35 of thrombin with an Ala also resulted in an order of magnitude enhancement in reactivity of the protease with both PCI and AT-PCIH-helix independent of TM. We conclude that TM enhances the reactivity of PCI with thrombin by providing both a binding site for the serpin and a conformational modulation of the extended binding pocket of thrombin.  相似文献   

3.
Exposure to low endosomal pH during internalization of Pseudomonas exotoxin A (PE) triggers membrane insertion of its translocation domain. This process is a prerequisite for PE translocation to the cytosol where it inactivates protein synthesis. Although hydrophobic helices enable membrane insertion of related bacterial toxins such as diphtheria toxin, the PE translocation domain is devoid of hydrophobic stretches and the structural features triggering acid-induced membrane insertion of PE are not known. Here we have identified a molecular device that enables PE membrane insertion. This process is promoted by exposure of a key tryptophan residue. At neutral pH, this Trp is buried in a hydrophobic pocket closed by the smallest alpha-helix of the translocation domain. Upon acidification, protonation of the Asp that is the N-cap residue of the helix leads to its destabilization, enabling Trp side chain insertion into the endosome membrane. This tryptophan-based membrane insertion system is surprisingly similar to the membrane-anchoring mechanism of human annexin-V and could be used by other proteins as well.  相似文献   

4.
Arginine-rich cell-penetrating peptides are short cationic peptides capable of traversing the plasma membranes of eukaryotic cells. While successful intracellular delivery of many biologically active macromolecules has been accomplished using these peptides, their mechanisms of cell entry are still under investigation. Recent dialogue has centered on a debate over the roles that direct translocation and endocytotic pathways play in internalization of cell-penetrating peptides. In this paper, we review the evidence for the broad range of proposed mechanisms, and show that each distinct process requires negative Gaussian membrane curvature as a necessary condition. Generation of negative Gaussian curvature by cell-penetrating peptides is directly related to their arginine content. We illustrate these concepts using HIV TAT as an example.  相似文献   

5.
Protein C inhibitor (PCI) is a serpin with broad protease reactivity. It binds glycosaminoglycans and certain phospholipids that can modulate its inhibitory activity. PCI can penetrate through cellular membranes via binding to phosphatidylethanolamine. The exact mechanism of PCI internalization and the intracellular role of the serpin are not well understood. Here we showed that testisin, a glycosylphosphatidylinositol-anchored serine protease, cleaved human PCI and mouse PCI (mPCI) at their reactive sites as well as at sites close to their N terminus. This cleavage was observed not only with testisin in solution but also with cell membrane-anchored testisin on U937 cells. The cleavage close to the N terminus released peptides rich in basic amino acids. Synthetic peptides corresponding to the released peptides of human PCI (His1–Arg11) and mPCI (Arg1–Ala18) functioned as cell-penetrating peptides. Because intact mPCI but not testisin-cleaved mPCI was internalized by Jurkat T cells, a truncated mPCI mimicking testisin-cleaved mPCI was created. The truncated mPCI lacking 18 amino acids at the N terminus was not taken up by Jurkat T cells. Therefore our model suggests that testisin or other proteases could regulate the internalization of PCI by removing its N terminus. This may represent one of the mechanisms regulating the intracellular functions of PCI.  相似文献   

6.
Protein C inhibitor (PCI) is a heparin-binding serine proteinase inhibitor belonging to the family of serpin proteins. Here we describe that PCI exerts broad antimicrobial activity against bacterial pathogens. This ability is mediated by the interaction of PCI with lipid membranes, which subsequently leads to their permeabilization. As shown by negative staining electron microscopy, treatment of Escherichia coli or Streptococcus pyogenes bacteria with PCI triggers membrane disruption followed by the efflux of bacterial cytosolic contents and bacterial killing. The antimicrobial activity of PCI is located to the heparin-binding site of the protein and a peptide spanning this region was found to mimic the antimicrobial activity of PCI, without causing lysis or membrane destruction of eukaryotic cells. Finally, we show that platelets can assemble PCI on their surface upon activation. As platelets are recruited to the site of a bacterial infection, these results may explain our finding that PCI levels are increased in tissue biopsies from patients suffering from necrotizing fasciitis caused by S. pyogenes. Taken together, our data describe a new function for PCI in innate immunity.  相似文献   

7.
The distal serpin subcluster contains genes encoding alpha1-antichymotrypsin (ACT), protein C inhibitor (PCI), kallistatin (KAL) and the KAL-like protein, which are expressed in hepatocytes, but only the act gene is expressed in astrocytes. We show here that the tissue-specific expression of these genes associates with astrocyte- and hepatocyte-specific chromatin structures. In hepatocytes, we identified 12 Dnase I-hypersensitive sites (DHSs) that were distributed throughout the entire subcluster, with the promoters of expressed genes accessible to restriction enzyme digestion. In astrocytes, only six DHSs were located exclusively in the 5' flanking region of the act gene, with its promoter also accessible to restriction enzyme digestion. The acetylation of histone H3 and H4 was found throughout the subcluster in both cell types but this acetylation did not correlate with the expression pattern of these serpin genes. Analysis of histone modifications at the promoters of the act and pci genes revealed that methylation of histone H3 on lysine 4 correlated with their expression pattern in both cell types. In addition, inhibition of methyltransferase activity resulted in suppression of ACT and PCI mRNA expression. We propose that lysine 4 methylation of histone H3 correlates with the tissue-specific expression pattern of these serpin genes.  相似文献   

8.
Binding of retinoic acid by the inhibitory serpin protein C inhibitor.   总被引:4,自引:0,他引:4  
The serpin superfamily includes inhibitors of serine proteases and noninhibitory members with other functions (e.g. the hormone precursor angiotensinogen and the hormone carriers corticosteroid-binding globulin and thyroxine-binding globulin). It is not known whether inhibitory serpins have additional, noninhibitory functions. We studied binding of (3)H-labeled hydrophobic hormones (estradiol, progesterone, testosterone, cortisol, aldosterone, and all-trans-retinoic acid) to the inhibitory serpins antithrombin III, heparin cofactor II, plasminogen activator inhibitor-1, and protein C inhibitor (PCI). All-trans-[(3)H]retinoic acid bound in a specific dose-dependent and time-dependent way to PCI (apparent K(d) = 2.43 microm, 0.8 binding sites per molecule of PCI). We did not observe binding of other hormones to serpins. Intact and protease-cleaved PCI bound retinoic acid equally well, and retinoic acid did not influence inhibition of tissue kallikrein by PCI. Gel filtration confirmed binding of retinoic acid to PCI in purified systems and suggested that PCI may also function as a retinoic acid-binding protein in seminal plasma. Therefore, our present data, together with the fact that PCI is abundantly expressed in tissues requiring retinoic acid for differentiation processes (e.g. the male reproductive tract, epithelia in various organs), suggest an additional biological role for PCI as a retinoic acid-binding and/or delivering serpin.  相似文献   

9.
There is an active interest in peptides that readily cross cell membranes without the assistance of cell membrane receptors(1). Many of these are referred to as cell-penetrating peptides, which are frequently noted for their potential as drug delivery vectors(1-3). Moreover, there is increasing interest in antimicrobial peptides that operate via non-membrane lytic mechanisms(4,5), particularly those that cross bacterial membranes without causing cell lysis and kill cells by interfering with intracellular processes(6,7). In fact, authors have increasingly pointed out the relationship between cell-penetrating and antimicrobial peptides(1,8). A firm understanding of the process of membrane translocation and the relationship between peptide structure and its ability to translocate requires effective, reproducible assays for translocation. Several groups have proposed methods to measure translocation into large unilamellar lipid vesicles (LUVs)(9-13). LUVs serve as useful models for bacterial and eukaryotic cell membranes and are frequently used in peptide fluorescent studies(14,15). Here, we describe our application of the method first developed by Matsuzaki and co-workers to consider antimicrobial peptides, such as magainin and buforin II(16,17). In addition to providing our protocol for this method, we also present a straightforward approach to data analysis that quantifies translocation ability using this assay. The advantages of this translocation assay compared to others are that it has the potential to provide information about the rate of membrane translocation and does not require the addition of a fluorescent label, which can alter peptide properties(18), to tryptophan-containing peptides. Briefly, translocation ability into lipid vesicles is measured as a function of the Foster Resonance Energy Transfer (FRET) between native tryptophan residues and dansyl phosphatidylethanolamine when proteins are associated with the external LUV membrane (Figure 1). Cell-penetrating peptides are cleaved as they encounter uninhibited trypsin encapsulated with the LUVs, leading to disassociation from the LUV membrane and a drop in FRET signal. The drop in FRET signal observed for a translocating peptide is significantly greater than that observed for the same peptide when the LUVs contain both trypsin and trypsin inhibitor, or when a peptide that does not spontaneously cross lipid membranes is exposed to trypsin-containing LUVs. This change in fluorescence provides a direct quantification of peptide translocation over time.  相似文献   

10.
Type IV P-type ATPases (P4-ATPases) and CDC50 family proteins form a putative phospholipid flippase complex that mediates the translocation of aminophospholipids such as phosphatidylserine (PS) and phosphatidylethanolamine (PE) from the outer to inner leaflets of the plasma membrane. In Chinese hamster ovary (CHO) cells, at least eight members of P4-ATPases were identified, but only a single CDC50 family protein, CDC50A, was expressed. We demonstrated that CDC50A associated with and recruited P4-ATPase ATP8A1 to the plasma membrane. Overexpression of CDC50A induced extensive cell spreading and greatly enhanced cell migration. Depletion of either CDC50A or ATP8A1 caused a severe defect in the formation of membrane ruffles, thereby inhibiting cell migration. Analyses of phospholipid translocation at the plasma membrane revealed that the depletion of CDC50A inhibited the inward translocation of both PS and PE, whereas the depletion of ATP8A1 inhibited the translocation of PE but not that of PS, suggesting that the inward translocation of cell-surface PE is involved in cell migration. This hypothesis was further examined by using a PE-binding peptide and a mutant cell line with defective PE synthesis; either cell-surface immobilization of PE by the PE-binding peptide or reduction in the cell-surface content of PE inhibited the formation of membrane ruffles, causing a severe defect in cell migration. These results indicate that the phospholipid flippase complex of ATP8A1 and CDC50A plays a major role in cell migration and suggest that the flippase-mediated translocation of PE at the plasma membrane is involved in the formation of membrane ruffles to promote cell migration.  相似文献   

11.
Activation of protein kinase C (PKC) involves its recruitment to the membrane, where it interacts with its activator(s). We expressed PKCalpha fused to green fluorescent protein and examined its real time translocation to the plasma membrane in living human corneal epithelial cells. Upon 10 min of stimulation with epidermal and hepatocyte growth factors (EGF and HGF), PKCalpha translocated to the plasma membrane. Keratinocyte growth factor did not stimulate PKCalpha translocation up to 1 h after stimulation. Pretreatment with the 15-lipoxygenase metabolite, 15(S)-hydroxyeicosatetraenoic acid (15(S)-HETE), followed by EGF or HGF, produced faster translocation of PKCalpha detectable at 2 min. However, the same concentration of 15(S)-HETE alone did not stimulate translocation. 15(S)-Hydroperoxyeicosatetraenoic acid and 5(S)-HETE did not affect growth factor-induced translocation of PKCalpha. PD153035, a specific inhibitor of tyrosine kinase activity of the EGF receptor, completely blocked PKCalpha translocation induced by EGF. PD98059, a specific MEK inhibitor, significantly inhibited EGF- and HGF-mediated PKCalpha translocation, which was reversed by addition of 15(S)-HETE. Phosphorylation of ERK1/2 by EGF was followed by phosphorylation of cytosolic phospholipase A(2) (cPLA(2)), and blocking ERK1/2 inhibited cPLA(2) activation. Immunofluorescence demonstrated translocation of p-cPLA(2) to plasma and nuclear membranes as early as 2 min. This may further increase arachidonic acid release from membrane phospholipid pools and increase the intracellular pool of HETEs. In fact, in cells prelabeled with [(3)H]arachidonic acid, EGF stimulated synthesis of 15(S)-HETE in the cytosolic fraction. 15(S)-HETE also reversed the effect of LOX inhibitor on EGF-mediated cell proliferation. Our results indicate that 15(S)-HETE is an intracellular second messenger that facilitates translocation of PKCalpha to the membrane and elucidate a mechanism that plays a regulatory role in cell proliferation crucial to corneal wound healing.  相似文献   

12.
Protein C inhibitor (PCI) is a heparin-binding serine proteinase inhibitor (serpin) which is thought to be a physiological regulator of activated protein C (APC). The residues F353-R354-S355 (P2-P1-P1′) constitute part of the reactive site loop of PCI with the R-S peptide bond being cleaved by the proteinase. Changing the reactive site P1 and P2 residues to those of either proteinase nexin-1, α1-proteinase inhibitor or heparin cofactor II resulted in a decrease in inhibitory activity towards thrombin and APC. Changing the P2 residue F353 → P generated a rPCI which was a better thrombin inhibitor, but was 10-fold less active with APC. While these results support the concept that the P1 and P2 residues are important in the specificity of PCI, they suggest that the reactive site residues are not the only determinant of serpin specificity. Kinetic analysis of the rPCI variants was consistent with PCI operating by a mechanism similar to that proposed for other serpins. In this model an intermediary complex forms between inhibitor and proteinase that can proceed to either cleavage of the inhibitor as substrate or formation of an inactive complex.  相似文献   

13.
Alpha 1-antitrypsin (alpha 1AT; protease inhibitor [PI] locus), alpha 1-antichymotrypsin (alpha 1ACT; AACT locus), corticosteroid-binding globulin (CBG; CBG locus), and protein C inhibitor (PCI; PCI locus) are members of the serine protease inhibitor (serpin) superfamily. A noncoding PI-like (PIL) gene has been located 12 kb 3' of the PI gene. The PI, PIL, and AACT loci have been localized to 14q32.1, the CBG locus has been localized to 14q31-14q32.1, and PCI has been mapped to chromosome 14. Genetic linkage analysis suggests tight linkage between PI and AACT. We have used pulsed-field gel electrophoresis to generate a physical map linking these five serpin genes. The order of the genetic loci is AACT/PCI-PI-PIL-CBG, with a maximum distance of about 220 kb between the AACT/PCI and PI genes. These genes form a PI cluster at 14q32.1, similar to that of the homologous genes on murine chromosome l2. The close proximity of these genes has implications for disease-association studies.  相似文献   

14.
Delineating the mechanisms by which cell-penetrating peptides, such as HIV-Tat peptide, oligoarginines and penetratin, gain access to cells has recently received intense scrutiny. Heightened interest in these entities stems from their ability to enhance cellular delivery of associated macromolecules, such as genes and proteins, suggesting that they may have widespread applications as drug-delivery vectors. Proposed uptake mechanisms include energy-independent plasma membrane translocation and energy-dependent vesicular uptake and internalization through endocytic pathways. In the present study, we investigated the effects of temperature, peptide concentration and plasma membrane cholesterol levels on the uptake of a model cell-penetrating peptide, L-octa-arginine (L-R8) and its D-enantiomer (D-R8) in CD34+ leukaemia cells. We found that, at 4-12 degrees C, L-R8 uniformly labels the cytoplasm and nucleus, but in cells incubated with D-R8 there is additional labelling of the nucleolus which is still prominent at 30 degrees C incubations. At temperatures between 12 and 30 degrees C, the peptides are also localized to endocytic vesicles which consequently appear as the only labelled structures in cells incubated at 37 degrees C. Small increases in the extracellular peptide concentration in 37 degrees C incubations result in a dramatic increase in the fraction of the peptide that is localized to the cytosol and promoted the binding of D-R8 to the nucleolus. Enhanced labelling of the cytosol, nucleus and nucleolus was also achieved by extraction of plasma membrane cholesterol with methyl-beta-cyclodextrin. The data argue for two, temperature-dependent, uptake mechanism for these peptides and for the existence of a threshold concentration for endocytic uptake that when exceeded promotes direct translocation across the plasma membrane.  相似文献   

15.
Protein C inhibitor (PCI) is a member of the serpin family of protease inhibitors with many biological functions and broad inhibitory specificity. Its major targets in blood are thrombin and activated protein C (APC), and the inhibition of both enzymes can be accelerated by glycosaminoglycans, including heparin. Acceleration of thrombin and APC inhibition by PCI requires that both protease and inhibitor bind to the same heparin chain to form a bridged Michaelis complex. However, the position of the heparin binding site of APC is opposite to that of thrombin, and formation of the bridged complexes must require either radical reorientation of the proteases relative to PCI or alternate heparin binding modes for PCI. In this study, we investigate how heparin bridges thrombin and APC to PCI by determining the effect of mutations in and around the putative heparin binding site of PCI. We found that heparin binds PCI in a linear fashion along helix H to bridge thrombin, consistent with our recent crystal structure (3B9F), but that it must rotate by approximately 60 degrees to engage Arg-229 to bridge APC. To gain insight into the possible modes of heparin binding to PCI, we solved a crystal structure of cleaved PCI bound to an octasaccharide heparin fragment to 1.55 angstroms resolution. The structure reveals a binding mode across the N terminus of helix H to engage Arg-229 and align the heparin binding site of APC. A molecular model for the heparin-bridged PCI.APC complex was built based on mutagenesis and structural data.  相似文献   

16.
The ATP-dependent translocation of phospholipids in the plasma membrane of intact Friend erythroleukemic cells (FELCs) was studied in comparison with that in the membrane of mature murine erythrocytes. This was done by following the fate of radiolabeled phospholipid molecules, previously inserted into the outer monolayer of the plasma membranes by using a non-specific lipid transfer protein. The transbilayer equilibration of these probe molecules was monitored by treating the cells--under essentially non-lytic conditions--with phospholipases A2 of different origin. Rapid reorientations of the newly introduced aminophospholipids in favour of the inner membrane leaflet were observed in fresh mouse erythrocytes; the inward translocation of phosphatidylcholine (PC) in this membrane proceeded relatively slow. In FELCs, on the other hand, all three glycerophospholipids equilibrated over both halves of the plasma membrane very rapidly, i.e. within 1 h; nevertheless, an asymmetric distribution in favour of the inner monolayer was only observed for phosphatidylserine (PS). Lowering the ATP-level in the FELCs caused a reduction in the rate of inward translocation of both aminophospholipids, but not of that of PC, indicating that this translocation of PS and phosphatidylethanolamine (PE) is clearly ATP-dependent. Hence, the situation in the plasma membrane of the FELC is rather unique in a sense that, though an ATP-dependent translocase is present and active both for PS and PE, its activity results in an asymmetric distribution of PS, but not of PE. This remarkable situation might be the consequence of the fact that, in contrast to the mature red cell, this precursor cell still lacks a complete membrane skeletal network.  相似文献   

17.
C1 inhibitor (C1INH), a member of the serine proteinase inhibitor (serpin) family, is an inhibitor of proteases in the complement system, the contact system of kinin generation, and the intrinsic coagulation pathway. It is the most heavily glycosylated plasma protein, containing 13 definitively identified glycosylation sites as well as an additional 7 potential glycosylation sites. C1INH consists of two distinct domains: a serpin domain and an amino-terminal domain. The serpin domain retains all the protease-inhibitory function, while the amino-terminal domain bears most of the glycosylation sites. The present studies test the hypothesis that plasma C1INH bears sialyl Lewis(x)-related moieties and therefore binds to selectin adhesion molecules. We demonstrated that plasma C1INH does express sialyl Lewis(x)-related moieties on its N-glycan as detected using mAb HECA-452 and CSLEX1. The data also show that plasma C1INH can bind to P- and E-selectins by FACS and immunoprecipitation experiments. In a tissue culture model of endothelial-leukocyte adhesion, C1INH showed inhibition in a dose-dependent manner. Significant inhibition (>50%) was achieved at a concentration of 250 micro g/ml or higher. This discovery may suggest that C1INH plays a role in the endothelial-leukocyte interaction during inflammation. It may also provide another example of the multifaceted anti-inflammatory effects of C1INH in various animal models and human diseases.  相似文献   

18.
Protein kinase D (PKD) is a serine/threonine protein kinase activated by G protein-coupled receptor (GPCR) agonists through an incompletely characterized mechanism that includes its reversible plasma membrane translocation and activation loop phosphorylation via a protein kinase C (PKC)-dependent pathway. To gain a better understanding of the mechanism regulating the activation of PKD in response to GPCR stimulation, we investigated the role of its rapid plasma membrane translocation on its activation loop phosphorylation and identified the endogenous PKC isozyme that mediates that event in vivo. We had found that the activation loop of a PKD mutant, with reduced affinity for diacylglycerol and phorbol esters, was only phosphorylated upon its plasma membrane association. We also found that the activation loop phosphorylation and rapid plasma membrane dissociation of PKD were inhibited either by preventing the plasma membrane translocation of PKCepsilon, through abolition of its interaction with receptor for activated C kinase, or by suppressing the expression of PKCepsilon via specific small interfering RNAs. Thus, this study demonstrates that the plasma membrane translocation of PKD, in response to GPCR stimulation, is necessary for the PKCepsilon-mediated phosphorylation of the activation loop of PKD and that this event requires the translocation of both kinases to the plasma membrane. Based on these and previous results, we propose a model of GPCR-mediated PKD regulation that integrates its changes in distribution, catalytic activity, and multisite phosphorylation.  相似文献   

19.
Protein kinase D (PKD)/protein kinase C (PKC) mu is a serine/threonine protein kinase that can be activated by physiological stimuli like growth factors, antigen-receptor engagement and G protein-coupled receptor (GPCR) agonists via a phosphorylation-dependent mechanism that requires PKC activity. In order to investigate the dynamic mechanisms associated with GPCR signaling, the intracellular translocation of a green fluorescent protein-tagged PKD was analyzed by real-time visualization in fibroblasts and epithelial cells stimulated with bombesin, a GPCR agonist. We found that bombesin induced a rapidly reversible plasma membrane translocation of green fluorescent protein-tagged PKD, an event that can be divided into two distinct mechanistic steps. The first step, which is exclusively mediated by the cysteine-rich domain in the N terminus of PKD, involved its translocation from the cytosol to the plasma membrane. The second step, i.e. the rapid reverse translocation of PKD from the plasma membrane to the cytosol, required its catalytic domain and surprisingly PKC activity. These findings provide evidence for a novel mechanism by which PKC coordinates the translocation and activation of PKD in response to bombesin-induced GPCR activation.  相似文献   

20.
In most cases, the transport of cell-penetrating peptide (CPP) with a cargo molecule over the plasma membrane requires a cross-linking of the cargo molecule to the peptide. Lately, a method of cargo delivery, coincubation with CPP, has been applied. We have studied uptake and toxicity of the CPP, YTA2, in the Bowes human melanoma cell line and human MDA-MB-231 breast cancer cell line and compared the results with known cell-penetrating peptides. The results show that fluoresceinyl YTA2 is taken up by the Bowes cells with 3.23 nmol/mg protein and shows low membrane toxicity to the cells with an EC50 of 60 microM. Furthermore, we show that YTA2 is capable of delivering cargo proteins, such as beta-galactosidase and tetramethyl rhodamine iso-thiocyanate (TRITC) labeled streptavidin into cells by coincubation. The delivery of TRITC-labeled streptavidin was quantified to 42.4 pmol streptavidin/mg protein. The delivery of proteins into the cells by mere coincubation is an advantage, since the chemical coupling between the CPP and the cargo molecule, which adds time-consuming synthesis and purification steps, can be omitted. In addition, the flexibility in CPP cargo delivery is increased.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号