首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary In a temperature-sensitive, high CO2-requiring mutant of Synechococcus sp. PCC7942, the ability to fix intracellularly accumulated inorganic carbon was severely impaired at non-permissive temperature (41° C). In contrast, inorganic carbon uptake and ribulose-1,5-bisphosphate carboxylase activity in the mutant were comparable to the respective values obtained with the wild-type strain. The mutant was transformed to the wild-type phenotype (ability to form colonies at non-permissive temperature under ordinary air) with the genomic DNA of the wild-type strain. A clone containing a 36 kb genomic DNA fragment of the wild-type strain complemented the mutant phenotype. The complementing activity region was associated with internal 17 kb SmaI, 15 kb HindIII, 3.8 kb BamHI and 0.87 kb Pstl fragments. These 4 fragments overlapped only in a 0.4 kb HindIII-PstI region. In the transformants obtained with total genomic DNA or a plasmid containing the 3.8 kb BamHI fragment, the ability to fix intracellular inorganic carbon was restored. Southern hybridization and partial nucleotide sequence analysis indicated that the cloned genomic region was located approximately 20 kb downstream from the structural genes for subunits of ribulose-1,5-bisphosphate carboxylase/oxygenase. The cloned region was transcribed into a 0.5 kb mRNA. These results indicate that the cloned genomic region of Synechococcus sp. PCC7942 is involved in the efficient utilization of intracellular inorganic carbon for photosynthesis.  相似文献   

2.
Summary To investigate the interaction of subunits A and B of DNA gyrase during DNA supercoiling, a Cour mutant of Escherichia coli was obtained and the effect of nalidixic acid on the supercoiling of DNA by wild-type and mutant enzymes was assayed. The enzyme of the Cour strain proved to be more sensitive to nalidixic acid than the wild-type DNA gyrase. Hence the mutation affecting the B subunit can also change the properties of the A subunit, which fact suggests that the two subunits of DNA gyrase are in contact during DNA supercoiling.  相似文献   

3.
Summary The repair of UV-irradiated DNA of plasmid pBB29 was studied in an incision-defective rad3-2 strain of Saccharomyces cerevisiae and in a uvrA6 strain of Escherichia coli by the measurement of cell transformation. Plasmid pBB29 used in these experiments contained as markers the DNA of nuclear yeast gene LEU-2 and DNA of the bacterial plasmid pBR327 with resistance to Tet and Amp enabling simultaneous screening of transformant cells in both microorganisms.We found that the yeast rad3-2 mutant, deficient in incision of UV-induced pyrimidine dimers in nuclear DNA, was fully capable of repairing such lessions in plasmid DNA. The repair efficiency was comparable to that of the wild-type cells. The E. coli uvrA6 mutant, deficient in a specific nuclease for pyrimidine dimer excision from chromosomal DNA, was unable to repair UV-damaged plasmid DNA. The difference in repair capacity between the uvrA6 mutant strain and the wild-type strain was of several thousand-fold.It seems that the rad3 mutation, which confers deficiency in the DNA excision-repair system in yeast, is limited only to the nuclear DNA.  相似文献   

4.
Summary In this study we present the characterization of the temperature-sensitive mutant allele cdc9-1 encoding DNA ligase, of Saccharomyces cerevisiae strain A364A by DNA sequencing. Comparison with the published wild-type sequence from strain SKI revealed 13 nucleotide exchanges between these two sequences, which are derived from non-isogenic genetic backgrounds. Only four of these changes, distributed over the whole coding region, lead to amino acid exchanges in the protein chain. Our analysis of the sequence of the wild-type CDC9 allele from strain A364A revealed differences from the isogenic cdc9-1 allele in only two nucleotides: one silent change and one leading to a single amino acid exchange. The latter is therefore responsible for the temperature-sensitive phenotype. A mosaic protein, in which a region carrying this amino acid exchange has been inserted in place of the corresponding part of CDC9 from the non-isogenic strain SKI, is not temperature sensitive. The exchange of a longer stretch of DNA leading to atteration of three amino acids of the protein compared with the original sequence of SKI is required to obtain a temperature-sensitive DNA ligase in this strain, while in strain A364A a single amino acid change is sufficient for expression of a temperature-sensitive protein.  相似文献   

5.
Summary When a non-selected DNA sequence was added during the transformation of amdS320 deletion strains of Aspergillus nidulans with a vector containing the wild-type amdS gene the AmdS+ transformants were cotransformed at a high frequency. Cotransformation of an amdS320, trpC801 double mutant strain showed that both the molar ratio of the two vectors and the concentration of the cotransforming vector affected the cotransformation frequency. The maximum frequency obtained was defined by the gene chosen as selection marker for transformation. Cotransformation was used to induce a gene replacement in A. nidulans. An amdS320 strain was transformed to AmdS+ and cotransformed with a DNA fragment containing a fusion between a non-functional A. nidulans trpC gene and the Escherichia coli lacZ gene. Ten AmdS+, LacZ+ transformants with a Trp mutant phenotype were selected. All of these strains could be transformed with a functional copy of the A. nidulans trpC gene, but only two strains yielded TrpC+ transformants which, with a low frequency, had a LacZ phenotype. These latter transformants had also lost the AmdS+ phenotype. Southern blotting analysis of DNA from these transformants confirmed the inactivation of the wild-type trpC gene, but revealed that amdS vector sequences were also involved in the gene replacement events.  相似文献   

6.
Several pleiotropic drug sensitivities have been described in yeast. Some involve the loss of putative drug efflux pumps analogous to mammalian P-glycoproteins, others are caused by defects in sterol synthesis resulting in higher plasma membrane permeability. We have constructed a Saccharomyces cerevisiae strain that exhibits a strong crystal violet-sensitive phenotype. By selecting cells of the supersensitive strain for normal sensitivity after transformation with a wild-type yeast genomic library, a complementing 10-kb DNA fragment was isolated, a 3.4-kb subfragment of which was sufficient for complementation. DNA sequence analysis revealed that the complementing fragment comprised the recently sequenced SGE1 gene, a partial multicopy suppressor of gal11 mutations. The supersensitive strain was found to be a sge1 null mutant. Overexpression of SGE1 on a high-copy-number plasmid increased the resistance of the supersensitive strain. Disruption of SGE1 in a wild-type strain increased the sensitivity of the strain. These features of the SGE1 phenotype, as well as sequence homologies of SGE1 at the amino acid level, confirm that the Sge1 protein is a member of the drug-resistance protein family within the major facilitator superfamily (MFS).  相似文献   

7.
Summary Yeast strain 990 carries a mutation mapping to the oli1 locus of the mitochondrial genome, the gene encoding ATPase subunit 9. DNA sequence analysis indicated a substitution of valine for alanine at residue 22 of the protein. The strain failed to grow on nonfermentable carbon sources such as glycerol at low temperature (20°C). At 28°C the strain grew on nonfermentable carbon sources and was resistant to the antibiotic oligomycin. ATPase activity in mitochondria isolated from 990 was reduced relative to the wild-type strain from which it was derived, but the residual activity was oligomycin resistant. Subunit 9 (the DCCD-binding proteolipid) from the mutant strain exhibited reduced mobility in SDS-polyacrylamide gels relative to the wild-type proteolipid. Ten revertant strains of 990 were analyzed. All restored the ability to grow on glycerol at 20°C. Mitotic segregation data showed that eight of the ten revertants were attributable to mitochondrial genetic events and two were caused by nuclear events since they appeared to be recessive nuclear suppressors. These nuclear mutations retained partial resistance to oligomycin and did not alter the electrophoretic behavior of subunit 9 or any other ATPase subunit. When mitochondrial DNA from each of the revertant strains was hybridized with an oligonucleotide probe covering the oli1 mutation, seven of the mitochondrial revertants were found to be true revertants and one a second mutation at the site of the original 990 mutation. The oli1 gene from this strain contained a substitution of glycine for valine at residue 22. The proteolipid isolated from this strain had increased electrophoretic mobility relative to the wild-type proteolipid.Abbreviations DCCD dicyclohexylcarbodiimide - SDS sodium dodecyl sulfate - PMSF phenylmethylsulfonyl fluoride - HEPES N-2-hydroxyethylpiperazine-N-2-ethanesulfonate - SMP submitochondrial particles - mit- mitochondrial point mutant  相似文献   

8.
The molecular basis of bacteriocin production by a Cicer–Rhizobium strain PR2109a was studied. The bacterial strain showed in vitro growth inhibition of non-bacteriocin producing strain of Cicer–Rhizobium PR2005b. Tn5 mutagenesis of the wild-type strain helped in the isolation of the bacteriocin-defective mutant JN365. A genomic library of the wild-type strain was constructed in the cosmid vector pLAFR1 and maintained in Escherchia coli background. Complementation analysis with the cosmid library resulted in the isolation of a cosmid clone which complemented the defective character in the mutant JN365. The size of the complementary DNA fragment was found to be 23 kb.  相似文献   

9.
Summary The mating type gene MA TA of the dimorphic yeast Yarrowia lipolytica was cloned. The strategy used was based on the presumed function of this gene in the induction of sporulation. A diploid strain homozygous for the mating type B was transformed with an integrative gene bank from an A wild-type strain. A sporulating transformant was isolated, which contained a plasmid with an 11.6 kb insert. This sequence was rescued from the chromosomal DNA of the transformant and deletion mapping was performed to localize the MAT insert. The MAT gene conferred both sporulating and non-mating phenotypes on a B/B diploid. A LEU2 sequence targeted to this locus segregated like a mating type-linked gene. The A strain did not contain silent copies of the MAT gene.  相似文献   

10.
Riboflavin-mediated photosensitization has been shown to produce 8-hydroxyguanine (oh8Gua) in DNA. We investigated the specificity of mutation of photosensitized supF gene induced in Escherichia coli. The oh8Gua repair deficient E. coli mutant mutM and mutY were transformed with plasmid pUB3 carrying the supF gene irradiated with white light in the presence of riboflavin. Under these conditions, riboflavin photosensitization increased the amounts of oh8Gua in pUB3 DNA. Three types of a single base substitution occurring at G:C pairs were detected in both wild-type and mutM mutant strains. Almost all base substitutions were transversions to T:A or C:G pairs occurring at a similar extent in both wild-type and mutM strains. Mutations derived from mutY strain transformed with photosensitized DNA were only G:C to T:A transversions. These G:C to T:A transversions observed in the mutY strain were suggested to be the result of mispairing of oh8Gua with adenine. Riboflavin-mediated photosensitization may also produce lesions on DNA causing G:C to C:G changes by unknown mechanisms.  相似文献   

11.
A Bacillus thuringiensis respiratory mutant (AB1 strain) that shows premature sporulation and insecticidal crystal protein (ICP) production was isolated. The mutant strain harbours the cryIC and cryID insecticidal genes and could be important for the production of ICP highly toxic to Spodoptera sp. The mutant was selected by its increased capacity to oxidize. N,N,N',N'-tetramethyl-p-phenylenediamine (TMPD). In this strain, cytochrome aa 3 expression is not repressed during the sporulation phase, in contrast with the wild-type strain. The growth, spore production, dissolved O2, O2 consumption, CO2 evolution rate and ICP production were recorded as a function of time. The AB1 mutant strain has a similar growth yield to the wild-type strain, but begins sporulation at least 4 h earlier. The AB1 strain consumes 74.5% more O2 than the wild-type strain, during the fermentation process. The mutation on strain AB1 has an important positive effect on ICP production. This procedure shows that ICP production could be increased during fermentation by increasing the respiration capacity of Bacillus thuringiensis. Correspondence to: A. Bravo  相似文献   

12.
The DNA of wild-type Streptomyces lividans 66 is degraded during electrophoresis in buffers containing traces of ferrous iron. S. lividans ZX1, a mutant selected for resistance to DNA degradation, simuiltaneously became sensitive to φHAU3, a wide-host-range temperate bacteriophage. A DNA fragment conferring φHAU3 resistance was cloned; it contains a phage resistance gene whose deduced amino acid sequence is similar to the phage λ Ea59 endonuclease. The S. lividansφHAU3 resistance does not seem to be a classical restriction-modification system, because no host-modified phages able to propagate on the wild-type strain could be isolated. The cloned fragment did not make the host DNA prone to degradation during electrophoresis, indicating that the two phenotypes are controlled by different genes which were deleted together from the chromosome of ZX1.  相似文献   

13.
We showed previously that a mutant strain of group B Streptococcus (GBS) defective in capsule production was avirulent. This study describes the derivation of an unencapsulated mutant from a highly encapsulated wild-type strain of type III GBS, COH1, by transposon mutagenesis with Tn916ΔE. The mutant, COH1-13, was sensitive to phagocytic killing by human leukocytes in vitro and was relatively avirulent in a neonatal rat sepsis model compared with the wild-type strain. No capsular polysaccharide was evident in the cytoplasm or on the cell surface of the mutant strain. The Tn916ΔE insertion site in COH1-13 was mapped to the same chromosomal location as the Tn916 insertion site in the unencapsulated type III mutant COH31-15 reported previously. Nucleotide sequencing of DNA flanking the insertion site in COH1-13 revealed an open reading frame, designated cpsD, with significant homology to the rfbP gene of Salmonella typhimurium. RfbP encodes a galactosyl transferase enzyme that catalyses the transfer of galactose to undecaprenol phosphate, the initial step in O-polysaccharide synthesis. A particulate fraction of a lysate of wild-type strain GBS COH1 mediated the transfer of galactose from UDP-galactose to an endogenous acceptor. The galactose–acceptor complex partitioned into organic solvents, suggesting it is lipid in nature or membrane-associated. Galactosyl transferase activity was significantly reduced in the unencapsulated mutant strain COH1-13. These results, together with the similarity in deduced amino acid sequence between cpsD and rfbP suggest that cpsD encodes a galactosyl transferase essential for assembly of the GBS type III capsular polysaccharide.  相似文献   

14.
Summary In the dna G t.s. strain BT 308, made lysogenic for the phage , nascent DNA was labelled by short pulses of 3H-thymidine, isolated and separated as a function of size by alkaline sucrose gradient sedimentation. The molecular polarity of the labelled DNA was then determined by hybridization to the separated strands of DNA.At 30° C, strand r DNA, made in the direction opposite that of fork movement, is synthesized in the form of short pieces. The first observable consequences of a shift to 42° C are the preferential inhibition of strand r synthesis and the small amount of strand r DNA which is made is recovered in long pieces of DNA rather than in short fragments. This indicates that the t.s. product, in strain BT 308, may be involved in the synthesis of the strand growing in the direction opposite that of replication fork movement.Newly synthesized strand l DNA, made in the same direction as replication fork movement, is found in long pieces in wild-type bacteria; it is found in pieces of intermediate size in strain BT 308 at 30° C as well as at 42° C. This indicates additional differences in the replication machinery between strain BT 308 and wild-type bacteria.  相似文献   

15.
Currently, little information is available regarding the molecular organization of integrated transgenes in genetically-engineered fish. We performed a detailed structural analysis of an inserted transgene in one strain (M77) of transgenic coho salmon (Oncorhynchus kisutch) containing a salmon growth hormone gene construct (OnMTGH1). Microinjected DNA was found to have inserted into a single site in the coho salmon genome, and was organized with four complete internal copies and two partial terminal copies of the OnMTGH1 construct. All construct copies were organized in a direct-tandem (head-to-tail) repeat fashion in strain M77 and five additional strains (one also possessed a second recombinant junction fragment). For strain M77, the junctions between the transgene insert and the insertion point within the wild-type genome were cloned from strain-specific cosmid libraries and sequenced, revealing that the transgene insertion was accompanied by a deletion of 587 bp of wild-type DNA as well as a small insertion (19 bp) of unknown DNA upstream and a 14 bp direct- tandem duplication of sequence downstream. Upstream and downstream wild-type DNA sequence contained several repetitive sequence elements based on Southern blot analysis and homology to repetitive sequences in GenBank. In the downstream flank, a pseudogene sequence was also identified which has high homology to the CA membrane protein gene from Schistosoma japonicum, a parasite closely related to Sanguinicola sp. parasites which infect salmonids. Whether the presence of an inserted transgene and the presence of potentially horizontally-transmitted DNA are indicative of a genomic region with a predisposition for insertion of foreign DNA requires further study. The information derived from this transgene structure provides information useful for comparison to other transgenic organisms and for determination of the mechanism of transgene integration in lower vertebrates.  相似文献   

16.
A transposon 5 (Tn5) insertion was introduced into the genome of A. tumefaciens (A-208 strain harbouring a nopaline type Ti-plasmid) using a conjugative pJB4JI plasmid containing Tn5. Five thousand transconjugants were assayed for virulence on carrot (Daucus carota L.) disks; 54 isolates were avirulent or very attenuated. The cellular localization (plasmid or chromosome) of the Tn5 insertion in those isolates were identified by Southern hybridization analysis. An avirulent- mutant (B-90 strain) with the Tn5 insertion in the chromosome was selected and characterized. The mutant had the same growth rate as that of the parent strain in L-broth. The mutant and the parent strain had similar attachment ability to carrot root cells. Tn5 was inserted into one site of the chromosome. The wild-type target chromosomal region (1281 base pairs) was cloned and sequenced. An open reading frame (ORF) consisting of 395 base pairs was identified. The wild-type DNA fragment (1.6 kb) containing the ORF introduced into B-90 strain complemented the avirulent phenotype of the strain. A soluble protein was predicted from the ORF. The Tn5 was inserted near the 3′-terminal of the ORF. Homology search of this ORF found no significant homology to known genes and proteins. Thus, the ORF identified in this paper seems to be a new chromosomal virulence gene of A. tu?efaciens.  相似文献   

17.
We isolated a class I chitin synthase gene (chsC) from Aspergillus nidulans. Expression of this gene was confirmed by Northern analysis and by sequencing of the PCR-amplified DNA fragments from cDNA. chsC disruptants showed no difference of morphology in the asexual cycle and no difference of growth rate compared to a wild-type strain.  相似文献   

18.
A recombinant Escherichia coli strain (E. coli NO3) containing genomic DNA fragments from azo-reducing wild-type Pseudomonas luteola strain decolorized a reactive azo dye (C.I. Reactive Red 22) at approx. 17 mg dye h–1 g cell. The ability to decolorize the azo dye probably did not originate from the plasmid DNA. Acclimation in azo-dye-containing media gave a nearly 10% increase in the decolorization rate of E. coli NO3. Growth with 1.25 g glucose l–1 completely stopped the decolorization activity. When the decolorization metabolites from E. coli NO3 were analyzed by HPLC and MS, the results suggested that decolorization of the azo dye may be due to cleavage of the azo bond.  相似文献   

19.
Nonomuraea strain ATCC 39727 produces the glycopeptide A40926, used for manufacturing dalbavancin, currently in advanced clinical trials. From the gene cluster involved in A40926 biosynthesis, a strain deleted in dbv23 was constructed. This mutant can produce only the glycopeptides lacking the O-linked acetyl residue at position 6 of the mannose moiety, while, under identical fermentation conditions, the wild-type strain produces mostly glycopeptides carrying an acetylated mannose. Furthermore, the total amount of glycopeptides produced by the mutant strain was found to be approximately twice that of the wild type. The reduced level of glycopeptides observed in the wild-type strain may be due to an inhibitory effect exerted by the acetylated compound on the biosynthesis of A40926. Indeed, spiking production cultures with ≥1 μg/ml of the acetylated glycopeptide inhibited A40926 production in the mutant strain.  相似文献   

20.
Escherihica coliumC122::Tn5 cells were γ-radiated (137Cs, 750 Gy, under N2), and lac-constitutive mutants were produced at 36% of the wild-type level (the umC strain was not deficient in spontaneous mutagenesis, and the mutational spectrum determined by sequencing 263 spontaneous lacId mutations was very similar to that for the wild-type strain). The specific nature of the umC strain's partial radiation was determined by sequencing 325 radiation-induced lacId mutations. The yields of radiation-induced mutation classes in the umC strain (as a percentage of the wild-type yield) were: 80% for A · T → G · C transitions, 70% for multi-base additions, 60% for single-base deletions, 53% for A · T → C · G transversions, 36% for G · C → A · T transitions, 25% for multi-base deletions, 21% for A · T → T · A transversions, 11% for G · C → C · G transversions, 9% for G · C → T · A transversions and 0% for multiple mutations. Based on these deficiencies and other factors, it is concluded that the umC strain is near-normal for A · T → G · C transitions, single-base deletions and possibly A · T → C · G transversions; is generally deficient for mutagenesis at G · C sites fro transversions, and is grossly deficient in multiple mutations. Damage at G · C sites seems more difficult for translesion DNA synthesis to bypass than damage at A · T sites, and especially when trying to produced a transversion. The yield of G · C → A · T transitions in the umC strain *36% of the wild-type level) argues that a basic sites are involved in no more than 64% of γ-radiation-induced base substitutions in the wild-type strain. Altogether, these data suggest that the UmuC and UmuD′ proteins facilitate, rather than being absolutely required for, translesion DNA synthesis; with the degree of facilitation being dependent both on the nature of the noncoding DNA damage, i.e., at G · C vs A · T sites, and on the nature of the misincorporated base, i.e., whether it induces transversions or transitions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号