首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
运用分子力学方法研究了 2 0个双分子三螺旋DNA ,其嘧啶链序列是 5′- dTTCTTTTC- L1TTTL5 -CTTTTCTT -3′,划线的 5个核苷酸组成loop环 ,L1和L5可以是任意的核苷酸 ;嘌呤链的序列是 5′- GAAAAGAA 3′和 5′- AAGAAAAG -3′ ;2条链方向相反 .对 2 0个不同loop序列双分子三螺旋DNA稳定性的研究结果表明 ,5′- loop三螺旋比相应的 3′- loop三螺旋更稳定 ,嘌呤比嘧啶与相邻碱基的堆积作用大 .2 0个三螺旋DNA的相对稳定性主要是由loop环上L1和L5碱基组成不同决定的  相似文献   

2.
离子注入诱变莲花突变体分子机理的初步研究   总被引:1,自引:0,他引:1  
Deng CL  Jia YY  Ren YX  Gao WJ  Zhang T  Li PF  Lu LD 《遗传》2011,33(1):81-87
低能离子注入技术作为生物物理诱变的一种新型技术, 在园艺植物育种方面具有很大的应用潜力, 但其诱变的分子机理目前知之甚少。文章对Fe+ 离子注入诱变的白洋淀红莲(Nelumbium speciosum Willd)突变体及其对照的基因组进行RAPD研究, 并将突变体和对照在辐射敏感位点的条带进行克隆测序及DNA序列分析。在已优化好的RAPD体系下扩增, 从110条随机引物中筛选出了10条可以稳定扩增出显著特异条带的引物, 引物多态性为9.09%。将这10条引物扩增出的辐射敏感位点的条带进行克隆测序, 并进行序列比对。结果显示: 突变体的总碱基突变频率为0.87%, 6个突变体的碱基突变频率存在着差异; 碱基突变类型包括碱基的颠换、转换、缺失、插入, 在检测到的159个碱基突变中, 单碱基置换的频率(61.01%)高于碱基插入或者缺失的频率(38.99%), 在碱基置换中, 转换的频率(44.65%)是颠换频率(16.35%)的2.7倍, 其中C/T之间的转换所占比例最大, A→G和A→T也具有较高的替换频率; 构成DNA的4种碱基均可以被离子束辐照诱变发生变异, 除了没有C→G的置换外, 每一种碱基都可以被其他的几种碱基所置换, 但是胸腺嘧啶(T)具有较高的辐射敏感性。通过对碱基突变位点周边序列的分析发现, 嘌呤突变位点的周围嘌呤碱居多, 嘧啶突变位点的周围嘧啶碱居多。研究结果为揭示低能离子注入诱变作用分子机理提供了依据。  相似文献   

3.
魏瑜  张晓辉  李大力 《遗传》2017,39(12):1115-1121
近年发展起来的人工核酸酶可通过引起特定位点的DNA双链断裂实现对目的片段的有效编辑。为进一步提高碱基修改的效率和精确度,2016年研究者们利用CRISPR/Cas9识别特定DNA序列的功能,结合胞嘧啶脱氨酶的生化活性发明了将胞嘧啶高效转换为胸腺嘧啶(C>T)的嘧啶单碱基编辑系统(base editor)。这一系统虽然能精准实现嘧啶直接转换,大大提高精确基因编辑效率,但美中不足的是无法对嘌呤进行修改。近期,Nature报道了将细菌中的tRNA腺嘌呤脱氨酶定向进化形成具有催化DNA腺嘌呤底物的脱氨酶,将其与Cas9系统融合发明了具有高效催化腺嘌呤转换为鸟嘌呤的新工具—腺嘌呤单碱基编辑系统(ABEs, adenine base editors)。本文总结了单碱基编辑工具的发展历程和最新研究进展,着重介绍ABEs的研发过程,并对单碱基编辑工具今后的应用方向和研发方向进行展望。  相似文献   

4.
<正>DNA的化学组成及构造 脱氧核糖核酸(DNA)担负着生物的所有遗传信息,从细胞水平来看,它可能是信息表达的兰图,细胞分裂时形成两个相同的分子(这叫做复制),分配给两个子细胞,使之遗传下去。其化学基本单位是由1分子脱氧核糖,1分子磷酸及1分子碱基(4种中的某一种)所构成,称为核苷酸。如图1所示,4种碱基乃是2种嘌呤碱基,即腺嘌呤、鸟嘌呤和2种嘧啶碱基,即胸腺嘧啶,胞嘧啶。腺嘌呤与胸腺嘧啶之间能形成  相似文献   

5.
本文报导了一个用5-~(131)碘尿嘧啶代替[~3H]-胸腺嘧啶进行细菌DNA复制研究的新方法。通过对放射性参入产物的碱(KOH)水解和酶(DNase和RNase)水解的实验证明:5-~(131)碘尿嘧啶与[~3H]-胸腺嘧啶一样能特异地参入大肠杆菌胸腺嘧啶缺陷变异株的DNA,而不能参入其RNA。对氨基酸饥饿同步化的大肠杆菌15T~-,当应用5-~(131)碘尿嘧啶的参入来测定复加氨基酸后的DNA复制起步时间时,获得的结果与使用[~3H]-胸腺嘧啶脱氧核苷参入的结果相一致。天然的DNA碱基成分胸腺嘧啶强烈地竞争性地抑制5-~(131)碘尿嘧啶的参入能力,而天然的RNA碱基成分尿嘧啶则影响很小。此外,5-碘尿嘧啶对大肠杆菌胸腺嘧啶缺陷变异株的生长有抑制作用,但这种抑制要在加入5-碘尿嘧啶后2小时才明显地产生,而5-碘尿嘧啶对大肠杆菌野生株的生长没有影响。实验结果表明:在细菌DNA复制的研究中,5-~(131)碘尿嘧啶参入的方法与使用[~3H]-胸腺嘧啶参入的方法有同样的可靠性,其优点是由于~(131)碘辐射γ射线,故放射性参入样品的制备和测定都比较简便,因而,它比[~3H]-胸腺嘧啶更适合于有关临床和实验室的使用。  相似文献   

6.
1957年Felsenfeld等发现一条Poly A链能跟两条Poly U链形成三螺旋,这是三链形成寡聚核苷酸(triple-forming oligonucleotide,TFO)研究的开始[1].随着DNA合成技术的进展,人们能合成各种序列的寡聚核苷酸.1987年Le Doan等[2]发现聚嘌呤或聚嘧啶寡聚核苷酸能序列特异的结合于同聚嘌呤/同聚嘧啶DNA双链的大沟内,识别的机制包括形成Hoogsteen和反Hoogsteen氢键.现在常用的包括含(G、A),含(G、T)或含(C、T)的3种TFO以及它们的类似物.人们根据TFO能序列特异的识别双螺旋DNA,从而可能影响基因的转录而发展出反基因战略.  相似文献   

7.
含有内含子的tRNA前体必须经过剪接反应加工成熟.顺序比较指出与内含子顺序相邻的核苷酸有一定的特异性.用寡核苷酸定点突变技术改变这2个位点的核苷酸,确定这些tRNA前体的剪接效率.结果如下:当37位和38位都是嘌呤核苷酸时,tRNA内切酶能够有效地酶切酵母 tRNA~(phe)前体;如果其中的 1个位点变成嘧啶核苷酸,但另1个位点的核苷酸是野生型的嘌呤核苷酸,tRNA前体的酶切效率将降低.如果2个位点的核苷酸都发生变异,其中1个是嘧啶核苷酸,另1个是变异的嘌呤核苷酸,tRNA前体的酶切效率就会进一步降低.如果2个位点都是嘧啶核苷酸,tRNA前体就难以为tRNA内切酶酶切了.由此提出,与内含子相邻的核苷酸也是tRNA由切酶识别的结构特征.tRNA前体的37位和38位核苷酸的改变可能影响剪接位点之间的距离或它们的精细结构,从而影响tRNA内切酶酶切的效率.  相似文献   

8.
在5mM浓度下,测定了NAD~ 、sNAD~ 、NMN~ 、sAMP和(sAMP NMN~ )混合物的化学位移与pH依赖关系。根据环流各向异性屏蔽效应,通过比较sNAD~ 与等量混合物(sAMP NMN~ )的对应碱基质子化学位移,以及比较sNAD~ 与NAD~ 的烟酰胺质子化学位移,发现在水溶液中的游离NAD~ 以pK_a3.88为转折,处于不同构象:在pH3.88以下,NAD处于伸展构象;在此值以上,NAD~ 处于折迭构象。  相似文献   

9.
一、选择题:(本题包括28小题,每题1.5分,共42分。每小题只有一个选项最符合题意)1.孟德尔做了如图所示的杂交实验,决定图中种子种皮基因型的是()。A.由植株A和植株B共同决定B.只由植株A决定C.只由植株B决定D.与植株A或植株B无关2.与“阿波罗登月计划”相提并论的“人类基因组计划”的主要任务是测定人体基因组整体序列。决定基因遗传特异性的是()。A.基因的碱基对排列顺序B.嘌呤总数与嘧啶总数的比值C.碱基互补配对的原则D.脱氧核苷酸链上磷酸和脱氧核糖的排列特点3.理论上同种生物同一个体每个表皮细胞与神经细胞内所含DNA是相同的,…  相似文献   

10.
银染色测定粘虫核多角体病毒多角体基因序列   总被引:1,自引:0,他引:1  
LsMNPV DNA用EcoRV酶切进行基因组克降,用AcMNPV的部分多角体基因顺序DNA片段作探针,菌落原位杂交法结合测序筛选到分别含LsMNPV部分多角体基因的重组质粒pLsEV1和pLsPH5。用银染色PCR线性扩增双脱氧法测序,发现LsMNPv的完整基因即位于这两个片段上。LsMNPV多角体基因长741bp,编码区碱基同源性与AcMNPV和MbMNPV分别为80.0%和97.0%,氨基酸同源性分别为89.8和97.5%。氨基酸组成中以谷氨酸(Glu)含量最高,谷氨酰胺和色氨酸含量最低。密码子选用以第三个碱基为嘧啶的密码子频率最高。多角体蛋白N端有一类似信号肽结构的26个氨基酸的疏水区。  相似文献   

11.
The structural distortion of a single- and a double-stranded decadeoxynucleotide upon binding of cis-PtCl2(NH3)2 was studied by 1H-NMR. After selective platination of d(T-C-T-C-G-G-T-C-T-C) (I) at the central d(-GpG-) site (resulting in I-Pt), several non-exchangeable base protons as well as H1', H2', H2" and H3' protons could be assigned by means of conventional NMR double-resonance techniques. Addition of the complementary decamer strand to I and I-Pt yielded the double-stranded III and III-Pt, respectively. All non-exchangeable base, H1', and most of the H2' and H2" protons in the two double stranded compounds could be assigned using 2D-chemical shift correlation (COSY) and nuclear Overhauser enhancement (NOESY) techniques. The double stranded compound III appears to adopt a B-DNA like structure. Comparison of NOEs and proton-proton coupling constants in the d(-GpG-).cisPt part in I-Pt and III-Pt reveals that their structure displays large similarity. Significant chemical shift changes (i.e. larger than 0.1 ppm) between III and III-Pt are restricted to the central four base pairs. It follows that the outer three base pairs, located on either side of the central four base pairs in III-Pt are likely to adopt a regular B-DNA type helix. The observed large upfield and downfield chemical shifts in the d(-CpGpG-) part of III with respect to III-Pt can be rationalized by describing the distortion of the double helix as a kink. A discussion of the observed physical effects upon platination of a double-stranded oligonucleotide is presented.  相似文献   

12.
The chemical shifts of 1H resonances of non exchangeable protons (except H5', H5" and adenine H2) of over six hundred nucleotides have been collected. The influence which the base of the nucleotide itself as well as the bases on its 5' and 3' side exert on the chemical shifts of the various resonances has been investigated. Most of the resonances appear to be predominantly influenced by only one base. For H2', H2", H3', H4' and H6/H8 this is the base of the central nucleotide, for H5(C) and CH3(T) it is the one on the 5' side and for H1' it is the one on the 3' side. Chemical shift distribution profiles are presented which allow an estimation of the probability of finding a particular resonance at a particular position in the spectrum.  相似文献   

13.
P N Borer  L S Kan  P O Ts'o 《Biochemistry》1975,14(22):4847-4863
1H nuclear magnetic resonance (NMR) spectra of a self-complementary ribosyl hexanucleotide, A2GCU2, are investigated as a function of temperature and ionic strength in D2O. Seventeen nonexchangeable base and ribose-H1' resonances are resolved, and unequivocally assigned by a systematic comparison with the spectra of a series of oligonucleotide fragments of the A2GCU2 sequence varying in chain length from 2 to 5. Changes in the chemical shifts of the 17 protons from the hexamer as well as the six H1'-H2' coupling constants are followed throughout a thermally induced helix-coil transition. These sigma vs. T and J vs. T (degrees C) profiles indicate that the transition is not totally cooperative and that substantial populations of partially bonded structures must exist at intermediate temperatures, with the central G-C region being most stable. Transitions in chemical shift for protons in the same base pair exhibit considerable differences in their Tm values as the data reflect both thermodynamic and local magnetic field effects in the structural transition, which are not readily separable. However, an average of the Tm values agrees well with the value predicted from studies of the thermally induced transition made by optical methods. The values of J1'-2' for all six residues become very small (less than 1.5 Hz) at low temperatures indicating that C3'-endo is the most heavily populated furanose conformation in the helix. The sigma values of protons in the duplex were compared with those calculated from the ring current magnetic anisotropies of nearest and next-nearest neighboring bases using the geometrical parameters of the A'-RNA and B-DNA models. The sigma values of the base protons in the duplex calculated assuming the A'-RNA geometry agree (+/- approximately 0.1 ppm) with the observed values much more accurately than those calculated on the basis of B-DNA geometry. The measured sigma values of the H1' are not accurately predicted from either model. The synthesis of 35 mg of A2GCU2 using primer-dependent polynucleotide phosphorylase is described in detail with extensive discussion in the microfilm edition.  相似文献   

14.
A set of empirical parameters which allows the prediction of the proton NMR chemical shifts at 70 C of non-exchangeable heterobase and anomeric protons in oligoribonucleotides has been constructed. The set is based on the highly flexible nature of oligoribonucleotide single strands and the wide range of conformational states which can be populated at relatively high temperatures (70 C or greater). A pairwise subtractive procedure, using 129 ribonucleotide oligomers (all 16 dimers, all 64 trimers, 37 tetramers, and 12 pentamers), shows that significant contributions to the observed chemical shift of protons in a given nucleoside residue are made by first, second, and third neighbors on the 3' and the 5' sides. The majority of the neighbors cause shielding effects with the exception of some first neighbors on the 5' side of a given residue. The magnitude of the shielding effects is greatest for the purine heterobases and follows the order A greater than G greater than C greater than U, with first neighbors on the 3'side showing more pronounced effects than second neighbors and these in turn showing larger effects than third neighbors. Second neighbors on the 5' side showed consistently greater shieldings than first neighbors, a result attributed to the deshielding effects of the first 5' neighbor phosphate group. The parameter Tables are applied to the prediction of proton chemical shifts in one heptamer, four hexamers, and two pentamers and give average absolute differences between predicted and observed shifts less than 0.030 ppm. The parameter approach represents an excellent method of generating initial assignments of proton chemical shifts for any single strand oligoribonucleotide.  相似文献   

15.
In fish retina, four kinds of photoreceptor cells (or cones) are two-dimensionally arranged in a very regular manner, forming cone mosaics. Mosaic pattern differs between species--two typical patterns are "row mosaic" and "square mosaic", exemplified by the cone mosaics in zebrafish and in medaka, respectively. In this paper, we study a cell-rearrangement model. Cells with pre-fixed fate exchange their locations between nearest neighbors and form regular mosaic patterns spontaneously, if the adhesive force between nearest neighbors and between next-nearest neighbors depend on their cell types in an appropriate manner. The same model can produce both row and square mosaic patterns. However, if the cell-cell interaction is restricted to nearest neighbors only, the square mosaic (medaka pattern) cannot be generated, showing the importance of interaction between next-nearest neighbors. In determining whether row mosaic (zebrafish pattern) or square mosaic (medaka pattern) is to be formed, two shape factors are very important, which control the way adhesions in different geometric relations are combined. We also developed theoretical analysis of the parameter ranges for the row mosaic and the square mosaic to have higher total adhesion than alternative spatial patterns.  相似文献   

16.
The resonances of the non-exchangeable base protons and 1' protons of the octamer d(G-G-C*-C*-G-G-C-C), C* = m5dC, have been assigned by means of NOE difference NMR spectroscopy at 500 MHz. From the measured J1'2' and J1'2" it follows that the octamer at low temperature prefers to adopt a B-DNA double-helical conformation in solution, however, some residual conformational freedom is detected at the 3' terminus. From the chemical shift versus temperature profiles it is concluded that no major conformational change occurs below 60-65 degrees C where the duplex formation for residues (2) to (6) is essentially completed under the conditions used.  相似文献   

17.
S H Chou  P Flynn  B Reid 《Biochemistry》1989,28(6):2435-2443
The nonsymmetrical double-helical hybrid dodecamer d(CGTTATAATGCG).r(CGCAUUAUAACG) was synthesized with solid-phase phosphoramidite methods and studied by high-resolution 2D NMR. The imino protons were assigned by one-dimensional nuclear Overhauser methods. All the base protons and H1', H2', H2", H3', and H4' sugar protons of the DNA strand and the base protons, H1', H2', and most of the H3'-H4' protons of the RNA strand were assigned by 2D NMR techniques. The well-resolved spectra allowed a qualitative analysis of relative proton-proton distances in both strands of the dodecamer. The chemical shifts of the hybrid duplex were compared to those of the pure DNA double helix with the same sequence (Wemmer et al., 1984). The intrastrand and cross-strand NOEs from adenine H2 to H1' resonances of neighboring base pairs exhibited characteristic patterns that were very useful for checking the spectral assignments, and their highly nonsymmetric nature reveals that the conformations of the two strands are quite different. Detailed analysis of the NOESY and COSY spectra, as well as the chemical shift data, indicate that the RNA strand assumes a normal A-type conformation (C3'-endo) whereas the DNA strand is in the general S domain but not exactly in the normal C2'-endo conformation. The overall structure of this RNA-DNA duplex is different from that reported for hybrid duplexes in solution by other groups (Reid et al., 1983a; Gupta et al., 1985) and is closer to the C3'-endo-C2'-endo hybrid found in poly(dA).poly(dT) and poly(rU).poly(dA) in the fiber state (Arnott et al., 1983, 1986).  相似文献   

18.
The resonances of the aromatic protons of trimethoprim [2,4-diamino-5-(3',4',5'-trimethoxybenzyl)pyrimidine] in its complexes with dihydrofolate reductases from Lactobacillus casei and Escherichia coli cannot be directly observed. Their chemical shifts have been determined by transfer of saturation experiments and by difference spectroscopy using [2',6'-2H2]trimethoprim. The complex of 2,4-diamino-5-(3',4'-dimethoxy-5'-bromobenzyl)pyrimidine with the L. casei enzyme has also been examined. At room temperature, the 2',6'-proton resonance of bound trimethoprim is very broad (line width great than 30 Hz); with the E. coli enzyme, the resonance sharpens with increasing temperature so as to be clearly visible by difference spectroscopy at 45 degrees C. This line broadening is attributed to an exchange contribution, arising from the slow rate of "flipping" about the C7-C1' bond of bound trimethoprim. The transfer of saturation measurements were also used to determine the dissociation rate constants of the complexes. In the course of these experiments, a decrease in intensity of the resonance of the 2',6'-proton resonance of free trimethoprim on irradiation at the resonance of the 6 proton of free trimethoprim was observed, which only occurred in the presence of the enzyme. This is interpreted as a nuclear Overhauser effect between two protons of the bound ligand transferred to those of the free ligand by the exchange of the ligand between the two states. The chemical shift changes observed on the binding of trimethoprim to dihydrofolate reductase are interpreted in terms of the ring-current shift contributions from the two aromatic rings of trimethoprim and from that of phenylalanine-30. On the basis of this analysis of the chemical shifts, a model for the structure of the enzyme-trimethoprim complex is proposed. This model is consistent with the (indirect) observation of a nuclear Overhauser effect between the 2',6' and 6 protons of bound trimethoprim.  相似文献   

19.
The 270 MHz 1H NMR spectra of 3'-UMP and 3'-CMP were observed in the presence of a two-fold molar excess of bovine pancreatic RNase A [EC 3.1.27.5] at various pHs. For the C(5), C(6), and C(1') protons of these nucleotides, the pH profiles of chemical shifts induced by binding to RNase A were obtained by plotting the differences between chemical shifts in the presence and the absence of RNase A against pH. Such profiles were bell-shaped for the C(5) and C(6) protons of both 3'-UMP and 3'-CMP. However the profiles of C(1') protons were not bell-shaped but appeared to consist of two bell-shaped curves and reflect the dissociations of at least three ionizable groups. The observations for the C(1') protons suggest that there are at least two forms of complexes different from each other in the interaction reflecting the chemical shift of the C(1') proton. In order to clarify the interacting sites of ribonucleotides affecting the induced shift profile of the C(1') proton, the pH titration curves were observed for 3'-dCMP in the presence of RNase A. The induced shift profile was bell-shaped for the C(1') proton as well as for the C(5) proton of the base. This indicates that the interaction at the O(2')H [or O(2')] sites of ribonucleotides causes the two forms of complexes of 3'-UMP and 3'-CMP with RNase A. The interacting sites and modes were discussed with these and the pH titration curves of His-12, His-119, and Phe-120 of RNase A in the presence of a three-fold molar excess of ribonucleotides.  相似文献   

20.
X L Gao  D J Patel 《Biochemistry》1988,27(5):1744-1751
We report on two-dimensional proton NMR studies of echinomycin complexes with the self-complementary d(A1-C2-G3-T4) and d(T1-C2-G3-A4) duplexes in aqueous solution. The exchangeable and nonexchangeable antibiotic and nucleic acid protons in the 1 echinomycin per tetranucleotide duplex complexes have been assigned from analyses of scalar coupling and distance connectivities in two-dimensional data sets recorded in H2O and D2O solution. An analysis of the intermolecular NOE patterns for both complexes combined with large upfield imino proton and large downfield phosphorus complexation chemical shift changes demonstrates that the two quinoxaline chromophores of echinomycin bisintercalate into the minor groove surrounding the dC-dG step of each tetranucleotide duplex. Further, the quinoxaline rings selectively stack between A1 and C2 bases in the d(ACGT) complex and between T1 and C2 bases in the d(TCGA) complex. The intermolecular NOE patterns and the base and sugar proton chemical shifts for residues C2 and G3 are virtually identical for the d(ACGT) and d(TCGA) complexes. A change in sugar pucker from the C2'-endo range to the C3'-endo range is detected at C2 on formation of the d(ACGT) and d(TCGA) complexes. In addition, the sugar ring protons of C2 exhibit upfield shifts and a large 1 ppm separation between the H2' and H2" protons for both complexes. The L-Ala amide protons undergo large downfield complexation shifts consistent with their participation in intermolecular hydrogen bonds for both tetranucleotide complexes.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号