首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
2.
3.
4.
5.
Analysis by molecular cloning of the human class II genes   总被引:3,自引:0,他引:3  
The HLA class II genes control immune responsiveness to defined antigens; they encode cell surface heterodimers composed of alpha and beta glycopeptides. Recently, cDNA and genomic clones encoding these chains have been isolated, which allows molecular analysis of the class II genes. cDNA clones encoding the alpha chain of the HLA-DR antigen as well as that of another HLA class II antigen have been identified and characterized by nucleotide sequence analysis. These clones have been used as probes to isolate additional class II alpha cDNA clones in cDNA libraries and to identify polymorphisms in genomic DNA. Polymorphic restriction sites have been localized within the HLA-DR alpha gene and used as genetic markers in the analysis of families and of disease (insulin-dependent diabetes mellitus) and control populations. In addition, cDNA clones encoding the DR beta and DC beta chains were used as hybridization probes to identify DNA polymorphism. cDNA clones encoding the DR gamma (Ii) chain have also been identified; unlike the DR alpha and DR beta loci, the DR gamma gene is located on some chromosome other than chromosome 6. The genetic complexity of the human class II alpha and beta loci, as revealed by analysis with cDNA and genomic clones, is greater than that of the murine class II genes. The extent of that complexity will be defined by future work in this area.  相似文献   

6.
7.
8.
9.
10.
11.
12.
13.
Inspired from template models explaining biological locomotory systems and Raibert׳s pioneering legged robots, locomotion can be realized by basic sub-functions: elastic axial leg function, leg swinging and balancing. Combinations of these three can generate different gaits with diverse properties. In this paper we investigate how locomotion sub-functions contribute to stabilize walking at different speeds. Based on this trilogy, we introduce a conceptual model to quantify human locomotion sub-functions in walking. This model can produce stable walking and also predict human locomotion sub-function control during swing phase of walking. Analyzing experimental data based on this modeling shows different control strategies which are employed to increase speed from slow to moderate and moderate to fast gaits.  相似文献   

14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号