首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In Eobiana engelhardti subtropica, early laid eggs reach the diapause stage in early autumn. For long periods before winter, the eggs are exposed to temperatures higher than their theoretical lower threshold for development. In contrast, late-laid eggs cannot reach their diapause stage before winter. Our study showed that E. e. subtropica copes with these difficulties via the thermal response involving embryonic diapause. In this katydid, the almost fully developed embryo undergoes an obligatory diapause. When diapause eggs were maintained at a temperature of 20 degrees C or higher, diapause persisted for a long time. Diapause was effectively terminated by temperatures ranging from 1 to 11 degrees C, and hatching occurred successfully at temperatures from 11 to 15 degrees C. In addition to the chilling temperature, pre-chilling temperature modified diapause intensity and hatching time. Diapause eggs hatched earlier after chilling when the pre-chilling temperature was lower, within a range of 14.5-25 degrees C. Thus, the low-temperature requirement for diapause termination prevents early laid eggs from untimely hatching in autumn, and low temperatures before and during winter decrease diapause intensity and shorten the hatching time in the following spring. When eggs were chilled before diapause, they tolerated chilling and averted diapause. Thus, even if eggs encounter low temperatures before diapause, they can hatch in the following spring.  相似文献   

2.
Adults of the chestnut weevil Curculio sikkimensis emerged over a 3-year period under laboratory and quasi-field conditions due to a prolonged diapause that occurred at the mature larval stage. Variable proportions of the larvae remained in diapause after a single cold (5 degrees C) treatment of 120 days. Extension of the chilling period to as long as 540 days did not increase the percentage of diapause termination, and excessively long chilling actually reduced the percentage. Chilling was not indispensable to the termination of larval diapause. Diapause intensity was very high and variable, and more than 1000 days at 20 degrees C was necessary to reactivate all diapause larvae. When the diapause larvae were exposed to cycles of low (5 degrees C for 120 days) and high (20 degrees C for 240 days) temperatures, the percentage of diapause termination reached 100% after two or three such cycles. Thus, the prolonged diapause of C. sikkimensis has characteristics similar to the common short winter diapause in other insects, but has unique characteristics that ensure polymodal reactivation over several years.  相似文献   

3.
TIME is an ATPase that measures a time interval by exhibiting transitory burst activation in eggs of the silkworm, Bombyx mori L. PIN is a peptide that regulates the time measurement of TIME. To address the mode of action of PIN, interactions between TIME and PIN were investigated. First, TIME was mixed with PIN for various periods (days) at 25 degrees C. The longer TIME was mixed with PIN, the later the transitory burst activation of TIME ATPase activity occurred, while no such delay occurred at 5 degrees C. Second, the capacity of PIN to bind with TIME was measured at the two temperatures by fluorescence polarization. The binding interaction was much tighter (nearly 1000 times) at 25 degrees C than that at 4 degrees C. Because the log EC50 (in nM) at 4 degrees C was about 7, PIN must dissociate from TIME at low temperatures at the physiological concentration of TIME in eggs. Thus, TIME appears to be restructured into a time-measuring conformation by PIN at the high temperatures of summer, whereas the TIME-PIN complex would dissociate at the low temperatures of winter. This dissociation acts as the preliminary cue for the ATPase activity burst of TIME, which in turn causes the completion of diapause development and initiates new developmental programs.  相似文献   

4.
The TIME (Time Interval Measuring Enzyme) ATPase measures time intervals in accordance with diapause development, which indispensably requires cold for resumption of embryonic development in the silkworm (Bombyx mori). The PIN (Peptidyl Inhibitory Needle) peptide regulates the time measurement function of TIME. In the present study we investigated the interaction between TIME and PIN in order to address the mechanism of diapause development. When TIME was isolated from eggs later than 12 days after oviposition, transient bursts of ATPase activity occurred 18h after isolation of TIME, and the younger the eggs and pupal ovaries from which TIME was isolated, the earlier the bursts of ATPase activity appeared. However, no interval-timer activation of ATPase occurred in ovaries earlier than 6 days after pupation. Similar patterns of ATPase activity occurred in test tubes after mixing TIME with PIN. The shorter the time PIN was mixed with TIME, the earlier the ATPase activity appeared. The timer may be built into the protein conformation of TIME, and PIN (which is present in ovaries beginning 6 days after pupation) appears able to alter this timer conformation through pupal stages to laid eggs. We discuss the possible mechanism of diapause development in relation to the timer mechanism of TIME.  相似文献   

5.
Curculio sikkimensis (Coleoptera: Curculionidae) requires one or more years to complete its life cycle, owing to prolonged larval diapause. To compare the effects of temperature cycles and total periods of chilling on the termination of prolonged diapause, larvae were subjected to different chilling (5 degrees C) and warming (20 degrees C) cycles ranging from 30 to 720 days, and all cycles were repeated until the sum of chilling and warming periods reached 720 days. The prolonged diapause of C. sikkimensis was more effectively terminated by repeated cycles of chilling and warming than by prolonging the continuous chilling period. However, extremely short temperature cycles were not highly effective in enhancing diapause termination, even when such cycles were repeated many times. To examine the role of warming periods on diapause termination, diapause larvae were subjected to a sequence of chilling (120 days at 5 degrees C) and warming (240 days at 20 degrees C) with a warming period (0-120 days at 20 degrees C) inserted in the chilling period. Diapause larvae that were not reactivated in the first chilling period required exposure to a certain period of warming before they were able to complete diapause development in the subsequent chilling. Thus, C. sikkimensis appears to spread its reactivation times over several years in response to seasonal temperature cycles.  相似文献   

6.
Embryonic development of the common chameleon, Chamaeleo chamaeleon, was monitored from oviposition to hatching at a field site in southwestern Spain and in the laboratory under five experimental temperature regimes. Embryos were diapausing gastrulae at the time of oviposition; developmental arrest in the field continued as cold torpor during winter. Postarrest development in the field commenced in April, and hatching occurred in August, for a total incubation period of 10.5 mo. In the laboratory, one group of eggs was incubated at a constant warm (26 degrees C) temperature. The remaining treatments simulated field conditions and consisted of initial periods of warm temperature of 0, 27, 46, and 71 d, a subsequent 4-mo period of cold winter (16 degrees C) temperature, and a final period of warm (26 degrees C) temperature. Embryos in the constant warm temperature treatment were in diapause an average of 3 mo, with clutch means ranging from 2 to 4 mo. Hatching among clutches occurred over 2 mo. In contrast, for field and experimental eggs that experienced cold winter conditions, hatching within treatments occurred over 2-14 d; "winter" conditions synchronized development. The length of time between the end of cold conditions and hatching did not differ among treatments; development thus resumed as soon as temperature was suitable regardless of the initial period of warm temperature. Diapause in nature thus insures that embryos remain gastrulae after oviposition despite nest temperatures that may be warm enough to support development.  相似文献   

7.
The significance of winter cold in the termination of diapause was investigated with regards to TIME and PIN in eggs of the silkworm Bombyx mori. TIME (time interval measuring enzyme) is an ATPase that can measure time intervals by exhibiting a transitory burst of activation of the enzyme in accordance with diapause development, which requires cold for resumption of embryonic development in the silkworm. The possible timer function of TIME comprises a built‐in mechanism in the protein structure. TIME is a metallo‐glycoprotein consisting of 156 amino acid residues with a unique sequence in the N‐terminal region to which a sugar chain is attached. PIN (peptidyl inhibitory needle) inhibits the ATPase activity of TIME. PIN is not a simple enzyme inhibitor, but holds the timer by forming a time‐regulatory complex with TIME. The carbohydrate moiety of TIME is essential for the assembly of a high‐affinity PIN‐binding site within the timer motif of the TIME structure. The binding interaction between TIME and PIN was much tighter (nearly 1000 times) at 25°C than that at 4°C, as measured by fluorescence polarization. Because the logEC50 at 4°C was approximately 7 nmol/L, PIN must dissociate from TIME at the physiological concentration of TIME in eggs in the winter cold. Based on the results of our study, we propose that the dissociation of the TIME–PIN complex in the winter cold cues a series of conformational changes of TIME, ultimately reaching the active form of ATPase which in turn causes the completion of diapause development and initiates new developmental programs.  相似文献   

8.
Cellular responses to cold-acclimation have not yet been studied in depth. To explore this field, we focussed on insect diapause development. Although embryonic diapause of Bombyx mori is sustained at 25 degrees C, chilling at 5 degrees C for 2 months causes diapause termination, a transition that is marked when the sorbitol dehydrogenase gene (SDH) is activated. To clarify the relationship between this activation and incubation at 5 degrees C, we isolated a novel cold-inducible gene, Samui. Expression of Samui mRNA and protein was activated after incubation at 5 degrees C for 5-6 days, lasted for another 30 days and then weakened. Exposure to 25 degrees C suppressed both mRNA and protein expression. In nondiapause eggs incubated at 5 degrees C, Samui was also up-regulated, although the expression was weaker. Samui contained nuclear localization-signals, a ssDNA-binding motif and a BAG domain similar to that of SODD/BAG-4. Because Samui could bind to HSP70, it is a member of BAG protein family. It is proposed that Samui serves to transmit the '5 degrees C signal' for SDH expression in diapause eggs, while also protecting against cold-injures in nondiapause eggs, through binding to respective partners. This is the first report that a member of BAG protein family is up-regulated by cold.  相似文献   

9.
The chestnut weevil Curculio sikkimensis undergoes a prolonged larval diapause that is completed by repeated exposure to chilling and warming. We examined the possible reversibility of diapause intensity in response to temperature changes. All larvae were subjected to an initial chilling followed by incubation at 20°C to force pupation of the 1-year-type larvae that require only one winter for diapause completion. We then exposed the larvae remaining in prolonged diapause to a second chilling at 5°C for different lengths of time, preceded or not preceded by incubation at 20°C (moderately high) and/or 25°C (high) and followed by a final post-chilling reincubation at 20°C. Many of the prolonged-diapausing larvae subjected only to a brief second chilling were re-activated upon reincubation. However, short exposure to 25°C before this second chilling dramatically decreased the percentage of larvae completing diapause. When larvae were exposed to 25°C for a short period, then incubated at 20°C and subjected to the brief second chilling, many were re-activated during reincubation. The chilling time required for most of the larvae to complete diapause decreased after pre-chilling incubation at 20°C and increased after incubation at 25°C. These results demonstrate that diapause intensity in C. sikkimensis changes reversibly in response to changes in ambient temperature.  相似文献   

10.
The effect of anoxia on diapause development in the leaf beetle Atrachya menetriesi was investigated to elucidate the role of oxygen in regulation of egg diapause. While anoxia alone had no effect on diapause termination, it decreased diapause intensity before chilling. Such an effect reached a maximum level when anoxia lasted for about 10 days. Anoxia applied during the pre-diapause stage also reduced diapause intensity. On the other hand, anoxia terminated diapause when the diapause intensity had been lowered by sufficient duration of chilling (50 days at 7.5 degrees C). The effect of anoxia was temperature dependent; the larger effect was elicited when anoxia was combined with a higher temperature. A 50-day chilling caused more than 20% of eggs to terminate diapause upon transfer to warm conditions. However, when this chilling period was interrupted on the 20th day by a 5-day exposure to a high temperature of 20, 25 or 30 degrees C, the effect of the former chilling was cancelled partially or completely, suggesting that warming reversed diapause development. This reversing effect of a high temperature, however, was not manifested when the warming was combined with anoxia. The results suggest that anoxia inhibits diapause reversal and facilitates a certain process of diapause development. The sequence of exposure to anoxia and chilling is not important.  相似文献   

11.
The effect of low temperature on completion of winter diapause was investigated in the onion maggot, Delia antiqua (Diptera: Anthomyiidae). Diapause was completed under constant diapause-inducing conditions of 15 degrees C and 12L-12D, without any exposure to lower temperature. The pupal period for 50% adult emergence was 117 days. None of the cold treatments at 5.6 degrees C examined in the present study advanced adult emergence; on the contrary, they delayed it. Detailed analyses of the results revealed that diapause development in D. antiqua comprises two phases which differ in sensitivity to low temperature, with the phase shift occurring at around day 60 at 15 degrees C and 12L-12D. In the first phase of diapause development, low temperature (5.6 degrees C) had no effect on diapause development. In the latter phase, by contrast, diapause development was retarded in proportion to the duration of cold treatment.  相似文献   

12.
Embryonic diapause is commonly terminated by exposure to low temperature for a certain duration. Previous studies using the silkworm, Bombyx mori, showed that extracellular signal-regulated kinase (ERK), a member of the mitogen-activated protein kinase family, was activated by cold exposure and regulated diapause termination. The involvement of ERK in regulation of diapause termination was investigated in the false melon beetle, Atrachya menetriesi. Embryonic diapause of this beetle is terminated both by cold exposure and by mercury. Phospho-ERK levels remained high during the pre-diapause period but decreased after the eggs entered diapause. Exposure to 7.5 degrees C, which was effective for diapause termination, increased phospho-ERK levels, and these levels were maintained under 7.5 degrees C at least for 100 d. Incubation at 25 degrees C after the eggs were kept at 7.5 degrees C for 20 d, which intensified diapause, decreased the phospho-ERK level. An insufficient cold treatment, i.e., incubation at 0 degrees C for diapause termination did not activate ERK. However, incubation at 0 degrees C after cold treatment at 7.5 degrees C, which is effective for diapause termination, induced high phospho-ERK levels. Moreover, mercury treatment also increased phospho-ERK. Therefore, changes in the phospho-ERK level correlated well with diapause intensity. The results suggest that ERK plays a key role in the regulation of embryonic diapause.  相似文献   

13.
Characteristics of summer diapause in the onion maggot, Delia antiqua, were clarified by laboratory experiments. Temperature was the primary factor for the induction of summer diapause in this species. The critical temperature for diapause induction was approximately 24 degrees C, regardless of the photoperiod. At 23 degrees C, the development of the diapausing pupae was arrested the day after pupariation, when about 7% of the total pupal development had occurred in terms of total effective temperature (degree-days). The most sensitive period for temperature with regard to diapause induction was estimated to be between pupariation and "pupation" (i.e., evagination of the head in cyclorrhaphous flies). Completion of diapause occurred at a wide range of temperatures (4-25 degrees C): The optimal temperature was approximately 16 degrees C, at which temperature only five days were required for diapause completion. The characteristics of summer diapause in D. antiqua are discussed in comparison with those of summer dormancy in a congener D. radicum and those of winter diapause in D. antiqua.  相似文献   

14.
Abstract.  An in vitro culture method is described in which embryonic development in Bombyx mori is traced at various temperatures and treatments. The results show that the induction, intensification and termination of diapause are distinct processes. Prediapause embryos, explanted from 40-h-old diapause-destined eggs and cultured in Grace's medium, continue to develop to the appendage-formation stage without arrest, which indicates that the isolated embryos have not entered diapause, whereas the development of embryos from diapausing eggs (15 days after being laid) is significantly slower. The rate of development of embryos dissected from diapause eggs increases during chilling (5 °C) and incubation (at 25 °C) gradually during chilling and dramatically at 25 °C. The in vitro experiments also reveal that sorbitol directly inhibits the development of embryos explanted from diapausing eggs but has no affect on the development of embryos from prediapause eggs. Neither alanine nor diapause hormone prevent isolated embryos from developing.  相似文献   

15.
1. The effect of temperature on embryonic development was compared in four populations, two bisexual and two unisexual, of Ephoron shigae , including one each near the northern and southern periphery of the species range in Japan.
2. Eggs from every population were chilled at 4, 8 or 12 °C for diapause development after 50 days at 20 °C for pre-diapause development (experiment I). Some eggs hatched during chilling at 8 °C or 12 °C, whereas no eggs hatched at 4 °C. The rate of hatching in a given condition of chilling was higher for the eggs from warmer winter environments.
3. Chilling at 4 or 8 °C effectively facilitated diapause development. Chilling at 12 °C was, in general, not so effective, but relatively effective for the eggs from warmer winter environments.
4. Eggs were incubated at 8, 12, 15 or 20 °C after chilling at 4 °C to examine the effect of temperature on post-diapause development (experiment II). The eggs incubated at higher temperature after chilling hatched quicker and more synchronously and had higher hatching success.
5. The relationship between temperature and the days required for hatching after chilling was well described by the power function. There was no significant difference in the slope of the regression lines (i.e. temperature dependency) among local populations. However, a longer time was required for hatching at a given temperature for the population from the colder winter environment.
6. There was no detectable difference in the observed intraspecific variations between unisexual and bisexual populations.  相似文献   

16.
Abstract. Eight strains of the spider mite Tetranychus urticae, originating from different localities in western and central Europe, with latitudes ranging from 40.5 to 60oN, displayed marked differences in the period of chilling at 4oC required for diapause termination under a diapause-maintaining short-day photoperiodic regime at 19oC, to which the mites were transferred after the cold period. The higher the latitude from which the strains originated the longer was the period of chilling required for diapause termination, suggesting the presence of a gradient in diapause intensity, diapause being deeper the more northern the origin of the strains. Two strains originating from higher altitudes appeared to have a much deeper diapause than expected from their latitudinal origin. In addition, these two mountain strains showed mutual differences in diapause intensity, notwithstanding the fact that they originated from similar latitudes and altitudes; local climatic conditions probably act as strong selective forces with regard to diapause depth. All strains appeared to be sensitive to photoperiod during the period of diapause development. Diapause was quickly completed by a long-day photoperiod (LD 17:7 h), but was maintained by a short-day photoperiod (LD 10:14h). However, even under the latter regime sensitivity to photoperiod gradually diminished and eventually disappeared, thus leading to ‘spontaneous’ termination of diapause. The length of the period of diapause development, as measured by the sensitivity to photoperiod of diapausing mites, varied between strains; it was shorter in the southern strains and longer in the northern strains. The results indicate great variation in diapause intensity between strains, which is probably genetically determined and may have adaptive significance for this widespread species. When young females which had just entered diapause were kept for ever longer periods of time under the diapause inducing short-day regime at which they had been reared, before being transferred to the cold room, the duration of the period of chilling required for diapause termination was found to decrease proportionally in all three strains tested. These results suggest that intensification of diapause does not occur in T. urticae; diapause intensity seems to be highest at the beginning of diapause and to diminish gradually during diapause development.  相似文献   

17.
The effects of the duration and degree of chilling, and the temperature of incubation, on hatching of winter eggs of Panonychus ulmi (Koch) were investigated. For chilling, 0°C and 5°C were more effective than — 5° and 9°, and the limits for the reaction were close to — 10° and 15°. As the chilling period was increased from 60 to 200 days, the percentage hatch on incubation at 21° increased, and the mean incubation time and its variance decreased. Before the maximum effect of chilling was achieved, percentage hatch on incubation at 9° and 15° was higher than at 21°; 27° was lethal to most winter eggs though not to summer eggs. After chilling, the later stages of diapause development could occur at temperatures from 0° to 21°) i.e. above and below the threshold temperature for morphogenesis, 6–7° in both winter and summer eggs. Diapause development cannot, therefore, be a unitary process. The significance of the results is discussed in relation to forecasting the time of hatch in the field, and to the phenological aspects of hatching in the spring.  相似文献   

18.
Abstract. Diapause adults of Plautia stali Scott maintained at 20°C under short day conditions (LD 12:12 h) were exposed to four temperatures of 5–20°C to examine the effect on diapause development which was assessed in terms of oviposition. Diapause adults kept at 20°C under short day conditions changed their body colour gradually from brown to green and started egg laying after a prolonged preoviposition period. Those transferred to either 10 or 15°C also showed colour change but did not lay eggs. Bugs exposed to 5°C underwent neither body colour change nor oviposition and died more rapidly than those kept at higher temperatures. When 30-day-old diapause adults were chilled at 5, 10 or 15°C for 30 or 60 days and returned to 20°C and long day conditions (LD 16:8 h), the preoviposition period varied primarily depending on the chilling, but not on the temperature. On the other hand, when 60day-old diapause adults chilled for 30 days were observed at 20°C and long day conditions, their preoviposition period tended to be longer as the chilling temperature was lower In this case, a temperature of 10°C appeared to intensify diapause. Therefore, the effect of chilling on diapause development varied depending on the age at which insects were chilled. When chilled bugs were transferred to short day conditions at 20°C, most females failed to lay any eggs and some turned green, then after a while, some green bugs changed to brown again. These results indicate that bugs remained sensitive to short day conditions even after a 60-day chilling at 10 or 15°C.  相似文献   

19.
The cabbage butterfly, Pieris melete hibernates and aestivates as a diapausing pupa. We present evidence that the optimum of low temperature and optimal chilling periods for both summer and winter diapause development are based on a similar mechanism. Summer or winter diapausing pupae were exposed to different low temperatures of 1, 5, 10 or 15°C for different chilling periods (ranging from 30 to 120 d) or chilling treatments started at different stages of diapause, and were then transferred to 20°C, LD12.5∶11.5 to terminate diapause. Chilling temperature and duration had a significant effect on the development of aestivating and hibernating pupae. The durations of diapause for both aestivating and hibernating pupae were significantly shorter when they were exposed to low temperatures of 1, 5 or 10°C for 50 or 60 days, suggesting that the optimum chilling temperatures for diapause development were between 1 and 10°C and the required optimal chilling period was about 50–60 days. Eighty days of chilling was efficient for the completion of both summer and winter diapause. When chilling periods were ≥90 days, the durations of summer and winter diapause were significantly lengthened; however, the adult emergence was more synchronous. The adaptive significance of a similar mechanism on summer and winter diapause development is discussed.  相似文献   

20.
Two distinctly different patterns of gut enzyme activity were noted in relation to diapause in pharate first instar larvae of the gypsy moth, Lymantria dispar. Trypsin, chymotrypsin, elastase, aminopeptidase and esterase activities were low at the initiation of diapause and through the period of chilling needed to terminate diapause. At the completion of a 150 day chilling period, activity of each of these enzymes quickly increased when the pharate larvae were transferred to 25°C. By contrast, activity of alkaline phosphatase (ALP) increased rapidly at the onset of diapause, remained elevated throughout diapause, increased again during postdiapause, and then dropped at the time of hatching. In addition, zymogram patterns of ALP activity differed qualitatively in relation to diapause: several bands were detectable during the pre- and postdiapause periods, but only one band, a band of high mobility, was visible during diapause. The ALP isozyme present in diapausing pharate larvae had a pH optimum of 10.6. Diapause in the gypsy moth can be averted by application of an imidazole derivative, KK-42, and pharate larvae treated with KK-42 showed elevated protease and esterase activity, low ALP activity, and expressed ALP isozymes with low mobility. Thus the overall patterns of gut enzyme activity and the ALP zymogram in KK-42 treated individuals were similar to those observed in untreated individuals at the termination of diapause. Our results suggest a unique pattern of enzyme activity in the gut that is regulated by the diapause program. Arch. Insect Biochem. Physiol. 37:197–205, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号