首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We studied the effect of insulin and lavendustin-A (a tyrosine kinase inhibitor) on the short-circuit current (ISC) of primary cultures of fetal distal rat lung epithelium (FDLE). Insulin (2 microM) on the basolateral side of the monolayer increased ISC from 5.76 +/- 0.83 microA/cm2 (SEM, n = 7) to 7.23 +/- 1.00 microA/cm2 (p less than 0.01) under control conditions, and from 1.00 +/- 0.31 microA/cm1 to 1.53 +/- 0.34 microA/cm2 (p less than 0.05, n = 4) when amiloride (10 microM) was present on the apical side of the monolayer. Thus insulin increased both the amiloride-sensitive and insensitive ISC with the insulin-induced increase in ISC in the absence of amiloride (1.47 +/- 0.22 microA/cm2, n = 7) being significantly larger than that in the presence of 10 microM amiloride (0.53 +/- 0.14 microA/cm2, n = 4; p less than 0.025). Insulin's effect reached steady state in 1 hr. Lavendustin-A (10 microM), a tyrosine kinase inhibitor, applied to the apical side of the monolayer attenuated but did not completely block insulin's ability to increase in ISC; i.e., insulin increased ISC in lavendustin-A treated monolayers (0.63 +/- 0.09 microA/cm2, n = 5; p less than 0.0025) but the increase was significantly smaller than that without the pretreatment of lavendustin-A (p less than 0.05). In the presence of amiloride (10 microM) and lavendustin-A (10 microM) insulin was no longer able to increase ISC (change in ISC = 0.04 +/- 0.03 microA/cm2, n = 6), suggesting that lavendustin-A had blocked the insulin's effect on the amiloride-insensitive ISC. Lavendustin-A (10 microM) had no significant effect on the basal ISC in control and amiloride treated monolayers. Our studies demonstrate that insulin increases amiloride-insensitive ISC in FDLE via lavendustin-A sensitive tyrosine kinase and that insulin's action on the amiloride-sensitive ISC of FDLE is mediated through a lavendustin-A insensitive (and presumably tyrosine kinase-independent) pathway.  相似文献   

2.
The direct electrocatalytic oxidation of glucose in alkaline medium at nanoscale nickel hydroxide modified carbon ionic liquid electrode (CILE) has been investigated. Enzyme free electro-oxidation of glucose have greatly been enhanced at nanoscale Ni(OH)(2) as a result of electrocatalytic effect of Ni(+2)/Ni(+3) redox couple. The sensitivity to glucose was evaluated as 202 microA mM(-1)cm(-2). From 50 microM to 23 mM of glucose can be selectively measured using platelet-like Ni(OH)(2) nanoscale modified CILE with a detection limit of 6 microM (S/N=3). The nanoscale nickel hydroxide modified electrode is relatively insensitive to electroactive interfering species such as ascorbic acid (AA), and uric acid (UA) which are commonly found in blood samples. Long-term stability, high sensitivity and selectivity as well as good reproducibility and high resistivity towards electrode fouling resulted in an ideal inexpensive amperometric glucose biosensor applicable for complex matrices.  相似文献   

3.
A NADH and glucose biosensor based on thionine cross-linked multiwalled carbon nanotubes (MWNTs) and Au nanoparticles (Au NPs) multilayer functionalized indium-doped tin oxide (ITO) electrode were presented in this paper. The effect of light irradiation on the enhancement of bioelectrocatalytic processes of the biocatalytic systems by the photovoltaic effect was investigated. This bioelectrode exhibited excellent catalytic activity of the oxidation towards dihydronicotinamide adenine dinucleotide (NADH). Most interesting, the performance of this NADH sensor could be tuned by the visible light. When the biosensor was performed in the dark, the anodic current increased linearly with NADH concentration over the range from 0.5 to 237 microM with detection limit 0.1 microM and sensitivity 17 nA microM(-1). The sensitivity became 115 nA microM(-1) with detection limit 0.05 microM with the light irradiation. Compared with the reaction in dark, the sensitivity increased around 7 folds while the detection limit decreased 2 folds. The glucose biosensor also exhibited the same behavior. The linear range was from 10 microM to 2.56 mM with the sensitivity of 7.8 microAmM(-1) and detection limit 5.0 microM in the dark. After the light irradiation, the linear range was from 1 microM to 3.25 mM with the sensitivity of 18.5 microA mM(-1) and detection limit 0.7 microM. It indicated a potential to provide an operational access to develop new kinds of photocontrolled dehydrogenase enzyme-based bioelectronics.  相似文献   

4.
An amperometric-mediated glucose sensor has been developed by employing a silica sono-gel carbon composite electrode (SCC). The chosen mediators, ferrocene (Fc) and 1,2-diferrocenylethane (1), have been immobilized in the sono-gel composite matrix. The complex 1 has been employed for the first time as an electron transfer mediator for signal transduction from the active centre of the enzyme to the electrode conductive surface. After the optimisation of the construction procedure the best operative conditions for the analytical performance of the biosensor have been investigated in terms of pH, temperature and applied potential. Cyclic voltammetric and amperometric measurements have been used to study the response of both the glucose sensors, which exhibit a fast response and good reproducibility. The sensitivity to glucose is quite similar (6.7+/-0.1 microA/mM versus 5.3+/-0.1 microA/mM) when either Fc or 1 are used as mediators as are the detection limit ca. 1.0 mM (S/N=3) and the range of linear response (up to 13.0 mM). However, the dynamic range for glucose determination results wider when using 1 (up to 25.0 mM). The apparent Michaelis-Menten constants, calculated from the reciprocal plot under steady state conditions, are 27.7 and 31.6 mM for SCC-Fc/GOx and SCC-1/GOx electrodes, respectively, in agreement with a slightly higher electrocatalytic efficiency for the mediator 1.  相似文献   

5.
A glutamate biosensor based on the electrocatalytic oxidation of reduced nicotinamide adenine dinucleotide (NADH), which was generated by the enzymatic reaction, was developed via employing a single-walled carbon nanotubes/thionine (Th-SWNTs) nanocomposite as a mediator and an enzyme immobilization matrix. The biosensor, which was fabricated by immobilizing glutamate dehydrogenase (GlDH) on the surface of Th-SWNTs, exhibited a rapid response (ca. 5s), a low detection limit (0.1 microM), a wide and useful linear range (0.5-400 microM), high sensitivity (137.3+/-15.7) microA mM(-1)cm(-2), higher biological affinity, as well as good stability and repeatability. In addition, the common interfering species, such as ascorbic acid, uric acid, and 4-acetamidophenol, did not cause any interference due to the use of a low operating potential (190 mV vs. NHE). The biosensor can be used to quantify the concentration of glutamate in the physiological level. The Th-SWNTs system represents a simple and effective approach to the integration of dehydrogenase and electrodes, which can provide analytical access to a large group of enzymes for wide range of bioelectrochemical applications including biosensors and biofuel cells.  相似文献   

6.
We report on an amperometric biosensor that is based on a nanocomposite of carbon nanotubes (CNT), a nano-thin plasma-polymerized film (PPF), and glucose oxidase (GOx) as an enzyme model. A mixture of the GOx and a CNT film is sandwiched with 10-nm-thick acetonitrile PPFs. Under PPF layer was deposited onto a sputtered gold electrode. To facilitate the electrochemical communication between the CNT layer and GOx, CNT was treated with nitrogen or oxygen plasma. The resulting device showed that the oxidizing current response due to enzymatic reaction was 4-16-fold larger than that with only CNT or PPF, showing that the PPF and/or plasma process is an enzyme-friendly platform for designing electrochemical communication from the reaction center of GOx to the electrode via CNTs. The optimized glucose biosensor showed high sensitivity (sensitivity of 42 microA mM(-1)cm(-2), correlation coefficient of 0.992, linear response range of 0.025-2.2 mM, and a detection limit of 6 microM at signal/noise ratio of 3, +0.8 V versus Ag/AgCl), high selectivity (almost no interference by 0.5 mM ascorbic acid) for glucose quantification, and rapid response (<4 s to reach 95% of maximum response). Additionally, the devices showed a small and stable background current (0.35+/-0.013 microA) compared with the glucose response (ca. 10 microA at 10mM glucose) and suitable reproducibility from sample-to-sample (<3%, n=4).  相似文献   

7.
A new sucrose electrode is described for the determination of sucrose without interference from glucose or fructose. The sucrose electrode is based on the tri-enzymatic system of sucrose phosphorylase, phosphoglucomutase and glucose-6-phosphate 1-dehydrogenase, where NAD(P)H is produced from the last enzymatic reaction and recycled into NAD(P)+ through its electrocatalytic oxidation by Os(4,4'-dimethyl-2,2-bypyridine)2(1,10-phenanthroline-5,6-dione). The electrodes were optimised with respect to the various construction parameters and carrier composition in a FIA system and their response as a function of the pH and flow-rate was examined. The electrodes were suitable for operation in a FIA system and the analysis of real samples showed good agreement with the reference method. Typical optimised electrodes showed detection limits of 1 mM sucrose, response time of 5 min, sensitivity 1.010 nA mM(-1), and current density of 8.38 microA cm(-2), using 200 mM PIPES pH 7.25 with 10 mM phosphate and 5 mM MgCl2 as carrier.  相似文献   

8.
This article reports the determination of uric acid (UA) in the presence of ascorbic acid (AA) using a self-assembled submonolayer of heteroaromatic dithiol, 2,5-dimercapto-1,3,4-thiadiazole (DMcT), on gold (Au) electrode. Submonolayer to multilayers of DMcT can be prepared on Au electrode by varying the soaking time of Au electrode in 1mM aqueous solution of DMcT. The formation of submonolayer, monolayer, and multilayers of DMcT on Au electrode was confirmed from its reductive desorption measurements and electrochemical blocking behavior toward ferricyanide. Interestingly, submonolayer of DMcT separates the voltammetric signal of UA from AA by 210 mV, whereas monolayer and multilayers of DMcT fail to separate them. The voltammetric signals of AA and UA are highly stable and reproducible at submonolayer of DMcT. Fast electron transfer, weak hydrogen bonding interactions with AA and UA, and prevention of fouling effect caused by oxidized product of AA can be achieved at submonolayer of DMcT, and thus it successfully separates the voltammetric signals of AA and UA. The practical application of the current system is demonstrated by measuring the concentration of UA in human urine samples without any treatment.  相似文献   

9.
We isolated and cultured fetal distal lung epithelial (FDLE) cells from 17- to 19-day rat fetuses and assayed for anion secretion in Ussing chambers. With symmetrical Ringer solutions, basal short-circuit currents (I(sc)) and transepithelial resistances were 7.9 +/- 0.5 microA/cm(2) and 1,018 +/- 73 Omega.cm(2), respectively (means +/- SE; n = 12). Apical amiloride (10 microM) inhibited basal I(sc) by approximately 50%. Subsequent addition of forskolin (10 microM) increased I(sc) from 3.9 +/- 0.63 microA/cm(2) to 7.51 +/- 0.2 microA/cm(2) (n = 12). Basolateral bumetanide (100 microM) decreased forskolin-stimulated I(sc) from 7.51 +/- 0.2 microA/cm(2) to 5.62 +/- 0.53, whereas basolateral 4,4'-dinitrostilbene-2,2'-disulfonate (5 mM), an inhibitor of HCO secretion, blocked the remaining I(sc). Forskolin addition evoked currents of similar fractional magnitudes in symmetrical Cl(-)- or HCO(-)(3)-free solutions; however, no response was seen using HCO(-)(3)- and Cl(-)-free solutions. The forskolin-stimulated I(sc) was inhibited by glibenclamide but not apical DIDS. Glibenclamide also blocked forskolin-induced I(sc) across monolayers having nystatin-permeablized basolateral membranes. Immunolocalization studies were consistent with the expression of cystic fibrosis transmembrane conductance regulator (CFTR) protein in FDLE cells. In aggregate, these findings indicate the presence of cAMP-activated Cl(-) and HCO(-)(3) secretion across rat FDLE cells mediated via CFTR.  相似文献   

10.
1. Serotonin, 100 microM, induces a peak increase in short circuit current of about 150 microA/cm2 and in cord conductance of about 7 mS/cm2 and a more prolonged increase of 30 microA/cm2 and 1.4 mS/cm2 which lasts more than 30 min in hen colon. 2. The peak increase in short circuit current and cord conductance is due to a concomitant Cl- secretion. 3. The second messenger, which mediates Cl- secretion, increases in short circuit current and cord conductance, is cyclic AMP as theophylline, 0.5 mM, increases the response in short circuit current to 1 microM serotonin from 38 +/- 5 to 78 +/- 8 microA/cm2 and in g from 1.1 +/- 0.4 to 2.0 +/- 0.3 mS/cm2. 4. Theophylline, 0.5 mM, also sensitizes the hen colon to cyclic AMP yielding an EC50 of 0.24 +/- 0.03 mM in the presence of theophylline compared with an EC50 of 2.3 +/- 0.2 mM in the absence of theophylline. 5. Manipulations of other putative second messenger systems, such as the prostaglandins/leucotrienes, the phosphoinositides and external Ca2+ or calmodulin-sensitive enzymes, did not influence the serotonin response in short circuit current and cord conductance, thus ruling out their importance as intracellular mediators.  相似文献   

11.
Electrochemistry of microperoxidase-11 (MPx-11) anchored on the mixed self-assembled monolayer (SAM) of 2-(2-mercaptoethylpyrazine) (PET) and 4,4'-dithiodibutyric acid (DTB) on gold (Au) electrode and the biosensing of uric acid (UA) is described. MPx-11 has been covalently anchored on the mixed SAM of PET and DTB on Au electrode. MPx-11 on the mixed self-assembly exhibits reversible redox response characteristic of a surface confined species. The heterocyclic ring of PET promotes the electron transfer between the electrode and the redox protein. The apparent standard rate constant kapps obtained for the redox reaction of MPx-11 on the mixed monolayer is approximately 2.15 times higher than that on the single monolayer of DTB modified electrode. MPx-11 efficiently mediates the electrocatalytic reduction of H2O2. MPx-11 electrode is highly sensitive to H2O2 and it shows linear response for a wide concentration range. The electrocatalytic activity of the MPx-11 electrode is combined with the enzymatic activity of uricase (UOx) to fabricate uric acid biosensor. The bienzyme assembly is highly sensitive towards UA and it could detect UA as low as 2 microM at the potential of -0.1 V. The biosensor shows linear response with a sensitivity of 3.4+/-0.08 nA cm(-2) microM(-1). Ascorbate (AA) and paracetamol (PA) do not significantly interfere in the amperometric sensing of UA.  相似文献   

12.
Glucose oxidase was embedded in organic films through a layer-by-layer approach, where the enzyme demonstrated significantly enhanced electron-transfer reactivity and finely tuned enzymatic activity. An unmediated, reagentless glucose biosensor was accordingly prepared with two polyethylenimine/glucose oxidase bilayers-modified pyrolytic graphite electrode. A calibration linear range of glucose was 0.5-8.9 mM with a detection limit of 50 microM and sensitivity of 0.76 microA mM(-1).  相似文献   

13.
We examined the effects of reactive oxygen-nitrogen intermediates on chloride (Cl-) currents across murine tracheal epithelial (MTE) cells isolated from CD-1 mice. MTE cells were cultured on permeable supports until they formed water-tight monolayers with transepithelial resistances (Rt)>500 Omega/cm2 and then were mounted in Ussing chambers. Baseline short-circuit current (ISC) values, prior to and following the addition of 10 microM amiloride (an inhibitor of sodium-transport pathways) into the apical side, were 65 +/- 1.9 microA/cm2 and 7.6 +/- 0.51 microA/cm2, respectively (X +/- 1 SE, n=32). The addition of 3-morpholinosydnominine (SIN-1, 1 mM), which generates both superoxide and nitric oxide anions, to amiloride-treated monolayers resulted in a transient increase of ISC to a peak value of 35 +/- 1.3 microA/cm2 (X +/- SE, n=14) within the next 30-60 min. After this, the ISC decreased gradually and returned to its pre-SIN-1 value. These changes were blocked by glibenclamide (200 microM), an inhibitor of cystic fibrosis transmembrane regulator, or reduced by glutathione (GSH, 5 mM), a scavenger of peroxynitrite. Forskolin (10 microM) augmented the SIN-1 effect when added at the peak of the SIN-1 response but not when ISC had returned to its baseline value. Perfusion of MTE cells with SIN-1 also increased whole cell Cl- currents 4-fold and the open probability of CFTR-type single-channel currents from 0.041 to 0.92 in a transient fashion. Decomposed SIN-1, but not pure SIN-1c (the stable decomposition product of SIN-1), also increased ISC with an EC50 of 5 microM. Electrospray mass spectroscopy revealed several unique and uncharacterized compounds formed during the decomposition of SIN-1 as well as the reaction of SIN-1c with peroxynitrite. Formation of these compounds was inhibited by GSH. We conclude that compounds formed by the reaction of peroxynitrite with by-products of SIN-1, rather than reactive oxygen-nitrogen species per se, were responsible for the modulation of Cl- secretion across primary cultures of MTE cells.  相似文献   

14.
We report here a novel detection scheme for simultaneous detection of NADH and H(2)O(2) based on a bifunctional poly(thionine)-modified electrode. Electropolymerization of thionine on a "preanodized" screen-printed carbon electrode effectively lowers the oxidation potential of NADH to 0.15 V (vs. Ag/AgCl). Since poly(thionine) is also a well known electrochemical mediator for H(2)O(2) reduction, we further developed a poly(thionine)-modified ring disk electrode for simultaneous measurement of nicotinamide adenine dinucleotide (NADH) and hydrogen peroxide (H(2)O(2)) by flow injection analysis. By applying the optimized detection potentials of 0.2V and -0.2V at disk and ring electrodes, respectively, this system allows the simultaneous measurement of both analytes with good sensitivity (0.13 μA/mM for H(2)O(2) and 0.34 μA/mM for NADH) and limit of detection (1.74 μM and 26.0 μM for NADH and H(2)O(2)). This opens the possibility of a whole series of biosensor applications.  相似文献   

15.
The purpose of this study was to characterize the renal uptake properties of the cytidine analog and antiretroviral agent 3TC. The uptake of radiolabelled 3TC was measured at 37 degrees C in a continuous porcine renal epithelial cell line (i.e., LLC-PK1 cells) grown as a monolayer on an impermeable support. 3TC (5 microM) uptake (37 degrees C) by the monolayer cells was saturable (Km = 1.2 +/- 0.2 mM) but not significantly altered by various dideoxynucleoside analog drugs, nucleosides, and nucleoside transport inhibitors, suggesting that a nucleoside transporter is not involved in 3TC uptake. A number of endogenous organic cation probes and inhibitors significantly reduced 3TC uptake by the monolayer cells. Quinine, trimethoprim (TMP), and tetraethylammonium (TEA) inhibited 3TC uptake in a dose dependent manner with IC50 values of 0.6 mM, 0.63 mM, and 1.9 mM, respectively. In turn, the uptake of the typical organic cation substrate TEA was inhibited by high concentrations of 3TC. An outwardly directed proton gradient significantly increased the uptake of 3TC by the monolayer cells, suggesting the involvement of a proton exchange process. Conversely, in the presence of monensin, a Na+/H+ ionophore, the uptake of 3TC was significantly reduced. These results suggest that the uptake of 3TC by a cultured renal epithelium may be mediated by an organic cation-proton exchanger. The observed clinical interaction between 3TC and trimethoprim may be explained by competition for a common renal organic cation tubular transporter.  相似文献   

16.
Screen-printed carbon electrodes (SPCEs) have been investigated as possible sensors to identify gamma-irradiation induced oxidative damage in double stranded (ds) DNA. Studies were undertaken to explore the possibility of using both cyclic voltammetry and differential pulse voltammetry to identify changes due to oxidative damage. Initially, guanine, adenine and 8-oxoguanosine were examined and it was found possible to differentiate them from their voltammetric responses. The voltammetric response of 8-oxoguanosine was found to be linear over the concentration range 1-400 microM, with a slope of 0.0296 microA microM(-1) (R2 value of 0.9984), in the presence of 2mM concentrations of guanine and adenine. Investigations were made into harnessing these findings to identify oxidative damage in gamma-irradiated dsDNA. The presence of oxidative damage in these samples was readily identifiable, and the magnitude of the voltammetric response was found to be dose dependant (R2=0.9919). A simple sample preparation step involving only the dissolution of double stranded DNA sample in the optimised electrolyte (0.1M acetate buffer pH 4.5) was required. This report appears to be first describing the use of a SPCE to detect DNA damage which can be related to the dose of gamma-radiation used.  相似文献   

17.
A novel thin film ethanol sensor using sputtered Ni/Pt/Ti on an Al2O3 substrate as the working electrode in an alkaline solution was developed. Atomic force microscopy (AFM) and scanning electron microscopy (SEM) were used to characterize the nanostructure of nickel films. Sputtering deposition conditions for maximum catalytic efficiency, electrode selectivity, and reproducibility were discussed. The results showed that ethanol oxidation was more efficient on the sputtered Ni/Pt/Ti on an Al2O3 substrate electrode than that on the conventional nickel electrode. The optimal operating conditions to generate the sputtered Ni/Pt/Ti on the Al2O3 substrate electrode were: 45 min of Ni sputtering deposition time, and 50 W of Ni sputtering power. The results also indicated that the response time of the prepared ethanol sensor is 27 s and the best sensitivity is 3.08 microA microM(-1) cm(-2).  相似文献   

18.
A sensitive glutamate biosensor is prepared based on glutamate dehydrogenase/vertically aligned carbon nanotubes (GLDH, VACNTs). Vertically aligned carbon nanotubes were grown on a silicon substrate by direct current plasma enhanced chemical vapor deposition (DC-PECVD) method. The electrochemical behavior of the synthesized VACNTs was investigated by cyclic voltammetry and electrochemical impedance spectroscopic methods. Glutamate dehydrogenase covalently attached on tip of VACNTs. The electrochemical performance of the electrode for detection of glutamate was investigated by cyclic and differential pulse voltammetry. Differential pulse voltammetric determinations of glutamate are performed in mediator-less condition and also, in the presence of 1 and 5 μM thionine as electron mediator. The linear calibration curve of the concentration of glutamate versus peak current is investigated in a wide range of 0.1-500 μM. The mediator-less biosensor has a low detection limit of 57 nM and two linear ranges of 0.1-20 μM with a sensitivity of 0.976 mA mM(-1) cm(-2) and 20-300 μM with a sensitivity of 0.182 mA mM(-1) cm(-2). In the presence of 1 μM thionine as an electron mediator, the prepared biosensor shows a low detection limit of 68 nM and two linear ranges of 0.1-20 with a calibration sensitivity of 1.17 mA mM(-1) cm(-2) and 20-500 μM with a sensitivity of 0.153 mA mM(-1) cm(-2). The effects of the other biological compounds on the voltammetric behavior of the prepared biosensor and its response stability are investigated. The results are demonstrated that the GLDH/VACNTs electrode even without electron mediator is a suitable basic electrode for detection of glutamate.  相似文献   

19.
The use of poly(acrylic acid) (PAA)-multiwalled carbon-nanotubes (MWNTs) composite-coated glassy-carbon disk electrode (GCE) (PAA-MWNTs/GCE) for the simultaneous determination of physiological level dopamine (DA) and uric acid (UA) in the presence of an excess of ascorbic acid (AA) in a pH 7.4 phosphate-buffered solution was proposed. PAA-MWNTs composite was prepared by mixing of MWNTs powder into 1 mg/ml PAA aqueous solution under sonication. GCE surface was modified with PAA-MWNTs film by casting. AA demonstrates no voltammetric peak at PAA-MWNTs/GCE. The PAA-MWNTs composite is of a high surface area and of affinity for DA and UA adsorption. DA exhibits greatly improved electron-transfer rate and is electro-catalyzed at PAA-MWNTs/GCE. Moreover, the electro-catalytic oxidation of UA at PAA-MWNTs/GCE is observed, which makes it possible to detect lower level UA. Therefore, the enhanced electrocatalytic currents for DA and UA were observed. The anodic peak currents at approximately 0.18 V and 0.35 V increase with the increasing concentrations of DA and UA, respectively, which correspond to the voltammetric peaks of DA and UA, respectively. The linear ranges are 40 nM to 3 microM DA and 0.3 microM to 10 microM UA in the presence of 0.3 mM AA. The lowest detection limits (S/N=3) were 20 nM DA and 110 nM UA.  相似文献   

20.
Ion transport and the electric profile of distal airways of sheep lungs were studied in a miniature polypropylene chamber with a 1-mm aperture. Small airways with an inner diameter < 1 mm were isolated, opened longitudinally, and then mounted as a flat sheet onto the 1-mm aperture where it was glued and secured with an O-ring. Both sides of the tissue were bathed with identical physiological solutions at 37 degrees C and oxygenated. Pooled data from 27 distal airways showed an inner airway diameter of 854 +/- 22 (SE) microm and a transepithelial potential difference (PD) of 1.86 +/- 0.29 mV, lumen negative. Short-circuit current (I(sc)) was 25 +/- 3.5 microA/cm(2), tissue resistance was 96 +/- 14 Omega, and conductance was 15.2 +/- 1.7 mS/cm(2). At baseline, amiloride-sensitive Na transport accounted for 51% of I(sc) (change in I(sc) = 9.7 +/- 2.6 microA/cm(2); n = 8 airways), corresponding to 0.36 microeq. cm(-2). h(-1). Treatment with 0.1 mM bumetanide did not reduce the I(sc) (n = 5 airways). Exposure to 1 microM Ca ionophore A-23187 raised the I(sc) by 9 microA/cm(2) (47%; P < 0.03; n = 6 airways). The latter effect was blunted by bumetanide. Carbachol at 1 microM provoked a biphasic response, an initial rapid rise in I(sc) followed by a decline (n = 3 airways). There was no significant increase in PD or I(sc) in response to isoproterenol or dibutyryl cAMP. The data suggest that Na absorption constitutes at least 50% of baseline transport activity. Cl or other anion secretion such as HCO(3) appears to be present and could be stimulated by raising intracellular Ca.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号