首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
Leaf anatomy was studied by light and electron microscopy and the leaf activities of RUBP carboxylase, PEP carboxylase, and malic enzyme were assayed in: Salsola australis and S. oreophila grown on the West Pamirs at 1800 m altitude; in S. australis grown on the East Pamirs at 3860 m; and in S. arbusculiformis grown in the Kisil-Kum desert in Middle Asia near 500 m. Carbon isotope fractionation ratio values also were measured on whole leaf tissue for 18 Salsola species field collected in these and other regions of the former USSR. S. australis leaves are cylindrical and in cross section exhibit a peripheral ring of mesophyll and then an inner ring of bundle sheath type cells; and its biochemical characteristics and deltaC values are typical of a C4 species of the NADP-malic enzyme malate-forming group. These traits were expressed independent of the plant growth altitude up to 4000 m. C4 type deltaC values were obtained in 14 of the Salsola species. Anatomical, structural, and biochemical features typical of the C4 syndrome were absent in S. oreophila and S. arbusculiformis. Four Salsola species, including these two, had C3-type deltaC values. Their cylindrical leaves in cross section exhibited two to three peripheral rings as layers of palisade parenchyma. Although their vascular bundles were surrounded by green bundle sheath cells, their organelle numbers were comparable to those in mesophyll cells. Neither bundle sheath cell wall thickenings nor dimorphic chloroplasts in two leaf cell types were observed. In S. oreophila, there was a high activity of RuBP carboxylase, but a low activity of C4 cycle enzymes. Interpretation of these data lends evidence to the hypothesis that a small group of C3 Salsola species, including S. oreophila, S. arbusculiformis, S. montana, and S. pachyphylla, arose as the result of a reversion of a C4 to a C3 type of photosynthetic CO2 fixation in the cooler climates of Middle Asia.  相似文献   

2.
Most species of the genus Salsola (Chenopodiaceae) that have been examined exhibit C4 photosynthesis in leaves. Four Salsola species from Central Asia were investigated in this study to determine the structural and functional relationships in photosynthesis of cotyledons compared to leaves, using anatomical (Kranz versus non-Kranz anatomy, chloroplast ultrastructure) and biochemical (activities of photosynthetic enzymes of the C3 and C4 pathways, 14C labeling of primary photosynthesis products and 13C/12C carbon isotope fractionation) criteria. The species included S. paulsenii from section Salsola, S. richteri from section Coccosalsola, S. laricina from section Caroxylon, and S. gemmascens from section Malpigipila. The results show that all four species have a C4 type of photosynthesis in leaves with a Salsoloid type Kranz anatomy, whereas both C3 and C4 types of photosynthesis were found in cotyledons. S. paulsenii and S. richteri have NADP- (NADP-ME) C4 type biochemistry with Salsoloid Kranz anatomy in both leaves and cotyledons. In S. laricina, both cotyledons and leaves have NAD-malic enzyme (NAD-ME) C4 type photosynthesis; however, while the leaves have Salsoloid type Kranz anatomy, cotyledons have Atriplicoid type Kranz anatomy. In S. gemmascens, cotyledons exhibit C3 type photosynthesis, while leaves perform NAD-ME type photosynthesis. Since the four species studied belong to different Salsola sections, this suggests that differences in photosynthetic types of leaves and cotyledons may be used as a basis or studies of the origin and evolution of C4 photosynthesis in the family Chenopodiaceae.This revised version was published online in October 2005 with corrections to the Cover Date.  相似文献   

3.
Abstract: Over 60 Salsola species of Chenopodiaceae from South Africa were studied for their photosynthesis type, using δ13C analysis and light microscopy of leaf anatomy. These species cover about 70 % of the total list of Southern African Salsola species and grow naturally in South and Southwest African desert regions. All species are shrubby forms and belong to the single subsection Caroxylon. Only C4 photosynthesis was found in the Salsola species determined with 13C/12C carbon isotope discrimination values that ranged from - 11.04 to - 14.03 % (PDB), plus the presence of a Kranz type assimilation tissue anatomy. The apparent absence of C3 in Salsola in South and Southwest Africa and the known presence of C3 and C3 - C4 intermediate photosynthesis in Caroxylon, Salsola species in Asia strongly indicate that the genus Salsola originated in Asia and later migrated to South Africa.  相似文献   

4.
The halophytic genus Suaeda (Chenopodiaceae) includes species with the C3 and C4 photosynthetic pathways. North American species of this genus were investigated to determine whether C3 and C4 leaf anatomy are consistent within the two sections of Suaeda, Chenopodina and Limbogermen, present on this continent. All species from section Chenopodina were found to possess C3 anatomy, whereas all species from section Limbogermen were found to be C4 species. Characteristics of leaf anatomy and chloroplast ultrastructure are similar to those reported from C3 and C4 species, respectively, from the Eastern Hemisphere. All species from section Limbogermen have the suaedoid type of leaf anatomy, characterized by differentiation of the mesophyll into palisade parenchyma and a chlorenchymatous sheath surrounding central water-storage tissue, as well as leaf carbon isotope ratios (_13C) of above -20. All species from section Chenopodina have austrobassioid leaf anatomy without a chlorenchymatous sheath and _13C values of below -20. According to our literature review, the photosynthetic pathway has now been reported for about half (44) of the Suaeda species worldwide. The C3 and C4 photosynthetic syndromes are with few exceptions distributed along sectional or subsectional lines. These findings throw new light on the infrageneric taxonomy of this genus.  相似文献   

5.
Kranz anatomy, with its separation of elements of the C4 pathway between two cells, has been an accepted criterion for function of C4 photosynthesis in terrestrial plants. However, Bienertia cycloptera (Chenopodiaceae), which grows in salty depressions of Central Asian semi-deserts, has unusual chlorenchyma, lacks Kranz anatomy, but has photosynthetic features of C4 plants. Its photosynthetic response to varying CO2 and O2 is typical of C4 plants having Kranz anatomy. Lack of night-time CO2 fixation indicates it is not acquiring carbon by Crassulacean acid metabolism. This species exhibits an independent, novel solution to function of the C4 mechanism through spatial compartmentation of dimorphic chloroplasts, other organelles and photosynthetic enzymes in distinct positions within a single chlorenchyma cell. The chlorenchyma cells have a large, spherical central cytoplasmic compartment interconnected by cytoplasmic channels through the vacuole to the peripheral cytoplasm. This compartment is filled with mitochondria and granal chloroplasts, while the peripheral cytoplasm apparently lacks mitochondria and has grana-deficient chloroplasts. Immunolocalization studies show enzymes compartmentalized selectively in the CC compartment, including Rubisco in chloroplasts, and NAD-malic enzyme and glycine decarboxylase in mitochondria, whereas pyruvate, Pi dikinase of the C4 cycle is localized selectively in peripheral chloroplasts. Phosphoenolpyruvate carboxylase, a cytosolic C4 cycle enzyme, is enriched in the peripheral cytoplasm. Our results show Bienertia utilizes strict compartmentation of organelles and enzymes within a single cell to effectively mimic the spatial separation of Kranz anatomy, allowing it to function as a C4 plant having suppressed photorespiration; this raises interesting questions about evolution of C4 mechanisms.  相似文献   

6.
The quantitative anatomy of developing cotyledons of NAD-malic enzyme species Salsola incanescens and NADP-malic enzyme species S. paulsenii (Chenopodiaceae) was studied. S. incanescens belongs to the group of species with foliar type of seedling development characterized by slowly growing cotyledons and a rosette form at juvenility. The rosette is the consequence of fast leaf formation, which was correlated with a low rate of leaf growth. S. paulsenii belongs to the group with the cotyledonous type of seedling development. A high growth rate of cotyledons, slow leaf formation, and absence of the rosette characterize this type. Slow leaf formation was correlated with a high rate of leaf growth. The Kranz–anatomy in cotyledons of S. incanescens (atriplicoid type) and S. paulsenii (salsoloid type) determines the duration of cotyledon development proceeding for 15 days after seed germination. The rate of growth changes during the developmental period was correlated with the type of seedling development. Cotyledons of a foliar species S. incanescens exhibit 2 to 5 times slower growth changes in cotyledon area, width, thickness, volume of mesophyll and bundle sheath cells, and number of chloroplasts per bundle sheath cell than the cotyledons of a cotyledonous species S. paulsenii. During cotyledon development in both species, the number of chloroplasts per mesophyll cell remained unchanged, and developmental changes in the bundle sheath occurred at higher rate than in mesophyll cells. Thus, these two indices seem to be independent of the type of Kranz–anatomy. The presence of atriplicoid type cotyledons in the species with salsoloid structure of true leaves might indicate a close genetic relationship between these two patterns of Kranz-anatomy.  相似文献   

7.
8.
Photosynthesis in C3–C4 intermediates reduces carbon loss by photorespiration through refixing photorespired CO2 within bundle sheath cells. This is beneficial under warm temperatures where rates of photorespiration are high; however, it is unknown how photosynthesis in C3–C4 plants acclimates to growth under cold conditions. Therefore, the cold tolerance of the C3–C4 Salsola divaricata was tested to determine whether it reverts to C3 photosynthesis when grown under low temperatures. Plants were grown under cold (15/10 °C), moderate (25/18 °C) or hot (35/25 °C) day/night temperatures and analysed to determine how photosynthesis, respiration and C3–C4 features acclimate to these growth conditions. The CO2 compensation point and net rates of CO2 assimilation in cold‐grown plants changed dramatically when measured in response to temperature. However, this was not due to the loss of C3–C4 intermediacy, but rather to a large increase in mitochondrial respiration supported primarily by the non‐phosphorylating alternative oxidative pathway (AOP) and, to a lesser degree, the cytochrome oxidative pathway (COP). The increase in respiration and AOP capacity in cold‐grown plants likely protects against reactive oxygen species (ROS) in mitochondria and photodamage in chloroplasts by consuming excess reductant via the alternative mitochondrial respiratory electron transport chain.  相似文献   

9.
C (4) species of family Chenopodiaceae, subfamily Suaedoideae have two types of Kranz anatomy in genus Suaeda, sections Salsina and Schoberia, both of which have an outer (palisade mesophyll) and an inner (Kranz) layer of chlorenchyma cells in usually semi-terete leaves. Features of Salsina (S. AEGYPTIACA, S. arcuata, S. taxifolia) and Schoberia type (S. acuminata, S. Eltonica, S. cochlearifoliA) were compared to C (3) type S. Heterophylla. In Salsina type, two layers of chlorenchyma at the leaf periphery surround water-storage tissue in which the vascular bundles are embedded. In leaves of the Schoberia type, enlarged water-storage hypodermal cells surround two layers of chlorenchyma tissue, with the latter surrounding the vascular bundles. The chloroplasts in Kranz cells are located in the centripetal position in Salsina type and in the centrifugal position in the Schoberia type. Western blots on C (4) acid decarboxylases show that both Kranz forms are NAD-malic enzyme (NAD-ME) type C (4) species. Transmission electron microscopy shows that mesophyll cells have chloroplasts with reduced grana, while Kranz cells have chloroplasts with well-developed grana and large, specialized mitochondria, characteristic of NAD-ME type C (4) chenopods. In both C (4) types, phosphoenolpyruvate carboxylase is localized in the palisade mesophyll, and Rubisco and mitochondrial NAD-ME are localized in Kranz cells, where starch is mainly stored. The C (3) species S. heterophylla has Brezia type isolateral leaf structure, with several layers of Rubisco-containing chlorenchyma. Photosynthetic response curves to varying CO (2) and light in the Schoberia Type and Salsina type species were similar, and typical of C (4) plants. The results indicate that two structural forms of Kranz anatomy evolved in parallel in species of subfamily Suaedoideae having NAD-ME type C (4) photosynthesis.  相似文献   

10.
Eleusine (Poaceae) includes six diploid and three polyploid species and has three basic chromosome numbers, x=8, 9 and 10. The species are annual as well as perennial and all are wild except E. coracana, which is cultivated for grain and fodder in Africa and the Indian subcontinent. Eleusine coracana and E. africana have the same genome and chromosome number (2n=36). Eleusine indica and E. floccifolia are identified as two genome donors to these polyploid species. Eleusine kigeziensis is the third polyploid species of the genus with 2n=38. Its genome may have come from E. jaegeri and from one of the species with x=9, most probably from E. indica. Eleusine indica, E. tristachya, E. floccifolia and E. intermedia with x=9 and two polyploid species, E. coracana and E. africana, are closely related and there is free genetic flow between them. Eleusine multiflora with x=8 is significantly different in morphology and at genomic level from other species. Eleusine jaegeri with x=10 is morphologically similar to E. indica, however, more information is needed to ascertain its position in the genus. Eleusine coracana, which is commonly called finger millet, is a potential and nutritious crop for the increasing population of the world, particularly in arid and semi-arid regions. It can also serve as a gene pool for various important characters and disease resistant genes. Received February 11, 2002; accepted May 27, 2002 Published online: October 14, 2002 Addresses of the authors: Madho Singh Bisht and Yasuhiko Mukai (e-mail: ymukai@cc.osaka-kyoiku.ac.jp), Laboratory of Plant Molecular Genetics, Division of Natural Science, Osaka Kyoiku University, 4-698-1 Asahigaoka, Kashiwara, Osaka 582-8582, Japan.  相似文献   

11.
Zhibin Wen  Mingli Zhang 《Flora》2011,206(8):720-730
To examine the anatomical types in Salsoleae s.l., and evaluate carbon isotope fractionation values for identifying the respective photosynthetic pathway, a total of 34 species representing 12 genera of Salsoleae s.l. in China were examined using light microscopy and carbon 13C/12C isotope fractionation. There are nine leaf anatomical types, namely, Sympegmoid (Sympegmoid type, Sympegmoid type II), Salsoloid with hypodermis (Salsola soda type, Salsola soda type II, Nanophyton type II), Salsoloid without hypodermis (Salsola kali type, Salsola kali type II, Nanophyton type, Climacoptera type II). Salsola soda type and Salsola soda type II are found in the assimilating shoots. Two new subtypes, Salsola soda type II and Nanophyton type II are reported. Anabasis brevifolia, A. eriopoda, A. elatior, A. truncata and A. salsa are of the Salsola soda type II, with a distinctive two-layered epidermis cells. Horaninowia ulicina is of the Nanophyton type II with hypodermis which distinguished from Nanophyton type; Both, Salsola kali type and Climacoptera type II exist in Climacoptera. The Climacoptera type II is distinguished from Climacoptera type by an adaxially interrupted Kranz layer. Salsola collina, S. zaidamica, S. praecox, S. pellucida and S. ruthenica in Salsola sect. Salsola have the Salsola kali type II. The Salsola kali type differs from Salsola kali type II having the palisade and Kranz cells interrupted by longitudinal collenchymatic ridges. Although carbon isotope fractionation data alone are already useful tools to identify photosynthesis, their determination in combination with other approaches, such as anatomical studies are necessary in order to render a structuring of all possibilities evolved among C4 type Chenopodiaceae.  相似文献   

12.
 The enigmatic fossil taxon Ceratostratiotes sinjanus (Kerner) Bužek has been considered as either a Hydrocharitaceae seed (monocot) or a Ceratophyllaceae fruit (dicot). The co-occurrence of seeds of Stratiotes kaltennordheimensis (Zenker) Keilhack (Hydrocharitaceae) and Ceratostratiotes in Early Miocene sediments in Langau (Lower Austria) enabled comparisons of morphological-anatomical features and lignin compositions, independent of diagenetic biases. The biochemistry of the Ceratostratiotes seed coat wall is not monocotyledon-like and is dissimilar to that of the co-occurring Stratiotes testae. In contrast, the Ceratostratiotes seed coat anatomy resembles that of Hydrocharitaceae genera with the micropyle and raphe being very similar to those in seeds of Stratiotes. Although the horizontal arrangement of the Ceratostratiotes spines is different from the longitudinal arrangement of the surface ridges in Stratiotes kaltennordheimensis and the spines in Blyxa (Hydrocharitaceae), the spine structures are very similar. A mixture of similarities and differences characterizes the morphological-anatomical features. Thus the systematic affinity of Ceratostratiotes still remains enigmatic. Received April 18, 2002; accepted October 18, 2002 Published online: February 4, 2003  相似文献   

13.
Photosynthesis and transpiration rates of transgenic (expressing yeast-derived invertase targeted to the vacuole) tobacco (Nicotiana tabacum L.) leaves were, respectively, 50 and 70% of those of a wild type at 20°C, 350 cm3 m?3 CO2 concentration, 450 μmol (photons) m?2 s?1 of light intensity, and 70% relative air humidity. These differences could be attributed: (a) to changes in leaf anatomy and, consequently, to changes in gases diffusion between the cells' surfaces and the atmosphere; (b) to different stomatal apertures, and, for the photosynthesis rate, (c) to the altered CO2 assimilation rate. Our objective was to estimate the relative contributions of these three sources of difference. Measurements on the wild-type and the transgenic leaf cross-sections gave values for the cell area index (CAI, cell area surface per unit of leaf area surface) of 15.91 and 13.97, respectively. The two-dimensional model 2DLEAF for leaf gas exchange was used to estimate quantitatively anatomical, stomatal and biochemical components of these differences. Transpiration rate was equal to 0.9 for the wild-type and to 0.63 mmol m?2 s?1 for the transgenic leaf: 24.0% of the difference (0.066 mmol m?2 s?1 was caused by the greater cell area surface in the wild-type leaf, and 66.0% was caused by a smaller stomatal aperture in the transgenic leaf. Photosynthetic rate was 3.10 and 1.55 μmol m?2 s?1 for the wild-type and transgenic leaves, respectively. Only 10.3% of this difference (0.16 μmol m?2 s?1) was caused by the difference in CAI, and the remaining 89.7% was caused by altered CO2 assimilation rate.  相似文献   

14.
15.
Only a small percentage of plant species undergo C(4) photosynthesis. Despite its rarity, the C(4) pathway has evolved numerous times from C(3) ancestors, with as many as 18 independent origins in grasses alone. We report non-Kranz (C(3)) anatomy in Aristida longifolia, a species in a genus of ca. 300 species previously thought to possess only Kranz (C(4)) anatomy. Leaf blade transections of A. longifolia show widely spaced vascular bundles, nonradiate chlorenchyma, and few or no chloroplasts in cells of the sheaths surrounding the vascular bundle, all features indicative of C(3) photosynthesis. Carbon isotope ratios range from -27.68 to -29.71%, likewise indicative of C(3) photosynthesis. We also reconstruct the phylogeny of Aristidoideae, comprising Aristida, Sartidia (C(3)), and Stipagrostis (C(4)), using a sample of 11 species, including A. longifolia, and DNA sequences of the nuclear ribosomal internal transcribed spacer region and the chloroplast rpl16 intron and trnL-trnF region. Sartidia and Stipagrostis resolve as sisters, and sister to this clade is Aristida. Aristida longifolia resolves as sister to the remaining species in the genus. C(3) photosynthesis is hypothesized to be ancestral in Aristidoideae, which means the C(4) pathway evolved twice in the subfamily-in Stipagrostis and early in the diversification of the Aristida clade.  相似文献   

16.
The leaf blade anatomy of all species of Neurachne, Paraneurachne and Thyridolepis has been examined, with special reference to features reliably indicative of photosynthetic pathway. Neurachne alopecuroidea, N. queenslandica and N. tenuifolia exhibit C3 anatomy, as do all three Thyridolepis species. Paraneurachne muelleri, N. munroi and N. minor all have C4 anatomy, of the rare ' Alloteropsis-type'. However, all the species exhibit unusual anatomical features, and N. lanigera cannot be confidently assigned as C3 or C, on anatomical grounds alone. Taxonomic considerations confirm that the three genera are closely related to one another in the context of the eu-panicoid assemblage as a whole, and that the genus Neurachne itself, although it exhibits variation in photosynthetic pathway, is not amenable to further taxonomic subdivision.  相似文献   

17.
The conductance of carbon dioxide (CO2) from the substomatal cavities to the initial sites of CO2 fixation (gm) can significantly reduce the availability of CO2 for photosynthesis. There have been many recent reviews on: (i) the importance of gm for accurately modelling net rates of CO2 assimilation, (ii) on how leaf biochemical and anatomical factors influence gm, (iii) the technical limitation of estimating gm, which cannot be directly measured, and (iv) how gm responds to long‐ and short‐term changes in growth and measurement environmental conditions. Therefore, this review will highlight these previous publications but will attempt not to repeat what has already been published. We will instead initially focus on the recent developments on the two‐resistance model of gm that describe the potential of photorespiratory and respiratory CO2 released within the mitochondria to diffuse directly into both the chloroplast and the cytosol. Subsequently, we summarize recent developments in the three‐dimensional (3‐D) reaction‐diffusion models and 3‐D image analysis that are providing new insights into how the complex structure and organization of the leaf influences gm. Finally, because most of the reviews and literature on gm have traditionally focused on C3 plants we review in the final sections some of the recent developments, current understanding and measurement techniques of gm in C4 and crassulacean acid metabolism (CAM) plants. These plants have both specialized leaf anatomy and either a spatially or temporally separated CO2 concentrating mechanisms (C4 and CAM, respectively) that influence how we interpret and estimate gm compared with a C3 plants.  相似文献   

18.
BACKGROUND AND AIMS: Previous work has shown that Borszczowia aralocaspica (Chenopodiaceae) accomplishes C4 photosynthesis in a unique, polarized single-cell system in leaves. Mature cotyledons have the same structure as leaves, with chlorenchyma cells having biochemical polarization of dimorphic chloroplasts and C4 functions at opposite ends of the cell. KEY RESULTS: Development of the single-celled C4 syndrome in cotyledons was characterized. In mature seeds, all cell layers are already present in the cotyledons, which contain mostly lipids and little starch. The incipient chlorenchyma cells have a few plastids towards the centre of the cell. Eight days after germination and growth in the dark, small plastids are evenly distributed around the periphery of the expanding cells. Immunolocalization studies show slight labelling of Rubisco in plastids in seeds, including chlorenchyma, hypodermal and water storage, but not epidermal, cells. After imbibition and 8 d of growth in the dark labelling for Rubisco progressively increased, being most prominent in chlorenchyma cells. There was no immunolabelling for the plastid C4 enzyme pyruvate, Pi dikinase under these conditions. Cotyledons developing in light show formation of chlorenchyma tissue, induction of the cytosolic enzyme phosphoenolpyruvate carboxylase and development of dimorphic chloroplasts at opposite ends of the cells. Proximal chloroplasts have well-developed grana, store starch and contain Rubisco; those located distally have reduced grana, lack starch and contain pyruvate, Pi dikinase. CONCLUSIONS: The results show cotyledons developing in the dark have a single structural plastid type which expresses Rubisco, while light induces formation of dimorphic chloroplasts from the single plastid pool, synthesis of C4 enzymes, and biochemical and structural polarization leading to the single-cell C4 syndrome.  相似文献   

19.
 An intergeneric hybrid plant was produced between the C3-C4 intermediate species Moricandia nitens and the C3 species Brassica napus by sexual hybridization and in vitro embryo rescue. The hybrid nature of the plant was apparent in its morphology and flower pigmentation and was confirmed by leaf isozyme patterns. The overall plant morphology and the shape and thickness of leaves of the hybrid plant were intermediate between those of the parent species. However, the bundle-sheath cells of the hybrid resembled those of the C3 parent and lacked the organelle development of the C3-C4 intermediate parent. Immunogold labelling for the presence of the P subunit of the mitochondrial glycine decarboxylase complex revealed a very similar labelling density on mitochondria in bundle-sheath and mesophyll cells in B. napus, while in  M. nitens the P subunit was only detectable in bundle sheath cells. In the hybrid the labelling density on mesophyll cell mitochondria was almost half of that on the bundle-sheath mitochondria. The CO2 compensation point of the hybrid was significantly less than that of the C3 parent but was not as low, nor as responsive to changes in light intensity, as for the C3-C4 parent. Received: 23 October 1997 / Accepted: 28 November 1997  相似文献   

20.
We demonstrate for the first time the presence of species exhibiting C3-C4 intermediacy in Heliotropium (sensu lato), a genus with over 100 C3 and 150 C4 species. CO2 compensation points (Gamma) and photosynthetic water-use efficiencies (WUEs) were intermediate between C3 and C4 values in three species of Heliotropium: Heliotropium convolvulaceum (Gamma = 20 micromol CO2 mol(-1) air), Heliotropium racemosum (Gamma = 22 micromol mol(-1)) and Heliotropium greggii (Gamma = 17 micromol mol(-1)). Heliotropium procumbens may also be a weak C3-C4 intermediate based on a slight reduction in Gamma (48.5 micromol CO2 mol(-1)) compared to C3Heliotropium species (52-60 micromol mol(-1)). The intermediate species H. convolvulaceum, H. greggii and H. racemosum exhibited over 50% enhancement of net CO2 assimilation rates at low CO2 levels (200-300 micromol mol(-1)); however, no significant differences in stomatal conductance were observed between the C3 and C3-C4 species. We also assessed the response of Gamma to variation in O2 concentration for these species. Heliotropium convolvulaceum, H. greggii and H. racemosum exhibited similar responses of Gamma to O2 with response slopes that were intermediate between the responses of C3 and C4 species below 210 mmol O2 mol(-1) air. The presence of multiple species displaying C3-C4 intermediate traits indicates that Heliotropium could be a valuable new model for studying the evolutionary transition from C3 to C4 photosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号