首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Flow cytometry and cell proliferation kinetics   总被引:1,自引:0,他引:1  
Flow cytometric techniques are presented which allow to determine parameters of cell proliferation kinetics by means of histogram sequences after special manipulations of the cell culture under investigation: (a) In the stathmokinetic method metaphase blocking agents are applied which allow the cells of the population to continue progression through interphase and accumulate at 4C DNA content. The development of DNA specific histograms during this process is analysed as to the G1 phase duration and the fraction of nonproliferating cells. (b) In the BUdR/Hoechst method the suppression of Hoechst fluorescence after BUdR incorporation during S phase is taken as a means for inducing a temporal change of histogram shapes without perturbing the cell cycle progression of the population. This temporal development of histogram shapes is analysed as to phase duration, whole cycle time and fraction of nonproliferating cells. (c) By combining the BUdR/Hoechst technique with a simultanous DNA specific stain and analysing with a two-parametrical flow cytometer, more information is obtained from each histogram after BUdR incorporation: The location of cells in the cycle at the beginning of the experiment, the cycle stage at cell harvest, and from this the distance and velocity of progression through the cycle during drug incubation. By introduction of these dynamic methods flow cytometry has become a powerful tool for the study of cell proliferation kinetics in culture.  相似文献   

2.
3.
Abstract. Rabbit embryo-fetal fluid (EFF) contains regulatory factors of cell proliferation which increase the duration of the cell cycle, induce a quiescent status in some cells and lead up to cell death in others. The objective of this study was to demonstrate which of the two processes, namely necrosis or apoptosis, was responsible for the cell death. Inhibitors of protein synthesis, and nuclease and phospholipase A2 activities did not restore the viability of the cells treated with EFF. Using a combination of DNA labelling and extraction, it was possible to show that a large proportion of DNA was fragmented in the cells released in the supernatant while only a very small portion of DNA was fragmented in the monolayer cells. EFF did not induce fragmentation of DNA into nucleosome-sized subunits as analysed using polyacrylamide gel electrophoresis. Nevertheless, using cytofluorometric analysis, it was possible to demonstrate that 50% of the cells released in the supernatant contained a lower quantity of DNA per cell than in the control cells. This was also observed with EFF-treated monolayer cells but not in the control monolayer cells. The reduction of the DNA content per monolayer cell became significant at 48 h of treatment with EFF. Electron microscopic analysis did not reveal blebbing of the cells. However, depletion of glycogen, condensation of mitochondria and increasing number of lysosomes and residual bodies were observed upon treatment with EFF. From these experiments we conclude that the DU-145 cells treated with EFF do not die by apoptosis, but rather seem to die by necrosis.  相似文献   

4.
5.
Myogenic cells were isolated from adult rat skeletal muscles and cultured in vitro. Cell proliferation was analyzed between days 1 and 14. The cell cycle phases were determined by examining Feulgen-stained cultures with a cell image processor. The nuclei were automatically analyzed by calculating 18 parameters relating to the texture and densitometry of chromatin and the shape of each nucleus. Cell cycle phases were characterized (Moustafa and Brugal, 1984). The recognition methods made it possible to analyse the nuclei of the myogenic cell populations which were either involved in each phase of the mitotic cycle, or left out of the cycle after fusion into myotubes.After 3 hr of culture 10% of the cell population was involved in the cell cycle. In the presence of foetal calf serum, this percentage increased until day 3 after plating. At that time, the DNA content of 28.2% of the cell population was higher than 3C, whereas it is 2C in G1 or G0 nuclei; image analysis showed that 42% of these cells were in S or G2 phase. From day 4, the proliferation rate gradually slowed down until day 8. After day 8, when numerous myotubes differentiated, the percentage of S and G2 phase cells had diminished to between 3 and 8%. The percentage of nuclei in G0 increased when the first myotubes differentiated around day 5. Myotube nuclei were largely in G0. When horse serum was added to the culture medium on day 4 to enhance myotube differentiation, significant cell proliferation was observed before cell fusion.These methods of analysis give the first daily pattern of myogenic cell proliferation and fusion in a cell population isolated from adult muscles.  相似文献   

6.
7.
Synchronous waves of proliferation in tumor cells taken from patients with ovarian cancer were observed using flow cytometry to measure the fraction of cells undergoing DNA replication and displaying tumor-cell-specific immunofluorescence. When saline washings of the abdominal cavity were analyzed at 2-4 hr intervals round-the-clock, the percentage of cells in the chromosome replication cycle (S + G2 percentage) showed 12-hr and often higher frequency rhythms in proliferation. These higher frequency rhythms in DNA replication show a relatively constant phase relationship to the patient's circadian clock with peak proliferation occurring most commonly at 10 a.m. to 12 noon and again at 10 p.m. This proliferation rhythm is therefore partially out of phase with the 24-hr rhythms in proliferation seen in normal cells. The findings on human cancer reveal a fundamental difference in the temporal organization of normal and tumor cell growth that should be exploited for therapeutic benefit.  相似文献   

8.
9.
The aim of this study was to define metabolic signaling pathways that mediate DNA synthesis and cell cycle progression in adult rodent islets to devise strategies to enhance survival, growth, and proliferation. Since previous studies indicated that glucose-stimulated activation of mammalian target of rapamycin (mTOR) leads to [3H]thymidine incorporation and that mTOR activation is mediated, in part, through the K(ATP) channel and changes in cytosolic Ca2+, we determined whether glyburide, an inhibitor of K(ATP) channels that stimulates Ca2+ influx, modulates [3H]thymidine incorporation. Glyburide (10-100 nm) at basal glucose stimulated [3H]thymidine incorporation to the same magnitude as elevated glucose and further enhanced the ability of elevated glucose to increase [3H]thymidine incorporation. Diazoxide (250 microm), an activator of KATP channels, paradoxically potentiated glucose-stimulated [3H]thymidine incorporation 2-4-fold above elevated glucose alone. Cell cycle analysis demonstrated that chronic exposure of islets to basal glucose resulted in a typical cell cycle progression pattern that is consistent with a low level of proliferation. In contrast, chronic exposure to elevated glucose or glyburide resulted in progression from G0/G1 to an accumulation in S phase and a reduction in G2/M phase. Rapamycin (100 nm) resulted in an approximately 62% reduction of S phase accumulation. The enhanced [3H]thymidine incorporation with chronic elevated glucose or glyburide therefore appears to be associated with S phase accumulation. Since diazoxide significantly enhanced [3H]thymidine incorporation without altering S phase accumulation under chronic elevated glucose, this increase in DNA synthesis also appears to be primarily related to an arrest in S phase and not cell proliferation.  相似文献   

10.
The role of protein kinase C (PKC) on proliferation of A10 vascular smooth muscle cells (VSMC) was studied by overexpressing specific PKC-βI and -βII isozymes. PKC-βI and -βII are derived from alternative splicing of the exon encoding the carboxy-terminal (C-terminal) 50 or 52 amino acids, respectively. The differential functions of the two isozymes with regard to cell proliferation, DNA synthesis, and the cell cycle were investigated in A10 cells, a clonal cell line of VSMC from rat aorta, and in A10 cells overexpressing PKC-βI and PKC-βII (βI-A10 and βII-A10). PKC levels were increased three- to fourfold in heterogeneous cultures of stably transfected cells. Although doubling time of A10 cells was 36 h, the cell doubling time in βI-A10 cells decreased by 12 h, and, in contrast, the doubling time of βII-A10 cells increased by 12 h compared to A10 cells. The increase of [3H]thymidine (TdR) incorporation was accelerated and increased in βI-A10 cells, but slowed and diminished in βII-A10 cells compared to A10 and control cells transfected with empty vector. Cell cycle analysis of βI-A10 cells showed an acceleration of S phase entry while βII-A10 cells slowed S phase entry. These results suggest that PKC-βI and PKC-βII regulate cell proliferation bidirectionally and that PKC-βI and PKC-βII may have distinct and opposing functions as cell cycle check point mediators during late G1phase and may regulate S phase entry in A10 VSMC.  相似文献   

11.
The purpose of this experiment was to determine the effect of ionizing radiation on cell number, lactate dehydrogenase (LDH) release, cell cycle distribution, [3H]thymidine incorporation, and autoradiographic labeling index in bovine aortic endothelial cells in vitro. Confluent endothelial monolayers were exposed to single doses of 0.5-10 Gy of 60Co gamma rays and were analyzed from 2 to 24 h postirradiation. Irradiated monolayers exhibited a time- and dose-dependent decrease in cell number, increase in LDH release, and redistribution of cells in the cell cycle. Cell cycle redistribution included an increase in the proportion of cells in S phase at 4 h after irradiation and a decrease in S phase at 24 h. The cells also exhibited a decrease in [3H]thymidine incorporation as early as 2 h after 5 Gy. This represented the most rapid radiation response observed in the present study. These data demonstrate that radiation cytotoxicity in confluent, plateau-phase endothelial monolayers is accompanied by changes in the cell cycle distribution of adherent cells, and that reduced [3H]thymidine incorporation is an early marker of radiation injury in this clinically important cell type.  相似文献   

12.
To investigate the effects of low frequency electromagnetic fields (EMF) on the proliferation of epidermal stem cells, human epidermal stem cells (hESC) were isolated, expanded ex vivo, and then exposed to a low frequency EMF. The test and control cells were placed under the same environment. The test cells were exposed for 30 min/day to a 5 mT low frequency EMF at 1, 10, and 50 Hz for 3, 5, or 7 days. The effects of low frequency EMF on cell proliferation, cell cycle, and cell‐surface antigen phenotype were investigated. Low frequency EMF significantly enhanced the proliferation of hESC in the culture medium in a frequency‐dependent manner, with the highest cell proliferation rate at 50 Hz (P < 0.05). Exposure to a low frequency EMF significantly increased the percentage of cells at the S phase of the cell cycle, coupled with a decrease in the percentage of cells in the G1 phase (P < 0.05) but the effect was not frequency dependent. The percentage of CD29+/CD71? cells remained unchanged in the low frequency EMF‐exposed hESC. The results suggested that low frequency EMF influenced hESC proliferation in vitro, and this effect was related to the increased proportion of cells at the S phase. Bioelectromagnetics 34:74–80, 2013. © 2012 Wiley Periodicals, Inc.  相似文献   

13.
Previous studies have shown that hyperoxia inhibits proliferation and increases the expression of the tumor suppressor p53 and its downstream target, the cyclin-dependent kinase inhibitor p21(CIP1/WAF1), which inhibits proliferation in the G1 phase of the cell cycle. To determine whether growth arrest was mediated through activation of the p21-dependent G1 checkpoint, the kinetics of cell cycle movement during exposure to 95% O2 were assessed in the Mv1Lu and A549 pulmonary adenocarcinoma cell lines. Cell counts, 5-bromo-2'-deoxyuridine incorporation, and cell cycle analyses revealed that growth arrest of both cell lines occurred in S phase, with A549 cells also showing evidence of a G1 arrest. Hyperoxia increased p21 in A549 but not in Mv1Lu cells, consistent with the activation of the p21-dependent G1 checkpoint. The ability of p21 to exert the G1 arrest was confirmed by showing that hyperoxia inhibited proliferation of HCT 116 colon carcinoma cells predominantly in G1, whereas an isogenic line lacking p21 arrested in S phase. The cell cycle arrest in S phase appears to be a p21-independent process caused by a gradual reduction in the rate of DNA strand elongation. Our data reveal that hyperoxia inhibits proliferation in G1 and S phase and demonstrate that p53 and p21 retain their ability to affect G1 checkpoint control during exposure to elevated O2 levels.  相似文献   

14.
Modulation of stem cell proliferation is a crucial aspect of neural developmental biology and regenerative medicine. To investigate the effect of optical stimulation on neural stem cell proliferation, cells transduced with channelrhodopsin-2 (ChR2) were used to analyze changes in cell proliferation and cell cycle distribution after light stimulation. Blue light significantly inhibited cell proliferation and affected the cell cycle, which increased the percentage of cells in G1 phase and reduced the percentage in S phase. It is likely that the influence of blue light on cell proliferation and the cell cycle was mediated by membrane depolarization, which induced accumulation of p21 and p27 proteins. Our data provide additional specific evidence that membrane depolarization may inhibit neural stem cell proliferation.  相似文献   

15.
D W Goodrich  N P Wang  Y W Qian  E Y Lee  W H Lee 《Cell》1991,67(2):293-302
The RB gene product is a nuclear phosphoprotein that undergoes cell cycle-dependent changes in its phosphorylation status. To test whether RB regulates cell cycle progression, purified RB proteins, either full-length or a truncated form containing the T antigen-binding region, were injected into cells. Injection of either protein early in G1 inhibits progression into S phase. Co-injection of anti-RB antibodies antagonizes this effect. Injection of RB into cells arrested at G1/S or late in G1 has no effect on BrdU incorporation, suggesting that RB does not inhibit DNA synthesis in S phase. These results indicate that RB regulates cell proliferation by restricting cell cycle progression at a specific point in G1 and establish a biological assay for RB activity. Neither co-injection of RB with a T antigen peptide nor injection into cells expressing T antigen prevents cells from progressing into S phase, which supports the hypothesis that T antigen binding has functional consequences for RB.  相似文献   

16.
叶雨  王柏磊 《蛇志》2012,24(2):99-101
目的观察芒柄花黄素在体外对人脐静脉内皮细胞(HUVEC)增殖及周期的影响。方法采用四甲基偶氮唑蓝(MTT)法检测不同芒柄花黄素对HUVEC增殖的影响,流式细胞术检测细胞周期,Western blot检测cyclin D1蛋白表达水平。结果芒柄花黄素呈剂量依赖性促进HUVEC增殖。且药物作用后,S期细胞比例增加,cyclin D1蛋白表达升高。结论芒柄花黄素对人脐静脉内皮细胞有明显的促进增殖作用,可通过上调cyclin D1蛋白表达增加S期细胞比率。  相似文献   

17.
The Drosophila insulin pathway is involved in the control of the proliferation and size of the cell. The stimulation of Schneider cells with human insulin has been observed to activate Drosophila extracellular signal regulated kinase (DERK). However, the role of DERK in the regulation of proliferation is unknown. In this study, we have identified a role of DERK in the proliferation of Drosophila Schneider cells. The inhibition of DERK activity by the overexpression of DMKP-3, an ERK-specific mitogen-activated protein kinase (MAPK) phosphatase, inhibited G(1) to S phase cell cycle progression as well as bromodeoxyuridine (BrdU) incorporation, which were previously increased by human insulin. However, DMKP-3 overexpression did not significantly reduce cell size that was also enlarged by insulin treatment, which suggests the specificity of the ERK pathway in proliferation but not for cell size. G1 to S phase cell cycle progression and BrdU incorporation were also reduced by catalytically inactive DMKP-3 mutant, and they may be acquired by the trapping of DERK into cytosol. The depletion of DERK or DMKP-3 by inhibitory double-stranded RNA decreased and increased BrdU incorporation, respectively. Thus, we propose that DERK is involved in the proliferation of Schneider cells via the insulin pathway.  相似文献   

18.
Mimosine reversibly arrests cell cycle progression at the G1-S phase border   总被引:7,自引:0,他引:7  
It has previously been demonstrated that the compound mimosine inhibits cell cycle traverse in late G1 phase prior to the onset of DNA synthesis (Hoffman BD, Hanauske-Abel HM, Flint A, Lalande M: Cytometry 12:26-32, 1991; Lalande M: Exp Cell Res 186:332-339, 1990). These results were obtained by using flow cytometric analysis of DNA content to compare the effects of mimosine on cell cycle traverse with those of aphidicolin, an inhibitor of DNA polymerase alpha activity. We have now measured the incorporation of bromodeoxyuridine into lymphoblastoid cells by flow cytometry to determine precisely where the two inhibitors act relative to the initiation of DNA synthesis. It is demonstrated here that mimosine arrests cell cycle progression at the G1-S phase border. The onset of DNA replication occurs within 15 min of releasing the cells from the mimosine block. In contrast, treatment with aphidicolin results in the accumulation of cells in early S phase. These results indicate that mimosine is a suitable compound for affecting the synchronous release of cells from G1 into S phase and for analyzing the biochemical events associated with this cell cycle phase transition.  相似文献   

19.
《Free radical research》2013,47(3-6):179-187
Bromodeoxyuridine/Hoechst flow cytometry was used to analyse disturbed cell proliferation of fibroblasts and lymphoblastoid cells from Bloom's syndrome (BS). Fibroblasts show poor activation, arrest in the G2 phase of the cell cycle along with a prolongation of the Gl phase. This pattern of perturbed cells proliferation is akin to that elicited in normal fibroblasts by 4-hydroxy-nonenal, a breakdown product of lipid peroxides. Treatment with vitamin E improved growth of BS fibroblasts more strongly than growth of normal fibroblasts. Lymphoblastoid cells from BS, to the contrary, experience only a minor arrest in the G2 phase after one round of bromodeoxyuridine incorporation, but are strongly inhibited during and after the second S phase. Thus, their cell cycle arrest is dependent upon BrdU incorporation, as has been found previously in normal cells exposed to elevated concentrations of oxygen or paraquat, a superoxide generating compound. These results suggest that BS cells may suffer from an elevated, endogenous generation of oxygen free radicals.  相似文献   

20.
Flow cytometry was used to measure cell cycle parameters in Solanum aviculare plant cell suspensions. Methods for bromodeoxyuridine (BrdU) labeling of plant nuclei were developed so that cell cycle times and the proportion of cells participating in growth could be determined as a function of culture time and conditions. The percentage of cells active in the cell cycle at 25 degrees C decreased from 52% to 19% within 7.6 d of culture; presence of a relatively large proportion of non-active cells was reflected in the results for culture growth. While the maximum specific growth rate of the suspensions at 25 degrees C was 0.34 d-1 (doubling time: 2.0 d), the specific growth rate of active cells was significantly greater at 0.67 d-1, corresponding to a cell cycle time of 1.0 d. A simple model of culture growth based on exponential and linear growth kinetics and the assumption of constant cell cycle time was found to predict with reasonable accuracy the proportion of active cells in the population as a function of time. Reducing the temperature to 17 degrees C lowered the culture growth rate but prolonged the exponential growth phase compared with 25 degrees C; the percentage of cells participating in the cell cycle was also higher. Exposure of plant cells to different agitation intensities in shake flasks had a pronounced effect on the distribution of cells within the cell cycle. The proportion of cells in S phase was 1.8 times higher at a shaker speed of 160 rpm than at 100 rpm, while the frequency of G0 + G1 cells decreased by up to 27%. Because of the significant levels of intraculture heterogeneity in suspended plant cell systems, flow cytometry is of particular value in characterizing culture properties and behavior.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号