首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
C Fewtrell  E Sherman 《Biochemistry》1987,26(22):6995-7003
The intracellular calcium indicator and buffer quin2 has been used to generate a large calcium buffering capacity in the cytoplasm of rat basophilic leukemia cells. Above 3 mM intracellular quin2, there is no further increase in the initial rate of antigen-induced 45Ca uptake, suggesting that 45Ca buffering by quin2 is now sufficient to prevent the immediate efflux of 45Ca from the cells. Thus, the initial rate of 45Ca uptake should reflect the true unidirectional influx of calcium that occurs when immunoglobulin E (IgE) receptors are aggregated by antigen. The antigen-induced calcium permeability pathway appears to be saturable, with a Km of about 0.7 mM and a Vmax of 0.9 nmol of calcium (10(6) cells)-1 min-1. Although net 45Ca uptake reaches a plateau a few minutes after antigen stimulation, the increase in plasma membrane permeability is maintained for at least an hour, provided that receptors for IgE remain aggregated. The initial rate of 45Ca influx correlates well with the subsequent secretion of [3H]serotonin in response to different concentrations of antigen. Both 45Ca uptake and [3H]serotonin secretion are maximal when only 10% of the receptors are occupied with antigen-specific IgE. Thus, 45Ca influx correlates more closely with secretion than with the number of IgE receptors aggregated by antigen.  相似文献   

2.
Stimulation of hepatocytes with vasopressin evokes increases in cytosolic free Ca2+ ([Ca2+]c) that are relayed into the mitochondria, where the resulting mitochondrial Ca2+ ([Ca2+]m) increase regulates intramitochondrial Ca2+-sensitive targets. To understand how mitochondria integrate the [Ca2+]c signals into a final metabolic response, we stimulated hepatocytes with high vasopressin doses that generate a sustained increase in [Ca2+]c. This elicited a synchronous, single spike of [Ca2+]m and consequent NAD(P)H formation, which could be related to changes in the activity state of pyruvate dehydrogenase (PDH) measured in parallel. The vasopressin-induced [Ca2+]m spike evoked a transient increase in NAD(P)H that persisted longer than the [Ca2+]m increase. In contrast, PDH activity increased biphasically, with an initial rapid phase accompanying the rise in [Ca2+]m, followed by a sustained secondary activation phase associated with a decline in cellular ATP. The decline of NAD(P)H in the face of elevated PDH activity occurred as a result of respiratory chain activation, which was also manifest in a calcium-dependent increase in the membrane potential and pH gradient components of the proton motive force (PMF). This is the first direct demonstration that Ca2+-mobilizing hormones increase the PMF in intact cells. Thus, Ca2+ plays an important role in signal transduction from cytosol to mitochondria, with a single [Ca2+]m spike evoking a complex series of changes to activate mitochondrial oxidative metabolism.  相似文献   

3.
The nerve ending cytosol is bounded by the plasma membrane, the mitochondrial inner membrane and the endoplasmic reticulum membrane, transport across each of which is capable, in theory, of regulating the cytosolic free Ca2+ concentration. By parallel monitoring of mitochondrial and plasma membrane potentials, ATP levels, Na+ gradients and intrasynaptosomal Ca2+ distribution in preparations of isolated synaptosomes, we conclude the following: (a) mitochondria in situ represent a major Ca2+ pool, regulating the upper steady-state limit of the cytosolic free Ca2+ concentration by sequestering Ca2+ reversibly; (b) this limit is responsive to the cytosolic Na+ concentration, but is below the concentration required for significant exocytosis; (c) plasma membrane Ca2+ transport can be resolved into a constant slow influx, a voltage-dependent and verapamil-sensitive influx and an ATP-dependent efflux, while Ca2+ efflux driven by the sodium electrochemical potential cannot be detected; (d) Ca2+ regulation by intrasynaptosomal endoplasmic reticulum appears to be of minor significance in the present preparation.  相似文献   

4.
Calcium (Ca2+) is indispensable for normal development of the various stages of the asexual erythrocytic cycle of malaria parasites. However, the mechanisms involved in Ca2+ uptake, compartmentalization and cellular regulation are poorly understood. To clarify some of these issues, we have measured total, exchangeable, and free Ca2+ in normal red cells (RBCs) and Plasmodium falciparum (FCR-3)-infected cells (IRBCs) as a function of parasite development. All three forms of Ca2+ were found to be substantially higher in IRBCs than in RBCs, and to increase with parasite maturation up to the trophozoite stage and decline thereafter. Exchangeable and free [Ca2+] in host cell and parasite compartments were determined by selectively lysing IRBCs with Sendai virus, and estimating these parameters in the lysate (host cytosol) and the pellet (parasite cytosol). Levels of both exchangeable and free [Ca2+] were found to be higher in host cytosol than in parasite cytosol. The Ca2+ gradient across the parasite membrane can be maintained by the pH gradient across this membrane by means of a Ca2+/H+ antiporter. Host cytosol free [Ca2+] reached levels known to produce structural, physiological and biochemical changes in RBCs, and could account for similar features normally seen in malaria-infected red cells. Uptake of Ca2+ into IRBCs was nonsaturable and substantially faster than the saturable Ca2+ uptake into RBCs. The rate of Ca2+ uptake across the parasite membrane was even faster suggesting that the rate-limiting step in uptake into intact IRBCs is the translocation of Ca2+ across the host cell membrane.  相似文献   

5.
Wang X  Zhao HF  Zhang GJ 《Biochimie》2006,88(7):913-922
Lysosomal disintegration may cause apoptosis, necrosis and some diseases. However, mechanisms for these events are still unclear. In this study, we measured lysosomal beta-hexosaminidase free activity, membrane potential and intralysosomal pH. The results revealed that the cytosolic extracts of rat hepatocytes could increase the lysosomal permeability to both potassium ions and protons, and osmotically destabilize lysosomes via K(+)/H(+) exchange. The effects of cytosol on lysosomes could be completely abolished by D609, which inhibited both phospholipase C and sphingomyelinase, and partly prevented by sphingomyelinase inhibitor Ara-AMP, but not by the inhibitors of PLA(2). Moreover, purified phospholipase C could destabilize the lysosomes while phospholipase A(2) and phospholipase D did not produce such effects. The cytosolic phospholipases hydrolyzed lysosomal membrane phospholipids by 50%, which could be prevented by D609. Disintegration of the cytosol-treated lysosomes biphasically depended on the cytosolic [Ca(2+)]. The cytosol did not disintegrate lysosomes below 100 nM or above 10 muM cytosolic [Ca(2+)], but markedly destabilized lysosomes at about 340 nM [Ca(2+)]. The results suggest that cytosolic phospholipase C and sphingomyelinase may be responsible for the alterations in lysosomal stability by increasing the ion permeability.  相似文献   

6.
C Vorndran  A Minta    M Poenie 《Biophysical journal》1995,69(5):2112-2124
A new family of fluorescent calcium indicators has been developed based on a new analog of BAPTA called FF6. This new BAPTA analog serves as a versatile synthetic intermediate for developing Ca2+ indicators targeted to specific intracellular environments. Two of these new Ca2+ indicators, fura-PE3 and fura-FFP18, are described in this report. Fura-PE3 is a zwitterionic indicator that resists the rapid leakage and compartmentalization seen with fura-2 and other polycarboxylate calcium indicators. In contrast to results obtained with fura-2, cells loaded with PE3 remain brightly loaded and responsive to changes in concentration of cytosolic free calcium for hours. Fura-FFP18 is an amphipathic indicator that to binds to liposomes and to cell membranes. Studies to be detailed later indicate that FFP18 functions as a near-membrane Ca2+ indicator and that calcium levels near the plasma membrane rise faster and higher than in the cytosol.  相似文献   

7.
The relation between elevation of cytosolic free calcium and activation of membrane conductance has been studied in single acinar cells of the rat parotid. Outward and inward currents are activated by calcium elevation and oscillate in phase with oscillations of cytosolic calcium. The outward current results from activation of a large unit-conductance Ca2+ and voltage-dependent K+ channel, whereas the inward current is most likely carried predominantly by Cl-. Both these conductances have been previously described in exocrine cells. Buffering calcium at resting levels eliminated current responses to muscarinic agonists, suggesting that calcium is the only significant second messenger involved in the short-term control of this conductance by acetylcholine.  相似文献   

8.
The regulatory mechanism of Ca2+ influx into the cytosol from the extracellular space in non-excitable cells is not clear. The "capacitative calcium entry" (CCE) hypothesis suggested that Ca2+ influx is triggered by the IP(3)-mediated emptying of the intracellular Ca2+ stores. However, there is no clear evidence for CCE and its mechanism remains elusive. In the present work, we have provided the reported evidences to show that inhibition of IP(3)-dependent Ca2+ release does not affect Ca2+ influx, and the experimental protocols used to demonstrate CCE can stimulate Ca2+ influx by means other than emptying of the Ca2+ stores. In addition, we have presented the reports showing that IP(3)-mediated Ca2+ release is linked to a Ca2+ entry from the extracellular space, which does not increase cytosolic [Ca2+] prior to Ca2+ release. Based on these and other reports, we have provided a model of Ca2+ signaling in non-excitable cells, in which IP(3)-mediated emptying of the intracellular Ca2+ store triggers entry of Ca2+ directly into the store, through a plasma membrane TRPC channel. Thus, emptying and direct refilling of the Ca2+ stores are repeated in the presence of IP(3), giving rise to the transient phase of oscillatory Ca2+ release. Direct Ca2+ entry into the store is regulated by its filling status in a negative and positive manner through a Ca2+ -binding protein and Stim1/Orai complex, respectively. The sustained phase of Ca2+ influx is triggered by diacylglycerol (DAG) through the activation of another TRPC channel, independent of Ca2+ release. The plasma membrane IP(3) receptor (IP(3)R) plays an essential role in Ca2+ influx, by interacting with the DAG-activated TRPC, without the requirement of binding to IP(3).  相似文献   

9.
The role of acidic intracellular calcium stores in calcium homeostasis was investigated in the Drosophila Schneider cell line 2 (S2) by means of free cytosolic calcium ([Ca2+]i) and intracellular pH (pHi) imaging together with measurements of total calcium concentrations within intracellular compartments. Both a weak base (NH4Cl, 15 mM) and a Na+/H+ ionophore (monensin, 10 microM) evoked cytosolic alkalinization followed by Ca2+ release from acidic intracellular Ca2+ stores. Pretreatment of S2 cells with either thapsigargin (1 microM), an inhibitor of endoplasmic reticulum Ca(2+)-ATPases, or with the Ca2+ ionophore ionomycin (10 microM) was without effect on the amplitude of Ca2+ release evoked by alkalinization. Application of the cholinergic agonist carbamylcholine (100 microM) to transfected S2-DM1 cells expressing a Drosophila muscarinic acetylcholine receptor (DM1) emptied the InsP3-sensitive Ca2+ store but failed to affect the amplitude of alkalinization-evoked Ca2+ release. Glycyl-L-phenylalanine-beta-naphthylamide (200 microM), a weak hydrophobic base known to permeabilize lysosomes by osmotic swelling, triggered Ca2+ release from internal stores, while application of brefeldin A (10 microM), an antibiotic which disperses the Golgi complex, resulted in a smaller increase in [Ca2+]i. These results suggest that the alkali-evoked calcium release is largely attributable to lysosomes, a conclusion that was confirmed by direct measurements of total calcium content of S2 organelles. Lysosomes and endoplasmic reticulum were the only organelles found to have concentrations of total calcium significantly higher than the cytosol. However, NH4Cl (15 mM) reduced the level of total calcium only in lysosomes. Depletion of acidic Ca2+ stores did not elicit depletion-operated Ca2+ entry. They were refilled upon re-exposure of cells to normal saline ([Ca2+]o = 2 mM), but not by thapsigargin-induced [Ca2+]i elevation in Ca(2+)-free saline.  相似文献   

10.
A comparative study was carried out on the EM-cytochemical localization of calcium and Ca2+-ATPase activity in the suspension-cultured cells between the chilling-sensitive maize (Zea mays L. cv. Black Mexican Sweet) and chilling-insensitive Trititrigia (Triticum sect. Trititrigia mackey) at 4 ℃ chilling. When maize and Tyititrigia cells were cultured at 26 ℃, electron microscopic observations revealed that the electron-dense calcium antimonate deposits, an indication of the calcium localization, were localized mainly in the vacuoles, and few was found in the cytosol and nuclei. The electron-dense cerium phosphate deposits, an indication of Ca2+-ATPase activity, were abundantly distributed on the plasma membrane (PM). When the cells from both species were cultured at 4 ℃ for 1 and 3 h, an elevation of Ca2+ level in the cytosol and nuclei was observed, whereas the cerium phosphate deposits on the PM showed no quantitative difference from those of the 26 ℃-cultured cells, indicating that the enzymatic activities were not altered during these chilling periods. However, there was a distinct difference in the dynamics of the Ca2+ distribution and the PM Ca2+-ATPase activity between maize and Trititrigia when chilled at 4 ℃ for 12, 24 and 72 h. In maize cells, a large number of Ca2+ deposits still existed in the cytosol and nuclei, and the PM Ca2+-ATPase became less and less active, and even inactive at all. In Trititrigia cells, the increased cytosolic and nuclear Ca2+ ions decreased after 12 h chilling. By chilling up to 24 and 72 h, the intracellular Ca2+ concentration had been restored to a similar low level as those of the warm temperature-cultured cells, while the activity of the PM Ca2+-ATPase maintained high. The transient cytosolic and nuclear Ca2+ increase and the activities of PM Ca2+-ATPase during chilling are discussed in relation to plant cold hardiness.  相似文献   

11.
Zhao HF  Wang X  Zhang GJ 《FEBS letters》2005,579(6):1551-1556
Lysosomal disintegration is a crucial event for living cells, but mechanisms for the event are still unclear. In this study, we established that the cytosolic extracts could enhance lysosomal osmotic sensitivity and osmotically destabilize the lysosomes. The cytosol also caused the lysosomes to become more swollen in the hypotonic sucrose medium. The results indicate that the cytosol induced an osmotic shock to the lysosomes and an influx of water into the organelle. Since the effects of cytosol on the lysosomes could be abolished by O-tricyclo[5.2.1.0(2,6)]dec-9-yl dithiocarbonate potassium salt (D609), a specific inhibitor of cytosolic phospholipase C (PLC), the PLC might play an important role in the lysosomal osmotic destabilization. The activity of cytosolic PLC and the extent of enzyme latency loss of the cytosol-treated lysosomes exhibited a similar biphasic dependence on the cytosolic Ca2+ concentration. In addition, the cytosol did not osmotically destabilize the lysosomes until the cytosolic calcium ions rose above 100 nM. It suggests that the destabilization effect of cytosol on the lysosomes is Ca(2+)-dependent.  相似文献   

12.
Calcium efflux from ejaculated bovine spermatozoa occurred upon incubation in Ca2+/EGTA buffers with Ca2+ ion concentrations ranging from 0.1 microM to 1 nM. Both total cellular calcium and cytosol free Ca2+ concentrations, the latter measured with Quin 2, were inversely correlated with the Ca2+ activity of the medium. An influx of radioactive 45Ca2+ parallel to a net efflux of calcium took place in spermatozoa incubated in 45Ca2+/EGTA buffers with 45Ca2+ activity of 0.01 microM or 0.1 microM. The uptake of the radioactive isotope was higher in spermatozoa incubated at pH 7.8 than that found at pH 6.8, increased in the presence of acetate or amiloride but decreased when ammonium chloride or monensin was added to the incubation mixture. Addition of acetate produced a decrease of the cytoplasmic pH, determined with the indicator carboxyfluorescein, whereas addition of NH4Cl or monensin caused a pH increase. Addition of either nigericin or monensin to spermatozoa suspended in a choline medium containing low concentrations of Na+, K+ and Ca2+ produced a cytosolic acidification, the subsequent addition of Ca2+ caused a cytosolic alkalinization parallel to an increase of the cytosolic free Ca2+. Addition of CaCl2 to EGTA-pretreated spermatozoa resuspended in a poorly buffered medium induced an evident decrease of extracellular pH suggesting a cellular proton extrusion. Both monensin and nigericin caused an increase of the calcium transport in spermatozoa suspended in a choline medium containing a physiological concentration of 1.5 mM CaCl2. Taken together the present results indicate that, under the experimental conditions used, a delta pH-driven Ca2+ uptake occurs in ejaculated bovine spermatozoa and suggest that Ca2+ is taken up in exchange with H+.  相似文献   

13.
The mechanism of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced toxicity to isolated hepatocytes was studied. MPTP was more toxic to hepatocytes than its major metabolite, 1-methyl-4-phenylpyridine (MPP+); this may, in part, be explained by the lesser permeability of the hepatocyte plasma membrane to the cation compared to its parent compound, MPTP. Loss of cell viability was preceded by plasma membrane bleb formation and disturbance of intracellular Ca2+ homeostasis. MPTP caused a rapid depletion of the mitochondrial Ca2+ pool which was followed by a marked and sustained elevation of cytosolic free Ca2+ concentration. This increase of cytosolic Ca2+ level appeared to be associated with the impairment of the cell's Ca2+ extrusion system since the plasma membrane Ca2+-ATPase was markedly inhibited in MPTP-treated hepatocytes. Preincubation of hepatocytes with inhibitors of monoamine oxidase type B, but not A, protected the cells from MPTP-induced cytotoxicity. Moreover, the monoamine oxidase B inhibitor, pargyline, prevented the rise in cytosolic free Ca2+ concentration and partially protected the plasma membrane Ca2+-ATPase from inhibition by MPTP. As observed with MPTP, MPP+ caused an extensive loss of mitochondrial Ca2+ and significantly decreased the rate of Ca2+ efflux from hepatocytes. However, MPP+ was without effect on the plasma membrane Ca2+-ATPase. In conclusion, our studies demonstrate that MPTP caused a substantial elevation of cytosolic Ca2+ which preceded loss of cell viability and we propose that calcium ions are of major importance in the mechanism of MPTP- and MPP+-induced toxicity in hepatocytes.  相似文献   

14.
Platelets maintain a low cytosolic free Ca2+ concentration by limiting Ca2+ influx from plasma and promoting Ca2+ efflux. The present studies examine the role of the plasma membrane Na+ gradient in these processes. The Na+ gradient in intact unstimulated platelets was altered by incubating the platelets with ouabain or by replacing extracellular Na+ with N-methyl-D-glucamine or choline. Ca2+ flux across the plasma membrane and the amount of exchangeable Ca2+ in the platelet cytosol were measured by observing 45Ca2+ influx and efflux under steady-state conditions. The cytosolic free Ca2+ concentration was measured with the fluorescent probe quin2. At extracellular Na+ concentrations below 50 mM, the size of the cytosolic exchangeable Ca2+ pool increased by 48%. The size of the exchangeable Ca2+ pool sequestered in the dense tubular system increased by 356%. Ca2+ flux across the plasma membrane increased by 38%. There was, however, no change in total platelet Ca2+ and little, if any, change in the cytosolic free Ca2+ concentration. Similar effects were produced by incubating platelets with ouabain. These observations demonstrate a marked influence of the plasma membrane Na+ gradient on Ca2+ homeostasis in platelets. The nature of the changes, however, suggests that Na+/Ca2+ exchange cannot be sole basis for Ca2+ efflux from platelets.  相似文献   

15.
The liver plasma membrane Ca2+ pump: hormonal sensitivity   总被引:1,自引:0,他引:1  
S Lotersztajn  R Epand  A Mallat  C Pavoine  F Pecker 《Biochimie》1985,67(10-11):1169-1176
The liver plasma membrane Ca2+ pump is supposed to extrude cytosolic calcium out of the cell. This system has now been well defined on the basis of its plasma membrane origin, its high affinity Ca2+ -stimulated ATPase activity, its Ca2+ transport activity, its phosphorylated intermediate. The liver calcium pump appears to be a target of hormonal action since it has been shown that glucagon and calcium mobilizing hormones namely alpha 1-adrenergic agonists, vasopressin, angiotensin II inhibit this system. The present review details the mechanism of calcium pump inhibition by glucagon and points out its difference from the inhibition process induced by calcium mobilizing hormones. We conclude that the inhibitory action of the Ca2+ mobilizing hormones and glucagon on the liver plasma membrane Ca2+ pump might play a key role in the actions of these hormones by prolonging the elevation in cytosolic free Ca2+.  相似文献   

16.
Measurements of cytosolic pH (pHi) 36Cl fluxes and free cytosolic Ca2+ concentration ([Ca2+]i) were performed in the clonal osteosarcoma cell line UMR-106 to characterize the kinetic properties of Cl-/HCO3- (OH-) exchange and its regulation by pHi and [Ca2+]i. Suspending cells in Cl(-)-free medium resulted in rapid cytosolic alkalinization from pHi 7.05 to approximately 7.42. Subsequently, the cytosol acidified to pHi 7.31. Extracellular HCO3- increased the rate and extent of cytosolic alkalinization and prevented the secondary acidification. Suspending alkalinized and Cl(-)-depleted cells in Cl(-)-containing solutions resulted in cytosolic acidification. All these pHi changes were inhibited by 4',4',-diisothiocyano-2,2'-stilbene disulfonic acid (DIDS) and H2DIDS, and were not affected by manipulation of the membrane potential. The pattern of extracellular Cl- dependency of the exchange process suggests that Cl- ions interact with a single saturable external site and HCO3- (OH-) complete with Cl- for binding to this site. The dependencies of both net anion exchange and Cl- self-exchange fluxes on pHi did not follow simple saturation kinetics. These findings suggest that the anion exchanger is regulated by intracellular HCO3- (OH-). A rise in [Ca2+]i, whether induced by stimulation of protein kinase C-activated Ca2+ channels, Ca2+ ionophore, or depolarization of the plasma membrane, resulted in cytosolic acidification with subsequent recovery from acidification. The Ca2+-activated acidification required the presence of Cl- in the medium, could be blocked by DIDS, and H2DIDS and was independent of the membrane potential. The subsequent recovery from acidification was absolutely dependent on the initial acidification, required the presence of Na+ in the medium, and was blocked by amiloride. Activation of protein kinase C without a change in [Ca2+]i did not alter pHi. Likewise, in H2DIDS-treated cells and in the absence of Cl-, an increase in [Ca2+]i did not activate the Na+/H+ exchanger in UMR-106 cells. These findings indicate that an increase in [Ca2+]i was sufficient to activate the Cl-/HCO3- exchanger, which results in the acidification of the cytosol. The accumulated H+ in the cytosol activated the Na+/H+ exchanger. Kinetic analysis of the anion exchange showed that at saturating intracellular OH-, a [Ca2+]i increase did not modify the properties of the extracellular site. A rise in [Ca2+]i increased the apparent affinity for intracellular OH- (or HCO3-) of both net anion and Cl- self exchange. These results indicate that [Ca2+]i modifies the interaction of intracellular OH- (or HCO3-) with the proposed regulatory site of the anion exchanger in UMR-106 cells.  相似文献   

17.
Recent studies in rat basophilic leukemia cells (RBL-2H3) have shown that two pharmacological agents, ionomycin and thapsigargin, induce leukotriene C4 production and translocation of 5-lipoxygenase from cytosol to membrane, primarily by causing an influx of extracellular calcium. In the present study, we investigate the induction of these events by receptor activation. Cross-linking of high-affinity IgE receptors (Fc epsilon RI) by antigen in RBL-2H3 cells leads to leukotriene C4 production and membrane translocation of 5-lipoxygenase. As in the ionomycin-stimulated cells, leukotriene C4 production in antigen-stimulated cells is calcium-dependent since the amount of leukotriene C4 produced correlates quantitatively with the increase in intracellular free calcium concentration ([Ca2+]i). However, the increase in [Ca2+]i required for equivalent leukotriene C4 production by antigen is not as high as it is using ionomycin. In addition, no threshold [Ca2+]i level is required for leukotriene production by antigen, which is in contrast to the ionomycin stimulation that a [Ca2+]i level of 300-400 nM is required. Furthermore, antigen causes an additive increase in leukotriene C4 production in cells stimulated by the ionomycin. These results suggest that another as yet unidentified intracellular pathway acts in conjunction with Ca2+ for leukotriene synthesis in antigen-stimulated cells. Antigen stimulation causes 20-30% of the total cell 5-lipoxygenase to associate with membranes (compared with 10% in unstimulated cells) as demonstrated by enzyme activity assay and by Western Blot using antibodies to 5-lipoxygenase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Kinetic and molecular properties of the Ca2+/H+ antiporter in the vacuolar membrane of mung bean hypocotyls were examined and compared with Ca2+-ATPase. Ca2+ transport activities of both transporters were assayed separately by the filtration method using vacuolar membrane vesicles and 45Ca2+. Ca2+ uptake in the presence of ATP and bafilomycin A1, namely Ca2+-ATPase, showed a relatively low Vmax (6 nmol.min-1.mg-1 protein) and a low Km for Ca2+. The Ca2+/H+ antiporter activity driven by H+-pyrophosphatase showed a high Vmax (25 nmol.min-1.mg-1) and a relatively high Km for Ca2+. The cDNA for mung bean Ca2+/H+ antiporter (VCAX1) codes for a 444 amino-acid polypeptide. Two peptide-specific antibodies of the antiporter clearly reacted with a 42-kDa protein from vacuolar membranes and a cell lysate from a Escherichia coli transformant in which VCAX1 was expressed. These observations directly demonstrate that a low-affinity, high-capacity Ca2+/H+ antiporter and a high-affinity Ca2+-ATPase coexist in the vacuolar membrane. It is likely that the Ca2+/H+ antiporter removes excess Ca2+ in the cytosol to lower the Ca2+ concentration to micromolar levels after stimuli have increased the cytosolic Ca2+ level, the Ca2+-ATPase then acts to lower the cytosolic Ca2+ level further.  相似文献   

19.
Using a fluorescent probe for superoxide, hydroethidine, we have demonstrated that glucose deprivation (GD) activates production of reactive oxygen species (ROS) in cultured cerebellar granule neurons. ROS production was insensitive to the blockade of ionotropic glutamate channels by MK-801 (10 microM) and NBQX (10 microM). Inhibitors of mitochondrial electron transport, i.e. rotenone (complex I), antimycin A (complex III), or sodium azide (complex IV), an inhibitor of mitochondrial ATP synthase--oligomycin, an uncoupler of oxidative phosphorylation--CCCP, a chelator of intracellular Ca2+--BAPTA, an inhibitor of electrogenic mitochondrial Ca2+ transport--ruthenium red, as well as pyruvate significantly decreased neuronal ROS production induced by GD. GD was accompanied by a progressive decrease in the mitochondrial membrane potential and an increase in free cytosolic calcium ions, [Ca2+](i). Pyruvate, BAPTA, and ruthenium red lowered the GD-induced calcium overload, while pyruvate and ruthenium red also prevented mitochondrial membrane potential changes induced by GD. We conclude that GD-induced ROS production in neurons is related to potential-dependent mitochondrial Ca2+ overload. GD-induced mitochondrial Ca2+ overload in neurons in combination with depletion of energy substrates may result in the decrease of the membrane potential in these organelles.  相似文献   

20.
Venom from the ectoparasitic wasp Nasonia vitripennis induces cellular injury that appears to involve the release of intracellular calcium stores via the activation of phospholipase C, and culminates in oncotic death. A linkage between release of intracellular Ca2+ and oncosis has not been clearly established and was the focus of this study. When BTI-TN-5B1-4 cells were treated with suramin, an uncoupler of G-proteins, venom-induced swelling and oncotic death were inhibited in a dose-dependent manner for at least 24 h. Suramin also blocked increases in free cytosolic [Ca2+], arguing that venom induces calcium mobilization through G-protein signaling pathways. Endoplasmic reticulum (ER) was predicted to be the source of intracellular calcium release, but labeling with the fluorescent probe ER-tracker revealed no indication of organelle swelling or loss of membrane integrity as would be expected if the Ca(2+)-ATPase pump was disabled by crude venom. Incubation of cell monolayers with calmodulin or nitrendipine, modulators of ER calcium release channels, neither attenuated nor augmented the effects of wasp venom. These results suggest that wasp venom stimulates calcium release from ER compartments distinct from RyRs, L-type Ca2+ channels, and the Ca(2+)-ATPase pump, or calcium is released from some other intracellular store. A reduction of mitochondrial membrane potential delta psi(m) appeared to precede a rise in cytosolic free Ca2+ as evidenced by fluorescent microscopy using the calcium-sensitive probe fluo-4 AM. This argues that the initial insult to the cell resulting from venom elicits a rapid loss of (delta psi(m)), followed by unregulated calcium efflux from mitochondria into the cytosol. Mobilization of calcium in this fashion could stimulate cAMP formation, and subsequently promote calcium release from NAADP-sensitive stores.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号