首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Mutation in a gene (symbol Hyp) on the X chromosome causes hypophosphatemia in the mouse. The murine phenotype is a counterpart of X-linked hypophosphatemia in man. Both exhibit impaired renal reabsorption of phosphate in vivo. In vitro studies in the Hyp mouse have shown decreased Na+-dependent phosphate transport at the brush border membrane and abnormal mitochondrial vitamin D metabolism. To determine whether the mutant renal phenotype is intrinsic to the kidney or dependent upon putative extrinsic humoral factor(s) for its expression, we established primary cultures of renal epithelial cells from normal and Hyp male mouse kidneys. The cells are derived from proximal tubule. Initial uptake rates of phosphate and alpha-methyl-D-glucopyranoside (alpha-MG), a metabolically inert analogue of D-glucose, were measured simultaneously in confluent monolayers exhibiting epithelial polarity and tight junctions. The mean phosphate/alpha-MG uptake ratio in Hyp cultures was 82% of that in normal cells (P less than 0.01, n = 96). Moreover, the production of 24,25-dihydroxyvitamin D3 was significantly elevated in confluent cultures of Hyp cells relative to normal cells. These results imply that the Hyp gene is expressed in situ in renal epithelium and suggest that humoral factors are not necessary for the mutant renal phenotype in X-linked hypophosphatemia of mouse and man.  相似文献   

4.
We investigated whether the absence of Phex (phosphate-regulating gene with homologies to endopeptidases on the X chromosome) in the Hyp mouse affects the expression and activity of neprilysin (NEP) and of endothelin-converting enzyme-like endopeptidase (ECEL1/DINE) in bone marrow stromal cells (BMSC) and osteoblasts (Ob). Total NEP-like activity was higher in Ob than in BMSC regardless of genotype, and Hyp cells showed higher activities than normal. Conditioned media (CM) from Hyp BMSC and Ob inhibited inorganic phosphate (P(i)) uptake by mouse proximal tubule cells, and incubating Hyp Ob with phosphoramidon prevented the production of the inhibitor of renal P(i) uptake. A linear relationship was observed between the NEP-like activity of Hyp and normal cells and the inhibition of P(i) uptake. NEP and ECEL1/DINE mRNA levels were higher in Hyp cells than in normal cells, and in situ hybridization of ECEL1/DINE confirmed higher levels of expression in the Hyp mouse than in normal cells. In conclusion, we observed a correlation between the inhibition of P(i) uptake by CM from Hyp cells and elevated NEP-like activities.  相似文献   

5.
The kinetics of Na+-dependent phosphate uptake in rat renal brush-border membrane vesicles were studied under zero-trans conditions at 37 degrees C and the effect of pH on the kinetic parameters was determined. When the pH was lowered it turned out to be increasingly difficult to estimate initial rates of phosphate uptake due to an increase in aspecific binding of phosphate to the brush border membrane. When EDTA or beta-glycerophosphate was added to the uptake medium this aspecific binding was markedly reduced. At pH 6.8, initial rates of phosphate uptake were measured between 0.01 and 3.0 mM phosphate in the presence of 100 mM Na+. Kinetic analysis resulted in a non-linear Eadie-Hofstee plot, compatible with two modes of transport: one major low-affinity system (Km approximately equal to 1.3 mM), high-capacity system (Vmax approximately equal to 1.1 nmol/s per mg protein) and one minor high-affinity (Km approximately equal to 0.03 mM), low-capacity system (Vmax approximately equal to 0.04 nmol/s per mg protein). Na+-dependent phosphate uptake studied far from initial rate conditions i.e. at 15 s, frequently observed in the literature, led to a dramatic decrease in the Vmax of the low-affinity system. When both the extra- and intravesicular pH were increased from 6.2 to 8.5, the Km value of the low-affinity system increased, but when divalent phosphate is considered to be the sole substrate for the low-affinity system then the Km value is no longer pH dependent. In contrast, the Km value of the high-affinity system was not influenced by pH but the Vmax decreased dramatically when the pH is lowered from 8.5 to 6.2. These results suggest that the low-affinity, high-capacity system transports divalent divalent phosphate only while the high-affinity, low-capacity system may transport univalent as well as divalent phosphate. Raising medium sodium concentration from 100 to 250 mM increased Na+-dependent phosphate uptake significantly but the pH dependence of the phosphate transport was not influenced. This observation makes it rather unlikely that pH changes only affect the Na+ site of the Na+-dependent phosphate transport system.  相似文献   

6.
Changes in the kinetics of sodium gradient-dependent brush border Pi transport in response to dietary phosphorus deprivation were analysed using initial rate conditions. In rats adapted to low phosphorus diet the apparent Vmax, determined from a double-reciprocal plot, was increased 2-fold but the apparent Km was not different compared to control rats fed normal phosphorus diet. In contrast when renal adaptation to low phosphorus diet was reversed by fasting the apparent Vmax was not significantly different but the apparent Km was increased 5-fold. The results suggest that regulation of renal Pi transport in vivo may occur not only through changes in the apparent Vmax of the brush border Pi transport system but also, in certain circumstances, through changes in the apparent Km.  相似文献   

7.
Maternofetal transport of L-carnitine, a molecule that shuttles long-chain fatty acids to the mitochondria for oxidation, is thought to be important in preparing the fetus for its lipid-rich postnatal milk diet. Using brush-border membrane (BBM) vesicles from human term placentas, we showed that L-carnitine uptake was sodium and temperature dependent, showed high affinity for carnitine (apparent Km = 11.09 ± 1.32 µM; Vmax = 41.75 ± 0.94 pmol·mg protein–1·min–1), and was unchanged over the pH range from 5.5 to 8.5. L-Carnitine uptake was inhibited in BBM vesicles by valproate, verapamil, tetraethylammonium, and pyrilamine and by structural analogs of L-carnitine, including D-carnitine, acetyl-D,L-carnitine, and propionyl-, butyryl-, octanoyl-, isovaleryl-, and palmitoyl-L-carnitine. Western blot analysis revealed that OCTN2, a high-affinity, Na+-dependent carnitine transporter, was present in placental BBM but not in isolated basal plasma membrane vesicles. The reported properties of OCTN2 resemble those observed for L-carnitine uptake in placental BBM vesicles, suggesting that OCTN2 may mediate most maternofetal carnitine transport in humans. membrane transport; valproate; maternofetal; xenobiotics; acylcarnitine  相似文献   

8.
The effect of the X-linked Hyp mutation on 25-hydroxyvitamin D3 (25-OH-D3) metabolism in mouse renal cortical slices was investigated. Vitamin D replete normal mice and Hyp littermates fed the control diet synthesized primarily 24,25-dihydroxyvitamin D3 (24,25-(OH)2D3); only minimal synthesis of 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) was detected in both genotypes and 1,25-(OH)2D3 formation was not significantly greater in Hyp mice relative to normal littermates, despite hypophosphatemia and hypocalcemia in the mutants. Calcium-deficient diet fed to normal mice reduced serum calcium (p less than 0.01), increased renal 25-hydroxyvitamin D3-1-hydroxylase (1-OHase) activity (p less than 0.05), and decreased 25-hydroxyvitamin D3-24-hydroxylase (24-OHase) activity (p less than 0.05). In contrast, Hyp littermates on the calcium-deficient diet had decreased serum calcium (p less than 0.01), without significant changes in the renal metabolism of 25-OH-D3. Both normal and Hyp mice responded to the vitamin D-deficient diet with a fall in serum calcium (p less than 0.01), significantly increased renal 1-OHase, and significantly decreased renal 24-OHase activities. In Hyp mice, the fall in serum calcium on the vitamin D-deficient diet was significantly greater than that observed on the calcium-deficient diet. Therefore the ability of Hyp mice to increase renal 1-OHase activity when fed the vitamin D-deficient diet and their failure to do so on the calcium-deficient diet may be related to the resulting degree of hypocalcemia. The results suggest that although Hyp mice can respond to a disturbance of calcium homeostasis, the in vivo signal for the stimulation of renal 1-OHase activity may be set at a different threshold in the Hyp mouse; i.e. a lower serum calcium concentration is necessary for Hyp mice to initiate increased synthesis of 1,25(-OH)2D3.  相似文献   

9.
The coupling of phosphate and glucose transport to sodium in brush-border membrane vesicles from rat kidney cortex was studied after chemical modification of arginine residues by phenylglyoxal. Phosphate (10 mM) and sodium (20 mM) uptakes were linear for 6 s and stimulated in the presence of their cosubstrate. The sodium:phosphate stoichiometry measured by a direct method was 1.74. Sodium-independent phosphate and glucose influx were found to be unaffected by phenylglyoxylation. Phosphate- or glucose-independent sodium influx also remained unaltered by the treatment. However, phosphate influx measured with sodium was inhibited by 69% and sodium influx measured with phosphate was inhibited by 40%. When these values were corrected for uncoupled fluxes, the sodium influx coupled to phosphate and the phosphate influx coupled to sodium were inhibited by 93 and 95%, respectively. Glucose influx measured in the presence of sodium was inhibited by 36% and sodium influx in the presence of glucose was reduced by 39%. When the values were corrected for diffusion, these inhibitions were 95 and 100%, respectively. We conclude that the coupling of phosphate and glucose to sodium fluxes by the renal carriers requires the participation of arginine residue(s) in the translocation process. Modification of this arginine by phenylglyoxal leads to a marked inhibition of coupling. These results suggest the implication of arginine residues in the molecular coupling for both glucose and phosphate sodium symporters.  相似文献   

10.
The transport characteristics of aminocephalosporin antibiotics, possessing an alpha-amino group and a carboxyl group, in brush-border membranes isolated from rabbit small intestine have been studied by a rapid filtration technique. The uptake of cephradine by brush-border membrane vesicles was stimulated by the countertransport effect of dipeptides, which indicates the existence of a common carrier transport system. An inward H+ gradient ([pH]i = 7.5 to 8.4, [pH]o = 6.0) stimulated cephradine uptake against a concentration gradient (overshoot phenomenon), and this stimulation was reduced when the H+ gradient was subjected to rapid dissipation by the presence of carbonyl cyanide p-trifluoromethoxyphenylhydrazone, a protonophore. A valinomycin-induced K+ diffusion potential (interior-negative) stimulated H+ gradient-dependent cephradine uptake without altering the equilibrium value. The uptake of other aminocephalosporins (cefadroxil, cefaclor, cephalexin) was also stimulated in the presence of an inward H+ gradient, while the uptake of cephalosporins without the alpha-amino group (cefazolin, cefotiam) was not changed in the presence or absence of the H+ gradient. These results suggest that the transport of aminocephalosporins can be driven actively by an inward H+ gradient via the dipeptide transport system in the intestinal brush-border membranes, and that the process results in the transfer of a positive charge.  相似文献   

11.
The mouse congenital polycystic kidney (cpk) mutation produces a condition that resembles human autosomal recessive polycystic kidney disease (ARPKD) in its pattern of inheritance, clinical progression, and histopathology. Inheritance of this mouse mutation in crosses segregating the Rb(12.14)8Rma translocation chromosome and various DNA markers of Chromosome 12 have localized cpk to a site near D12Nyu2, approximately 7 cM from the centromere of Chromosome 12. This result suggests that the homologous PKD2 gene should be localized to either human chromosome 2p23-p25 or chromosome 7q22-q31.  相似文献   

12.
13.
Transport of GSH was studied in isolated rat kidney cortical brush-border membrane vesicles in which gamma-glutamyltransferase had been inactivated by a specific affinity labeling reagent, L-(alpha S,5S)-alpha-amino-3-chloro-4,5-dihydro-5-isoxazoleacetic acid (AT-125). Transport of intact 2-3H-glycine-labeled GSH occurred into an osmotically active intravesicular space of AT-125-treated membranes. The initial rate of transport followed saturation kinetics with respect to GSH concentrations; an apparent Km of 0.21 mM and Vmax of 0.23 nmol/mg protein X 20 were calculated at 25 degrees C with a 0.1 M NaCl gradient (vesicle inside less than vesicle outside). Sodium chloride in the transport medium could be replaced with KCl without affecting transport activity. The rate of GSH uptake was enhanced by replacing KCl in the transport medium with K2SO4, providing a less permeant anion, and was reduced by replacing KCl with KSCN, providing a more permeant anion. The rate of GSH transport markedly decreased in the absence of a K+ gradient across the vesicular membranes and was enhanced by a valinomycin-induced K+ diffusion potential (vesicle-inside-positive). These results indicate that GSH transport is dependent on membrane potential and involves the transfer of negative charge. The rate of GSH transport was inhibited by S-benzyl glutathione but not by glycine, glutamic acid, and gamma-glutamyl-p-nitroanilide. When incubated with [2-3H]glycine-labeled GSH, intact untreated vesicles also accumulated radioactivity; the rate of uptake was significantly higher in a Na+ gradient than in a K+ gradient. Sodium-dependent transport, but not sodium-independent uptake, was almost completely inhibited by a high concentration of unlabeled glycine. At equilibrium, most of the radioactivity which accumulated in the intravesicular space was accounted for by free glycine. These results suggest that GSH which is secreted into the tubular lumen by a specific translocase in the lumenal membranes or filtered by the glomerulus may be degraded in situ by membranous gamma-glutamyltransferase and peptidase activities which hydrolyze peptide bonds of cysteinylglycine and its derivatives. The resulting free amino acids can be reabsorbed into tubule cells by sodium-dependent transport systems in renal cortical brush-border membranes.  相似文献   

14.
Betaglycan is an accessory receptor for the transforming growth factor-β (TGFβ) superfamily, many members of which play key roles in kidney development. The purpose of this study was to define the role of this co-receptor on fetal murine kidney development. Stereological examination of embryonic and adult betaglycan heterozygous kidneys revealed augmented nephron number relative to littermate controls. Fetal heterozygous kidneys exhibited accelerated ureteric branching, which correlated with augmented nephron development at embryonic day (e) 15.5. In contrast, betaglycan null kidneys exhibited renal hypoplasia from e13.5 and reduced nephron number at e15.5. Quantitative real-time PCR analysis of e11.5-e14.5 kidneys demonstrated that heterozygous kidneys exhibited a transient decrease in Bmp4 expression at e11.5 and a subsequent cascade of changes in the gene regulatory network that governs metanephric development, including significant increases in Pax2, Eya1, Gdnf, Ret, Wnt4, and Wt1 expression. Conversely, gene expression in null kidneys was normal until e13.5, when significant reductions were detected in the expression of Bmp4 as well as other key metanephric regulatory genes. Tgfb1 and Tgfb2 mRNA expression was down-regulated in both nulls and heterozygotes at e13.5 and e14.5. The opposing morphological and molecular phenotypes in betaglycan heterozygote and null mutants demonstrate that the levels of betaglycan must be tightly regulated for optimal kidney development.  相似文献   

15.
Kallikrein (kininogenase) in the mouse nephron: effect of dietary potassium   总被引:1,自引:0,他引:1  
Kininogenase activity of kallikrein was measured in microdissected mouse nephron segments using kininogen from dog plasma and a radioimmunoassay for bradykinin. When single nephron segments were examined, results showed a large scatter. This was found to be due to heterogeneity of distal convoluted tubules (DCT) from different nephrons, since replicate measurements in pools of DCT structures did not show this degree of variation. Nearly 20% of activity was accessible to extracellular substrate when freshly dissected segments were incubated in isoosmotic media. Freezing and thawing which markedly releases activity of intracellular enzymes, did not significantly elevate kininogenase activity. On the other hand deoxycholate and trypsin treatment increased tubular kininogenase activity in an additive fashion. A detailed analysis of microdissected tubule fragments revealed that kallikrein is concentrated in late distal convoluted tubule before entering a branching point (connecting tubule). In contrast initial portions of distal convoluted tubules and cortical collecting tubules contained only little kallikrein activity. Potassium rich diet increased basal and total activity 5-fold, when compared to a potassium poor diet.  相似文献   

16.
We investigated the reabsorptional system for carnitine in the kidney to elucidate the mechanism of carnitine deficiency in juvenile visceral steatosis (jvs) mice. Jvs mice had a higher rate of carnitine excretion at 10 days after birth than the controls, in spite of having no pathological acylcarnitine in the urine. In an experiment to assay the uptake of carnitine using kidney slices, homozygous mutants showed significantly lower rates of Na-dependent carnitine uptake than controls. Heterozygous mice showed values of transport activity intermediate between homozygous mutants and homozygous controls. Scatchard plots (transport activity versus transport activity/carnitine concentration) revealed that the homozygous mutants had a defect in the hihg affinity site (Km = 58 μM) in the Na-dependent carnitine transport system in the kidney. These results indicate that the primary defect of jvs mice is most probably related to the system for reabsorption of carnitine in the kidney.  相似文献   

17.
The mouse congenital polycystic kidney (cpk) mutation produces a condition that resembles human autosomal recessive polycystic kidney disease (ARPKD) in its pattern of inheritance, clinical progression, and histopathology. Inheritance of this mouse mutation in crosses segregating the Rb(12.14)8Rma translocation chromosome and various DNA markers of Chromosome 12 have localized cpk to a site near D12Nyu2, approximately 7 cM from the centromere of Chromosome 12. This result suggests that the homologous PKD2 gene should be localized to either human chromosome 2p23-p25 or chromosome 7q22-q31.  相似文献   

18.
19.
20.
The HFE (HLA-H) gene is a strong candidate gene for hereditary haemochromatosis and was localized on the short arm of chromosome 6 to 6p21.3-p22. In addition, the sequence of the homologous mouse and rat cDNA and a partial sequence from the mouse gene have been reported recently. In this report, we describe the location of the human and the mouse HFE (HLA-H) gene within the histone gene clusters on the human chromosome 6 and the mouse chromosome 13. Both the human and the murine gene were located on syntenic regions within the histone gene clusters in the vicinity of the histone H1t gene. The genomic sequence of the human HFE (HLA-H) gene and the 3′ portion of the homologous mouse gene were determined. Comparison of the genomic sequences from man and mouse and the cDNA sequence from rat shows significant similarities, also beyond the transcribed region of the mouse gene. J. Cell. Biochem. 69:117–126, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号