首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 156 毫秒
1.
The paramagnetic effect of a spin-labeled sulfonyl fluoride, 4-(2,2,5,5-tetramethylpyrrolidine-1-oxyl)-p-fluorosulfonylbenzamide (p-V), when bound to the active site serine residue of the proteases, bovine plasma-activated protein C (APC) and des(1–41)-light-chain-activated protein C (GDAPC), on the longitudinal relaxation rate (T1) of Tl+ bound to these same proteins has been examined by 205Tl+-NMR spectroscopy. The substantial shortening by bound p-V of the T1 for Tl+ has been employed to estimate the distances between Tl+ and the unpaired electron on each protein surface. Assuming that a single cation-binding site exists on each enzyme, electron-nuclear distances of 3.4–3.9 Å have been calculated for each protein. This suggests that the removal of 41 amino acid residues and, concomitantly, all γ-carboxyglutamic acid, from the amino-terminal of the light chain of APC, does not significantly affect the protein topography in the region of the molecule probed by this technique.  相似文献   

2.
Superfusion of heart cells with hyperosmotic solution causes cell shrinkage and inhibition of membrane ionic currents, including delayed-rectifer K+ currents. To determine whether osmotic shrinkage also inhibits inwardly-rectifying K+ current (IK1), guinea-pig ventricular myocytes in the perforated-patch or ruptured-patch configuration were superfused with a Tyrodes solution whose osmolarity (T) relative to isosmotic (1T) solution was increased to 1.3–2.2T by addition of sucrose. Hyperosmotic superfusate caused a rapid shrinkage that was accompanied by a negative shift in the reversal potential of Ba2+-sensitive IK1, an increase in the amplitude of outward IK1, and a steepening of the slope of the inward IK1-voltage (V) relation. The magnitude of these effects increased with external osmolarity. To evaluate the underlying changes in chord conductance (GK1) and rectification, GK1-V data were fitted with Boltzmann functions to determine maximal GK1 (GK1max) and voltage at one-half GK1max (V0.5). Superfusion with hyperosmotic sucrose solutions led to significant increases in GK1max (e.g., 28±2% with 1.8T), and significant negative shifts in V0.5 (e.g., –6.7±0.6 mV with 1.8T). Data from myocytes investigated under hyperosmotic conditions that do not induce shrinkage indicate that GK1max and V0.5 were insensitive to hyperosmotic stress per se but sensitive to elevation of intracellular K+. We conclude that the effects of hyperosmotic sucrose solutions on IK1 are related to shrinkage-induced concentrating of intracellular K+.  相似文献   

3.
It is known that permeability of the inner mitochondrial membrane is low to most univalent cations (K+, Na+, H+) but high to Tl+. Swelling, state 4, state 3, and 2,4-dinitrophenol (DNP)-stimulated respiration as well as the membrane potential (ΔΨmito) of rat liver mitochondria were studied in media containing 0–75 mM TlNO3 either with 250 mM sucrose or with 125 mM nitrate salts of other monovalent cations (KNO3, or NaNO3, or NH4NO3). Tl+ increased permeability of the inner mitochondrial membrane to K+, Na+, and H+, that was manifested as stimulation of the swelling of nonenergized and energized mitochondria as well as via an increase of state 4 and dissipation of ΔΨmito. These effects of Tl+ increased in the order of sucrose <K+ <Na+ ≤ NH4+. They were stimulated by inorganic phosphate and decreased by ADP, Mg2+, and cyclosporine A. Contraction of energized mitochondria, swollen in the nitrate media, was markedly inhibited by quinine. It suggests participation of the mitochondrial K+/H+ exchanger in extruding of Tl+-induced excess of univalent cations from the mitochondrial matrix. It is discussed that Tl+ (like Cd2+ and other heavy metals) increases the ion permeability of the inner membrane of mitochondria regardless of their energization and stimulates the mitochondrial permeability transition pore in low conductance state. The observed decrease of state 3 and DNP-stimulated respiration in the nitrate media resulted from the mitochondrial swelling rather than from an inhibition of respiratory enzymes as is the case with the bivalent heavy metals.  相似文献   

4.
Summary The conductance of the Ca2+-activated K+ channel (g K(Ca)) of the human red cell membrane was studied as a function of membrane potential (V m ) and extracellular K+ concentration ([K+]ex). ATP-depleted cells, with fixed values of cellular K+ (145mm) and pH (7.1), and preloaded with 27 m ionized Ca were transferred, with open K+ channels, to buffer-free salt solutions with given K+ concentrations. Outward-current conductances were calculated from initial net effluxes of K+, correspondingV m , monitored by CCCP-mediated electrochemical equilibration of protons between a buffer-free extracellular and the heavily buffered cellular phases, and Nernst equilibrium potentials of K ions (E K) determined at the peak of hyperpolarization. Zero-current conductances were calculated from unidirectional effluxes of42K at (V m –E K)0, using a single-file flux ratio exponent of 2.7. Within a [K+]ex range of 5.5 to 60mm and at (V m –E K) 20 mV a basic conductance, which was independent of [K+]ex, was found. It had a small voltage dependence, varying linearly from 45 to 70 S/cm2 between 0 and –100 mV. As (V m –E K) decreased from 20 towards zero mVg K(Ca) increased hyperbolically from the basic value towards a zero-current value of 165 S/cm2. The zero-current conductance was not significantly dependent on [K+]ex (30 to 156mm) corresponding toV m (–50 mV to 0). A further increase ing K(Ca) symmetrically aroundE K is suggested as (V m –E K) becomes positive. Increasing the extracellular K+ concentration from zero and up to 3mm resulted in an increase ing K(Ca) from 50 to 70 S/cm2. Since the driving force (V m –E K) was larger than 20 mV within this range of [K+]ex this was probably a specific K+ activation ofg K(Ca). In conclusion: The Ca2+-activated K+ channel of the human red cell membrane is an inward rectifier showing the characteristic voltage dependence of this type of channel.  相似文献   

5.
Summary Loop diuretic-sensitive (Na+,K+,Cl)-cotransport activity was found to be present in basolateral membrane vesicles of surface and crypt cells of rabbit distal colon epithelium. The presence of grandients of all three ions was essential for optimal transport activity (Na+,K+) gradien-driven36Cl fluxes weree half-maximally inhibited by 0.14 m bumetanide and 44 m furosimide. While86Rb uptake rates showed hyperbolic dependencies on Na+ and K+ concentrations with Hill coefficients of 0.8 and 0.9, respectively, uptakes were sigmoidally related to the Cl concentration, Hill coefficient 1.8, indicating a 1 Na+: 1 K+:2 Cl stoichiometry of ion transport.The interaction of putative (Na+, K+, Cl)-cotransport proteins with loop diuretics was studied from equilibrium-binding experiments using [3H]-bumetanide. The requirement for the simulataneous presence of Na+,K+, and Cl, saturability, reversibility, and specificity for diuretics suggest specific binding to the (Na+, K+, Cl)-cotransporter. [3H]-bumetanide recognizes a minimum of two classes of diuretic receptors sites. high-affinity (K D1=0.13 m;B max1 =6.4 pmol/mg of protein) and low-affinity (K D2=34 m;B max2=153 pmol/mg of protein) sites. The specific binding to the high-affinity receptor was found to be linearly competitive with Cl (K 1=60mm), whereas low-affinity sites seem to be unaffected by Cl. We have shown that only high-affinity [3H]-bumetanide binding correlates with transport inhibition raising questions on the physiological significance of diuretic receptor site heterogeneity observed in rabbit distal colon epithelium.  相似文献   

6.
Summary Bidirectional transepithelial K+ flux measurements across high-resistance epithelial monolayers of MDCK cells grown upon millipore filters show no significant net K+ flux.Measurements of influx and efflux across the basal-lateral and apical cell membranes demonstrate that the apical membranes are effectively impermeable to K+.K+ influx across the basal-lateral cell membranes consists of an ouabain-sensitive component, an ouabain-insensitive component, an ouabain-insensitive but furosemide-sensitive component, and an ouabain-and furosemide-insensitive component.The action of furosemide upon K+ influx is independent of (Na+–K+)-pump inhibition. The furosemide-sensitive component is markedly dependent upon the medium K+, Na+ and Cl content. Acetate and nitrate are ineffective substitutes for Cl, whereas Br is partially effective. Partial Cl replacement by NO3 gives a roughly linear increase in the furosemide-sensitive component. Na+ replacement by choline abolishes the furosemide-sensitive component, whereas Li+ is a partially effective replacement. Partial Na+ replacement with choline gives an apparent affinity of 7mm Na, whereas variation of the external K+ content gives an affinity of the furosemide-sensitive component of 1.0mm.Furosemide inhibition is of high affinity (K 1/2=3 m). Piretanide, ethacrynic acid, and phloretin inhibit the same component of passive K+ influx as furosemide; amiloride, 4,-aminopyridine, and 2,4,6-triaminopyrimidine partially so. SITS was ineffective.Externally applied furosemide and Cl replacement by NO 3 inhibit K+ efflux across the basal-lateral membranes indicating that the furosemide-sensitive component consists primarily of KK exchange.  相似文献   

7.
Summary Addition of glucose or the nonmetabolizable analogue -methyl-d-glucoside to rabbit proximal tubules suspended in a glucoseand alanine-free buffer caused a sustained increase in intracellular Na+ content (+43±7 nmol · (mg protein)–1) and a concomitant but larger decrease in K+ content (–72±11 nmol· (mg protein)–1). A component of the net K+ efflux was Ba2+ insensitive, and was inhibited by high (1mm) but not low (10 m) concentrations of the diuretics, furosemide and bumetanide. The increase in intracellular Na+ content is consistent with the view that the increased rates of Na+ and water transport seen in the proximal tubule in the presence of glucose can be attributed (at least in part) to a stimulation of basolateral pump activity by an increased [Na+] i .  相似文献   

8.
Vesicles derived from maize roots retain a membrane bound H+-ATPase that is able to pump H+ at the expense of ATP hydrolysis. In this work it is shown that heparin, fucose-branched chondroitin sulfate and dextran sulfate 8000 promote a shift of the H+-ATPase optimum pH from 6.0 to 7.0. This shift is a result of a dual effect of the sulfated polysaccharides, inhibition at pH 6.0 and activation at pH 7.O. At pH 6.0 dextran 8000 promotes an increase of the apparent Km for ATP from 0.28 to 0.95 mM and a decrease of the Vmax from 14.5 to 7.1 mol Pi/mg · 30 min–1. At pH 7.0 dextran 8000 promotes an increase in Vmax from 6.7 to 11.7 mol Pi/mg · 30 min–1. In the presence of lysophosphatidylcholine the inhibitory effect of the sulfated polysaccharides observed at pH 6.0 was not altered but the activation of pH 7.0 decreased. It was found that in the presence of sulfated polysaccharides the ATPase became highly sensitive to K+ and Na+. Both the inhibition at pH 6.0 and the activation promoted by the polysaccharide were antagonized by monovalent cations (K+>Na+Li+).Abbreviations Mops 4-morpholinopropanesulfonic acid - EDTA ethylenediaminetetraacetic acid - ACMA 9-amino-6-chloro-2-methoxyacridine - FCCP carbonyl cyanide p(trifluoromethoxy)-phenylhyrazone  相似文献   

9.
Summary The pH-stat technique has been used to measure H+ fluxes in gastric mucosa and urinary bladder in vitro while keeping mucosal pH constant. We now report application of this method in renal tubules. We perfused proximal tubules with double-barreled micropipettes, blocked luminal fluid columns with oil and used a double-barreled Sb/reference microelectrode to measure pH, and Sb or 1n HC1-filled microelectrodes to inject OH or H+ ions into the tubule lumen. By varying current injection, pH was kept constant at adjustable levels by an electronic clamping circuit. We could thus obtain ratios of current (nA) to pH change (apparent H+-ion conductance). These ratios were reduced after luminal 10–4 m acetazolamide, during injection of OH, but they increased during injection of H+. The point-like injection source causes pH to fall off with distance from the injecting electrode tip even in oil-blocked segments. Therefore, a method analogous to cable analysis was used to obtain H+ fluxes per cm2 epithelium. The relation betweenJ H + and pH gradient showed saturation kinetics of H fluxes, both during OH and H+ injection. This kinetic behavior is compatible with inhibition ofJ H by luminal H+. It is also compatible with dependence on Na+ and H+ gradients of a saturable Na/H exchanger. H+-ion back-flux into the tubule lumen also showed saturation kinetics. This suggests that H+ flow is mediated by a membrane component, most likely the Na+–H+ exchanger.  相似文献   

10.
Summary The effect of extracellular and intracellular Na+ (Na o + , Na i + ) on ouabain-resistant, furosemide-sensitive (FS) Rb+ transport was studied in human erythrocytes under varying experimental conditions. The results obtained are consistent with the view that a (1 Na++1 K++2 Cl) cotransport system operates in two different modes: modei) promoting bidirectional 11 (Na+–K+) cotransport, and modeii) a Na o + -independent 11 K o + /K i + exchange requiring Na i + which, however, is not extruded. The activities of the two modes of operation vary strictly in parallel to each other among erythrocytes of different donors and in cell fractions of individual donors separated according to density. Rb+ uptake through Rb o + /K i + exchange contributes about 25% to total Rb+ uptake in 145mm NaCl media containing 5mm RbCl at normal Na i + (pH 7.4). Na+–K+ cotransport into the cells occurs largely additive to K+/K+ exchange. Inward Na+–Rb+ cotransport exhibits a substrate inhibition at high Rb o + . With increasing pH, the maximum rate of cotransport is accelerated at the expense of K+/K+ exchange (apparent pK close to pH 7.4). The apparentK m Rb o + of Na+–K+ cotransport is low (2mm) and almost independent of pH, and high for K+/K+ exchange (10 to 15mm), the affinity increasing with pH. The two modes are discussed in terms of a partial reaction scheme of (1 Na++1 K++2 Cl) cotransport with ordered binding and debinding, exhibiting a glide symmetry (first on outside = first off inside) as proposed by McManus for duck erythrocytes (McManus, T.J., 1987,Fed. Proc., in press). N-ethylmaleimide (NEM) chemically induces a Cl-dependent K+ transport pathway that is independent of both Na o + and Na i + . This pathway differs in many properties from the basal, Na o + -independent K+/K+ exchange active in untreated human erythrocytes at normal cell volume. Cell swelling accelerates a Na o + -independent FS K+ transport pathway which most probably is not identical to basal K+/K+ exchange. K o + o +
  • o + o 2+ reduce furosemide-resistant Rb+ inward leakage relative to choline o + .  相似文献   

  • 设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号