首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Tightly bound oxalacetate and the activation of succinate dehydrogenase   总被引:1,自引:0,他引:1  
Soluble succinate dehydrogenase prepared from acetone powders of submitochondrial particles is almost entirely in the deactivated state and contains 0.5 mole of oxalacetate (OAA) per mole of histidyl flavin. OAA is dissociated by succinate, malonate, IDP, ITP, and high concentrations of anions at elevated temperatures, but not significantly in the cold, with concurrent activation of the enzyme; the high energy of activation observed for OAA release and for activation suggests that a conformation change in the protein is involved. On removal of OAA, a reversible activation-deactivation cycle dependent on the pH is demonstrable. Submitochondrial particles behave similarly but appear to contain 1 mole of tightly bound OAA per histidyl flavin in the deactivated state.  相似文献   

2.
The membrane fraction of Bacillus subtilis catalyzes the reduction of fumarate to succinate by NADH. The activity is inhibited by low concentrations of 2-(heptyl)-4-hydroxyquinoline-N-oxide (HOQNO), an inhibitor of succinate: quinone reductase. In sdh or aro mutant strains, which lack succinate dehydrogenase or menaquinone, respectively, the activity of fumarate reduction by NADH was missing. In resting cells fumarate reduction required glycerol or glucose as the electron donor, which presumably supply NADH for fumarate reduction. Thus in the bacteria, fumarate reduction by NADH is catalyzed by an electron transport chain consisting of NADH dehydrogenase (NADH:menaquinone reductase), menaquinone, and succinate dehydrogenase operating in the reverse direction (menaquinol:fumarate reductase). Poor anaerobic growth of B. subtilis was observed when fumarate was present. The fumarate reduction catalyzed by the bacteria in the presence of glycerol or glucose was not inhibited by the protonophore carbonyl cyanide m-chlorophenyl hydrazone (CCCP) or by membrane disruption, in contrast to succinate oxidation by O2. Fumarate reduction caused the uptake by the bacteria of the tetraphenyphosphonium cation (TPP+) which was released after fumarate had been consumed. TPP+ uptake was prevented by the presence of CCCP or HOQNO, but not by N,N'-dicyclohexylcarbodiimide, an inhibitor of ATP synthase. From the TPP+ uptake the electrochemical potential generated by fumarate reduction was calculated (Deltapsi = -132 mV) which was comparable to that generated by glucose oxidation with O2 (Deltapsi = -120 mV). The Deltapsi generated by fumarate reduction is suggested to stem from menaquinol:fumarate reductase functioning in a redox half-loop.  相似文献   

3.
Menaquinol-fumarate oxidoreductase of Escherichia coli is a four-subunit membrane-bound complex that catalyzes the final step in anaerobic respiration when fumarate is the terminal electron acceptor. The catalytic domain of fumarate reductase consists of the FrdA subunit, which contains the active site, and a FAD prosthetic group covalently attached to His44, plus the FrdB subunit which contains at least two of the three nonidentical iron-sulfur clusters of the enzyme. To examine the role of covalently bound FAD in enzyme activity and electron transfer during anaerobic cell growth, site-directed mutagenesis was used to alter His44 of the FrdA subunit to a Ser, Cys, or Tyr residue. The resulting mutant enzyme complexes that were synthesized associated normally with the cytoplasmic membrane, but had decreased ability (greater than 70%) to reduce fumarate with reduced benzyl viologen, an artificial electron donor of low redox potential (Em = -359 mV; Clark, W. M. (1972) Oxidation-Reduction Potentials of Organic Systems, Robert E. Kreiger Publishing Co., Melbourne, FL). Even lower activities were measured when the higher potential, natural electron donor menaquinol was used, which, however, correlated with the slower growth rates of the different mutant complexes. In contrast to the normal enzyme, the mutant enzyme complexes were unable to oxidize succinate. Substitution of Arg for His44 produced a totally inactive enzyme complex that permitted no cell growth on nonfermentable substrates with fumarate as electron acceptor. All four mutant complexes contained noncovalently bound FAD in stoichiometric amounts. These data indicate a unique role of the 8 alpha-[N(3)-histidyl] FAD linkage in enzyme activity, by raising the redox potential of free FAD to permit reduction by both menaquinol and succinate.  相似文献   

4.
5.
The activity of the respiratory enzyme fumarate reductase (FRD) is dependent on the covalent attachment of the redox cofactor flavin adenine dinucleotide (FAD). We demonstrate that the FAD assembly factor SdhE, which flavinylates and activates the respiratory enzyme succinate dehydrogenase (SDH), is also required for the complete activation and flavinylation of FRD. SdhE interacted with, and flavinylated, the flavoprotein subunit FrdA, whilst mutations in a conserved RGxxE motif impaired the complete flavinylation and activation of FRD. These results are of widespread relevance because SDH and FRD play an important role in cellular energetics and are required for virulence in many important bacterial pathogens.  相似文献   

6.
Geobacter sulfurreducens AM-1 can use methacrylate as a terminal electron acceptor for anaerobic respiration. In this paper, we report on the purification and properties of the periplasmic methacrylate reductase, and show that the enzyme is dependent on the presence of a periplasmic cytochrome c (apparent K(m) = 0.12 microM). The methacrylate reductase was found to be composed of only one polypeptide with an apparent molecular mass of 50 kDa and to contain, bound tightly but not covalently, 1 mol of FAD per mol. The N-terminal amino acid sequence showed sequence similarity to a periplasmic fumarate reductase from Shewanella putrefaciens. However, methacrylate reductase did not catalyze the reduction of fumarate. The periplasmic cytochrome c, which was also purified, had an apparent molecular mass of 30 kDa and contained approximately 4 mol of heme.mol(-1). Cells of G. sulfurreducens AM-1 grown on acetate and methacrylate as an energy source were found to contain all the enzymes required for the oxidation of acetate to CO(2) via the citric acid cycle.  相似文献   

7.
The mechanism of fumarate reduction in Geobacter sulfurreducens was investigated. The genome contained genes encoding a heterotrimeric fumarate reductase, FrdCAB, with homology to the fumarate reductase of Wolinella succinogenes and the succinate dehydrogenase of Bacillus subtilis. Mutation of the putative catalytic subunit of the enzyme resulted in a strain that lacked fumarate reductase activity and was unable to grow with fumarate as the terminal electron acceptor. The mutant strain also lacked succinate dehydrogenase activity and did not grow with acetate as the electron donor and Fe(III) as the electron acceptor. The mutant strain could grow with acetate as the electron donor and Fe(III) as the electron acceptor if fumarate was provided to alleviate the need for succinate dehydrogenase activity in the tricarboxylic acid cycle. The growth rate of the mutant strain under these conditions was faster and the cell yields were higher than for wild type grown under conditions requiring succinate dehydrogenase activity, suggesting that the succinate dehydrogenase reaction consumes energy. An orthologous frdCAB operon was present in Geobacter metallireducens, which cannot grow with fumarate as the terminal electron acceptor. When a putative dicarboxylic acid transporter from G. sulfurreducens was expressed in G. metallireducens, growth with fumarate as the sole electron acceptor was possible. These results demonstrate that, unlike previously described organisms, G. sulfurreducens and possibly G. metallireducens use the same enzyme for both fumarate reduction and succinate oxidation in vivo.  相似文献   

8.
The Na+-translocating NADH:ubiquinone oxidoreductase (Na+-NQR) from Vibrio harveyi was purified and studied by EPR and visible spectroscopy. Two EPR signals in the NADH-reduced enzyme were detected: one, a radical signal, and the other a line around g = 1.94, which is typical for a [2Fe-2S] cluster. An E(m) of -267 mV was found for the Fe-S cluster (n = 1), independent of sodium concentration. The spin concentration of the radical in the enzyme was approximately the same under a variety of redox conditions. The time course of Na+-NQR reduction by NADH indicated the presence of at least two different flavin species. Reduction of the first species (most likely, a FAD near the NADH dehydrogenase site) was very rapid in both the presence and absence of sodium. Reduction of the second flavin species (presumably, covalently bound FMN) was slower and strongly dependent on sodium concentration, with an apparent activation constant for Na+ of approximately 3.4 mM. This is very similar to the Km for Na+ in the steady-state quinone reductase reaction catalyzed by this enzyme. These data led us to conclude that the sodium-dependent step within the Na+-NQR is located between the noncovalently bound FAD and the covalently bound FMN.  相似文献   

9.
Fumarate respiration is one of the most widespread types of anaerobic respiration. The soluble fumarate reductase of Shewanella putrefaciens MR-1 is a periplasmic tetraheme flavocytochrome c. The crystal structures of the enzyme were solved to 2.9 A for the uncomplexed form and to 2.8 A and 2.5 A for the fumarate and the succinate-bound protein, respectively. The structures reveal a flexible capping domain linked to the FAD-binding domain. A catalytic mechanism for fumarate reduction based on the structure of the complexed protein is proposed. The mechanism for the reverse reaction is a model for the homologous succinate dehydrogenase (complex II) of the respiratory chain. In flavocytochrome c fumarate reductase, all redox centers are in van der Waals contact with one another, thus providing an efficient conduit of electrons from the hemes via the FAD to fumarate.  相似文献   

10.
The thermodynamic and catalytic properties of flavocytochrome c3 from Shewanella frigidimarina have been studied using a combination of protein film voltammetry and solution methods. As measured by solution kinetics, maximum catalytic efficiencies for fumarate reduction (kcat/Km = 2.1 x 10(7) M-1 s-1 at pH 7.2) and succinate oxidation (kcat/Km = 933 M-1 s-1 at pH 8.5) confirm that flavocytochrome c3 is a unidirectional fumarate reductase. Very similar catalytic properties are observed for the enzyme adsorbed to monolayer coverage at a pyrolytic graphite "edge" electrode, thus confirming the validity of the electrochemical method for providing complementary information. In the absence of fumarate, the adsorbed enzyme displays a complex envelope of reversible redox signals which can be deconvoluted to yield the contributions from each active site. Importantly, the envelope is dominated by the two-electron signal due to FAD [E degrees ' = -152 mV vs the standard hydrogen electrode (SHE) at pH 7.0 and 24 degrees C] which enables quantitative examination of this center, the visible spectrum of which is otherwise masked by the intense absorption bands due to the hemes. The FAD behaves as a cooperative two-electron center with a pH-dependent reduction potential that is modulated (pKox at 6.5) by ionization of a nearby residue. In conjunction with the kinetic pKa values determined for the forward and reverse reactions (7.4 and 8.6, respectively), a mechanism for fumarate reduction, incorporating His365 and an anionic form of reduced FAD, is proposed. The reduction potentials of the four heme groups, estimated by analysis of the underlying envelope, are -102, -146, -196, and -238 mV versus the SHE at pH 7.0 and 24 degrees C and are comparable to those determined by redox potentiometry.  相似文献   

11.
The succinate dehydrogenases (SDH: soluble, membrane-extrinsic subunits of succinate:quinone oxidoreductases) from Escherichia coli and beef heart mitochondria each adsorb at a pyrolytic graphite 'edge' electrode and catalyse the interconversion of succinate and fumarate according to the electrochemical potential that is applied. E. coli and beef heart mitochondrial SDH share only ca. 50% homology, yet the steady-state catalytic activities, when measured over a continuous potential range, display very similar catalytic operating potentials and energetic biases (the relative ability to catalyse succinate oxidation vs. fumarate reduction). Importantly, E. coli SDH also exhibits the interesting 'tunnel-diode' behaviour previously reported for the mitochondrial enzyme. Thus as the potential is lowered below ca. -60 mV (pH 7, 38 degrees C) the rate of catalytic fumarate reduction decreases abruptly despite an increase in driving force. Since the homology relates primarily to residues associated with active site regions, the marked similarity in the voltammetry reaffirms our previous conclusions that the tunnel-diode behaviour is a characteristic property of the enzyme active site. Thus, succinate dehydrogenase is an excellent fumarate reductase, but its activity in this direction is limited to a very specific range of potential.  相似文献   

12.
Resolution of the fumarate reductase complex (ABCD) of Escherichia coli into reconstitutively active enzyme (AB) and a detergent preparation containing peptides C and D resulted in loss of quinone reductase activity, but the phenazine methosulfate or fumarate reductase activity of the enzyme was unaffected. An essential role for peptides C and D in quinone reduction was confirmed by restoration of this activity on recombination of the respective preparations. Neither peptide C nor peptide D by itself proved capable of permitting quinone reduction and membrane binding by the enzyme when E. coli cells were transformed with plasmids coding for the enzyme and the particular peptides. Transformation of a plasmid coding for all subunits resulted in a 30-fold increase in membrane-bound complex, which exhibited, however, turnover numbers for succinate oxidation and fumarate reduction that were intermediate between the high values characteristic of chromosomally produced complex and the relatively low values found for the isolated complex. It is also shown that preparations of the isolated complex and membrane-bound form of the enzyme, as obtained from anaerobically grown cells, are in the deactivated state owing to the presence of tightly bound oxalacetate and thus must be activated prior to assay.  相似文献   

13.
Escherichia coli produces two enzymes which interconvert succinate and fumarate: succinate dehydrogenase, which is adapted to an oxidative role in the tricarboxylic acid cycle, and fumarate reductase, which catalyzes the reductive reaction more effectively and allows fumarate to function as an electron acceptor in anaerobic growth. A glycerol plus fumarate medium was devised for the selection of mutants (frd) lacking a functional fumarate reductase by virtue of their inability to use fumarate as an anaerobic electron acceptor. Most of the mutants isolated contained less than 1% of the parental fumarate reduction activity. Measurements of the fumarate reduction and succinate oxidation activities of parental strains and frd mutants after aerobic and anaerobic growth indicated that succinate dehydrogenase was completely repressed under anaerobic conditions, the assayable succinate oxidation activity being due to fumarate reductase acting reversibly. Fumarate reductase was almost completely repressed under aerobic conditions, although glucose relieved this repression to some extent. The mutations, presumably in the structural gene (frd) for fumarate reductase, were located at approximately 82 min on the E. coli chromosome by conjugation and transduction with phage P1. frd is very close to the ampA locus, and the order of markers in this region was established as ampA-frd-purA.  相似文献   

14.
Succinate dehydrogenase was purified from the particulate fraction of Desulfobulbus. The enzyme catalyzed both fumarate reduction and succinate oxidation but the rate of fumarate reduction was 8-times less than that of succinate oxidation. Quantitative analysis showed the presence of 1 mol of covalently bound flavin and 1 mol of cytochrome b per mol of succinate dehydrogenase. The enzyme contained three subunits with molecular mass 68.5, 27.5 and 22 kDa. EPR spectroscopy indicated the presence of at least two iron sulfur clusters. 2-Heptyl-4-hydroxy-quinoline-N-oxide inhibited the electron-transfer between succinate dehydrogenase and a high redox potential cytochrome c3 from Desulfobulbus elongatus.  相似文献   

15.
G. Unden  S.P.J. Albracht  A. Krger 《BBA》1984,767(3):460-469
The isolated menaquinol: fumarate oxidoreductase (fumarate reductase complex) from Vibrio succinogenes was investigated with respect to the redox potentials and the kinetic response of the prosthetic groups. The following results were obtained. (1) The redox state of the components was measured as a function of the redox potential established by the fumarate/succinate couple, after freezing of the samples (173 K). From these measurements, the midpoint potential of the [2Fe-2S] cluster (−59 mV), the [4Fe-4S] cluster (−24 mV) and the flavin/flavosemiquinone couple (about −20 mV) was obtained. (2) Potentiometric titration of the enzyme in the presence of electron-mediating chemicals gave, after freezing, apparent midpoint potentials that were 30–100 mV more negative than those found with the fumarate/succinate couple. (3) The rate constants of reduction of the components on the addition of succinate or 2,3-dimethyl-1,4-naphthoquinol were as great as or greater than the corresponding turnover numbers of the enzyme in quinone reduction by succinate or fumarate reduction by the quinol. In the oxidation of the reduced enzyme by fumarate, cytochrome b oxidation was about as fast as the corresponding turnover number of quinol oxidation by fumarate, while the [2Fe-2S] and half of the [4Fe-4S] cluster responded more than 2-times slower. The rate constant of the other half of the 4-Fe cluster was one order of magnitude smaller than the turnover number.  相似文献   

16.
Fumarate reductase was isolated and purified 100-fold to homogeneity from Desulfovibrio multispirans, a new species of sulfate-reducing bacteria. The enzyme contained 1 mol of non-covalently bound FAD and four subunits with Mr 45,000, 32,000, 30,000 and 27,000. EPR spectroscopy showed the existence of two iron-sulfur clusters. The absorption spectrum showed a broad region of high absorbance from 450 nm to 300 nm with a protein peak at 278 nm. The ratio of A278:A400 was 2.60. The specific activity was 110 mumoles H2/mg of protein. The Km for fumarate was 2.5 mM. The activation energy was 8.7 kcal/mol. Electron transport from H2 to fumarate in intact cells was inhibited by 2-heptyl-4-hydroxy-quinoline-N-oxide, a quinone inhibitor, indicating the participation of quinone (probably menaquinone) in fumarate reduction.  相似文献   

17.
Lancaster CR 《FEBS letters》2001,504(3):133-141
The structure of Wolinella succinogenes quinol:fumarate reductase by X-ray crystallography has been determined at 2.2-A resolution [Lancaster et al. (1999), Nature 402, 377-385]. Based on the structure of the three protein subunits A, B, and C and the arrangement of the six prosthetic groups (a covalently bound FAD, three iron-sulphur clusters, and two haem b groups) a pathway of electron transfer from the quinol-oxidising dihaem cytochrome b in the membrane to the site of fumarate reduction in the hydrophilic subunit A has been proposed. By combining the results from site-directed mutagenesis, functional and electrochemical characterisation, and X-ray crystallography, a residue was identified which is essential for menaquinol oxidation. [Lancaster et al. (2000), Proc. Natl. Acad. Sci. USA 97, 13051-13056]. The location of this residue in the structure suggests that the coupling of the oxidation of menaquinol to the reduction of fumarate in dihaem-containing succinate:quinone oxidoreductases could be associated with the generation of a transmembrane electrochemical potential. Based on crystallographic analysis of three different crystal forms of the enzyme and the results from site-directed mutagenesis, we have derived a mechanism of fumarate reduction and succinate oxidation [Lancaster et al. (2001) Eur. J. Biochem. 268, 1820-1827], which should be generally relevant throughout the superfamily of succinate:quinone oxidoreductases.  相似文献   

18.
In all organisms the fourth catalytic step of the pyrimidine biosynthesis is driven by the flavoenzyme dihydroorotate dehydrogenase (DHODH, EC 1.3.99.11). Cytosolic DHODH of the established model organism Saccharomyces cerevisiae catalyses the oxidation of dihydroorotate to orotate and the reduction of fumarate to succinate. Here, we investigate the structure and mechanism of DHODH from S. cerevisiae and show that the recombinant ScDHODH exists as a homodimeric enzyme in vitro. Inhibition of ScDHODH by the reaction product was observed and kinetic studies disclosed affinity for orotate (K(ic)=7.7 microM; K(ic) is the competitive inhibition constant). The binding constant for orotate was measured through comparison of UV-visible spectra of the bound and unbound recombinant enzyme. The midpoint reduction potential of DHODH-bound flavine mononucleotide determined from analysis of spectral changes was -242 mV (vs. NHE) under anaerobic conditions. A search for alternative electron acceptors revealed that homologues such as mesaconate can be used as electron acceptors.  相似文献   

19.
Fumarate reductase from Escherichia coli functions both as an anaerobic fumarate reductase and as an aerobic succinate dehydrogenase. A site-directed mutation of E. coli fumarate reductase in which FrdB Pro-159 was replaced with a glutamine or histidine residue was constructed and overexpressed in a strain of E. coli lacking a functional copy of the fumarate reductase or succinate dehydrogenase complex. The consequences of these mutations on bacterial growth, assembly of the enzyme complex, and enzymatic activity were investigated. Both mutations were found to have no effect on anaerobic bacterial growth or on the ability of the enzyme to reduce fumarate compared with the wild-type enzyme. The FrdB Pro-159-to-histidine substitution was normal in its ability to oxidize succinate. In contrast, however, the FrdB Pro-159-to-Gln substitution was found to inhibit aerobic growth of E. coli under conditions requiring a functional succinate dehydrogenase, and furthermore, the aerobic activity of the enzyme was severely inhibited upon incubation in the presence of its substrate, succinate. This inactivation could be prevented by incubating the mutant enzyme complex in an anaerobic environment, separating the catalytic subunits of the fumarate reductase complex from their membrane anchors, or blocking the transfer of electrons from the enzyme to quinones. The results of these studies suggest that the succinate-induced inactivation occurs by the production of hydroxyl radicals generated by a Fenton-type reaction following introduction of this mutation into the [3Fe-4S] binding domain. Additional evidence shows that the substrate-induced inactivation requires quinones, which are the membrane-bound electron acceptors and donors for the succinate dehydrogenase and fumarate reductase activities. These data suggest that the [3Fe-4S] cluster is intimately associated with one of the quinone binding sites found n fumarate reductase and succinate dehydrogenase.  相似文献   

20.
The xylene monooxygenase system encoded by the TOL plasmid pWW0 of Pseudomonas putida catalyses the hydroxylation of a methyl side-chain of toluene and xylenes. Genetic studies have suggested that this monooxygenase consists of two different proteins, products of the xylA and xylM genes, which function as an electron-transfer protein and a terminal hydroxylase, respectively. In this study, the electron-transfer component of xylene monooxygenase, the product of xylA, was purified to homogeneity. Fractions containing the xylA gene product were identified by its NADH:cytochrome c reductase activity. The molecular mass of the enzyme was determined to be 40 kDa by SDS/PAGE, and 42 kDa by gel filtration. The enzyme was found to contain 1 mol/mol of tightly but not covalently bound FAD, as well as 2 mol/mol of non-haem iron and 2 mol/mol of acid-labile sulfide, suggesting the presence of two redox centers, one FAD and one [2Fe-2S] cluster/protein molecule. The oxidised form of the protein had absorbance maxima at 457 nm and 390 nm, with shoulders at 350 nm and 550 nm. These absorbance maxima disappeared upon reduction of the protein by NADH or dithionite. The NADH:acceptor reductase was capable of reducing either one- or two-electron acceptors, such as horse heart cytochrome c or 2,6-dichloroindophenol, at an optimal pH of 8.5. The reductase was found to have a Km value for NADH of 22 microM. The oxidation of NADH was determined to be stereospecific; the enzyme is pro-R (class A enzyme). The titration of the reductase with NADH or dithionite yielded three distinct reduced forms of the enzyme: the reduction of the [2Fe-2S] center occurred with a midpoint redox potential of -171 mV; and the reduction of FAD to FAD. (semiquinone form), with a calculated midpoint redox potential of -244 mV. The reduction of FAD. to FAD.. (dihydroquinone form), the last stage of the titration, occurred with a midpoint redox potential of -297 mV. The [2Fe-2S] center could be removed from the protein by treatment with an excess of mersalyl acid. The [2Fe-2S]-depleted protein was still reduced by NADH, giving rise to the formation of the anionic flavin semiquinone observed in the native enzyme, thus suggesting that the electron flow was NADH --> FAD --> [2Fe-2S] in this reductase. The resulting protein could no longer reduce cytochrome c, but could reduce 2,6-dichloroindophenol at a reduced rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号