首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of vanadate on proteoglycan synthesis by cultured rabbit costal chondrocytes was examined. Rabbit chondrocytes were seeded at low densities and grown to confluency in medium supplemented with 10% fetal bovine serum, and then the serum concentration was reduced to 0.3%. At the low serum concentration, chondrocytes adopted a fibroblastic morphology. Addition of 4 microM vanadate to the culture medium induced a morphologic differentiation of the fibroblastic cells to spherical chondrocytes, and increased by two- to threefold incorporation of [35S]sulfate and [3H]glucosamine into large, chondroitin sulfate proteoglycans. The stimulation of incorporation of labeled precursors reflected real increases in proteoglycan synthesis, in that chemical analyses showed increases in the accumulation of macromolecules containing hexuronic acid and hexosamine in vanadate-maintained cultures. However, vanadate had only a marginal effect on [35S]sulfate incorporation into small proteoglycans and [3H]glucosamine incorporation into hyaluronic acid and chondroitinase AC-resistant material. These results provide evidence that vanadate selectively stimulates the synthesis of proteoglycans characteristically found in cartilage by rabbit costal chondrocyte cultures.  相似文献   

2.
The amount of glycosaminoglycan (GAG) in dry costal cartilage tissue of rats decreased with aging, while the GAG content in mg DNA (unit cartilage cell) remained the same with aging. These results can be explained by the finding that the total number of cartilage cells decreased with aging. Electrophoretic analysis showed that chondroitin 4-sulfate was the major GAG in rat costal cartilage of various ages. Rat costal cartilage of different ages was incubated with radioactive precursors, and newly synthesized GAG was prepared and the radioactivity analyzed to determine the biosynthetic activity. As to changes in the radioactivity uptake with aging per mg dry cartilage tissue, aging influenced [35S]sulfate incorporation into GAG more significantly than [3H]glucosamine incorporation into GAG. There was a significant decrease in the specific radioactivity of [35S]sulfate per mg DNA (unit cartilage cell), whereas the specific radioactivity of [3H]glucosamine per mg DNA did not change significantly with aging. Both the total sulfotransferase activity and the specific activity per mg DNA decreased significantly with aging. Analysis of disaccharide units formed after chondroitinase ABC digestion of labeled GAG isolated from young and old cartilage showed that the percentage of incorporation of [3H]glucosamine into deltaDi-OS increased significantly with aging. These results suggested that the appearance of nonsulfated positions in the structure of the chondroitin sulfate chain increased with aging. On the basis of gel chromatography on Bio-Gel A-1.5 m no significant difference in the approximate molecular size of chondroitin sulfate was observed between the young and old GAG samples. The present study indicated that the sulfation of chondroitin sulfate chains from rat costal cartilage decreased with the process of aging.  相似文献   

3.
Monensin (10nm-1mum) inhibited the incorporation of [(35)S]sulphate and [(3)H]glucosamine into proteoglycans by rat chondrosarcoma cells, but the incorporation of [(3)H]glucosamine into hyaluronate was unaffected. The results suggest that hyaluronate synthesis occurs in a cell compartment separate from chondroitin sulphate synthesis.  相似文献   

4.
Hypoxia, a consequence of interstitial lung diseases, may lead to secondary pulmonary hypertension and pulmonary vascular remodeling. Hypoxia induces activation and proliferation of lung cells and enhances the deposition of extracellular matrix including glycosaminoglycans (GAGs). To elucidate the cell biological mechanisms underlying the development of secondary pulmonary hypertension, we studied the effect of hypoxia on GAG synthesis by human lung cells. GAG synthesis was measured by incorporation of [(3)H]glucosamine; GAGs were isolated, purified, and characterized with GAG-degrading enzymes. Fibroblasts and vascular smooth muscle cells (VSMCs) synthesized hyaluronic acid, heparan sulfate, and chondroitin sulfates, whereas dermatan sulfate was found only in fibroblasts. Hypoxia did not influence the size or charge of the individual GAGs. However, hypoxia inhibited platelet-derived growth factor-induced [(3)H]glucosamine incorporation in secreted GAGs, especially hyaluronic acid, in VSMCs. In contrast, it stimulated GAG secretion, specifically heparan sulfate, by fibroblasts. Our results indicate that hypoxia induces modifications in GAG synthesis by human lung VSMCs and fibroblasts that may be correlated to pathophysiological manifestations in lung diseases causing hypoxia.  相似文献   

5.
The effect of hyaluronidase treatment on the incorporation of [3H]glucosamine into hyaluronate in human skin fibroblast cultures was investigated. Fourth passage cells in confluent cultures were treated with hyaluronidase from bovine tests, Streptomyces and leech in Dulbecco's minimum essential medium in the presence of 3% fetal calf serum. The medium was removed from the control (non-treated) and the treated cultures and the washed cell layers were incubated with [3H]glucosamine and [35S]sulfate. [3H]Hyaluronate was separated by DEAE Trisacyl chromatography and identified by specific enzymic assays. Hyaluronidase treatment induced an increase in the amount of labelled hyaluronate secreted into the medium and into the pericellular compartment. This amount reached a plateau with increasing enzyme concentration and with the time of treatment. Oligosaccharides derived from hyaluronate did not produce this effect. The maximal increase was about 3-fold, and was not inhibited by exogenous hyaluronate (25-100 micrograms/ml) or by oligosaccharides from hyaluronate. Cycloheximide (0.03 mM) inhibited hyaluronate synthesis by 18% or less in the control cells and by 50% in the hyaluronidase-pretreated fibroblasts. No significant difference was found in the hyaluronate synthase activity between control and treated cells, at 60 min following treatment, indicating the reversibility of the effect. The persistence of the stimulation required the presence of hyaluronidase. The treatment of cells with specific hyaluronidases (from Streptomyces and leech) or with testicular hyaluronidase did not modify the labelling of the sulfated glycosaminoglycans. The incorporation kinetics of the [3H]glucosamine into labeled hyaluronate and the increased amount of non-labelled hyaluronate determined by radiometric assay indicated a specific stimulation of hyaluronate synthesis in the hyaluronidase-pretreated fibroblast cultures.  相似文献   

6.
Mouse 3T3 cells and their Simian Virus 40-transformed derivatives (3T3SV) were used to assess the relationship of transfromation, cell density, and growth control to the cellular distribution of newly synthesized glycosaminoglycan (GAG). Glucosamine- and galactosamine- containing GAG were labeled equivalently by [3H=A1-glucose regardless of culture type, allowing incorporation into the various GAG to be compared under all conditions studied. Three components of each culture type were examined: the cells, which contain the bulk of newly synthesized GAG and are enriched in chondroitin sulfate and heparan sulfate; cell surface materials released by trypsin, which contain predominantly hyaluronic acid; and the media , which contain predominantly hyaluronic acid and undersulfated chondroitin sulfate. Increased cell density and viral transformation reduce incorporation into GAG relative to the incorporation into other polysaccharides. Transformation, however, does not substantially alter the type or distribution of newly synthesized GAG; the relative amounts and cellular distributions were very similar in 3T3 and 3T3SV cultures growing at similar rates at low densities. On the other hand, increased cell density as well as density-dependent growth inhibition modified the type and distribution of newly synthesized GAG. At high cell densities both cell types showed reduced incorporation into hyaluronate and an increase in cellular GAG due to enhanced labeling of chondroitin sulfate and heparan sulfate. These changes were more marked in confluent 3T3 cultures which also differed in showing substantially more GAG label in the medium and in chondroitin-6-sulfate and heparan sulfate at the cell surface. Since cell density and possibly density- dependent inhibition of growth but not viral transformation are major factors controlling the cellular distribution and type of newly synthesized GAG, differences due to GAG's in the culture behavior of normal and transformed cells may occur only at high cell density. The density-induced GAG alterations most likely involved are increased condroitin-6-sulfate and heparan sulfate and decreased hyaluronic acid at the cell surface.  相似文献   

7.
The glycosaminoglycans of neural retinas from 5-, 7-, 10-, and 14-day chick embryos were labeled in culture with [3H]glucosamine and 35SO4, extracted, and isolated by gel filtration. The incorporation of label per retina into glycosaminoglycans increased with embryonic age, but that per cell and per unit weight of uronic acid decreased. Specific enzyme methods coupled with gel filtration and paper chromatography demonstrated that [3H]glucosamine incorporation into chondroitin sulfate increased between 5 and 14 days from 7 to 34% of the total incorporation into glycosaminoglycans. During this period, incorporation into chondroitin-4-sulfate increased relative to that into chondroitin-6-sulfate. Between 5 and 10 days, incorporation into heparan sulfate showed a relative decline from 89 to 61%. Incorporation into hyaluronic acid always represented less than 2% of the total. A twofold greater increase in galactosamine concentration than in glucosamine concentration in the glycosaminoglycan fraction between 7 and 14 days supports the conclusion that chondroitin sulfate was the most rapidly accumulating glycosaminoglycan. ECTEOLA-cellulose chromatography revealed a heterogeneity in the size and/or net charge of chondroitin sulfate and heparan sulfate. We conclude that incorporation of exogenous precursors into glycosaminoglycans in the chick retina decreases relative to cell number as differentiation progresses from a period of high mitotic activity to one of tissue specialization, and that it is accompanied by a net accumulation of glycosaminoglycan and a change in the pattern of its synthesis.  相似文献   

8.
The effect of tunicamycin (TM) on the synthesis and secretion of sulfated proteoglycans and hyaluronate was examined in chick embryo fibroblasts and chondrocytes. The incorporation of the precursors [3H]glucosamine, [3H]mannose and [35S]sulfate into glycoconjugates in both the cell layer and medium of cultures was determined. In the chick embryo fibroblast, but not in the chondrocyte, synthesis of sulfated proteoglycan was inhibited 60–75% by TM (5 × 10−8 M), while synthesis of hyaluronate and protein was only inhibited slightly. The inhibition of sulfate incorporation into glycosaminoglycans of the chick embryo fibroblast was overcome to a great extent by addition of β-xyloside, which provides an exogenous initiator for chondroitin sulfate synthesis. TM treatment also altered cell shape and surface morphology in chick embryo fibroblasts, as observed by phase contrast and scanning electron microscopy (SEM). Cells treated with TM became rounded, and increased numbers of microvilli and blebs appeared on the cell surface. These alterations in cell morphology were reversed by removal of TM, but not by exogenous addition of xyloside, chondroitin sulfate or the adhesive cell surface glycoprotein fibronectin. These results demonstrate that TM inhibits synthesis of sulfated proteoglycans in the chick embryo fibroblast and causes a dramatic alteration in cell shape and surface morphology.  相似文献   

9.
Confluent cultures of rat muscle fibroblastic cells respond by increased glycosaminoglycan (GAG) synthesis when cultured in medium containing a solubilized bone matrix fraction (SBM) at a concentration of 100 micrograms/ml. The metabolism of the GAG associated with the cell pellet, the cell surface and the tissue culture medium fractions was studied, in the presence and absence of SBM, by measuring the incorporation of radioactivity from [3H]glucosamine and [35S]SO4 into the isolated GAG. Net synthesis of hyaluronic acid and of chondroitin sulfate in the medium fraction increased more rapidly in cultures containing SBM compared to controls, and the accumulation of labelled GAG in the medium of the treated cultures was approximately linear with respect to the length of incubation. The addition of SBM also resulted in increased incorporation of 3H and of 35S into the GAG of the cell surface and cell pellet fractions. In these fractions, stimulation of incorporation of radioactivity occurred in two waves: an early, relatively minor increase and a later relatively major increase. The relatively major stimulation of radioactivity into the GAG of the cell surface fraction occurred between 24 and 48 h and was independent of any apparent effect of serum.  相似文献   

10.
The effect of low-density lipoprotein (LDL) on accumulation of glycosaminoglycans (GAG) was compared in cultures of human skin fibroblasts on a conventional plastic substratum and in a native type I collagen gel. The 24-h incorporation of [3H]glucosamine and Na2(35)SO4 into GAG secreted into the medium or associated with the substratum and cell surface (SCA) was measured in cells at subconfluent densities. When cells were grown on plastic, 13-25% of the labeled GAG was in the SCA pool. Cells cultured within a collagen gel matrix incorporated three times more [3H]glucosamine and up to five times more [35S]sulfate into this pool. The addition of LDL (300 micrograms protein/mL) to the medium increased the level of total GAG incorporation of [3H]glucosamine by 40-50% and of [35S]sulfate by 15-20% on both substrata. For cells on plastic the relative increase in the medium and SCA pool was similar, whereas for cells in collagen gel the response to LDL was twice as great in the SCA pool as in the medium. The distribution of GAG types was unaffected by LDL; hyaluronic acid remained the principal GAG in the media pools of both substrata, heparan sulfate remained the main SCA GAG in cultures on plastic, and dermatan sulfate remained the dominant GAG in the SCA pool of collagen gel cultures. LDL degradation was measured at intervals up to 48 h after the addition of 125I-labeled LDL. The rate of accumulation of degraded LDL products was lower in collagen gel cultures, but the final levels achieved were the same in the two substrata. Concentrations of total cell cholesterol were similar, although the increases in free cholesterol induced by LDL were 26% greater in cells within collagen gel than in those on plastic. We conclude that fibroblasts grown within a collagen gel, as compared with those on a plastic substratum, (i) accumulate more GAG that remain attached to the substratum and cell surface; (ii) respond to LDL with a similar degree of increase in GAG accumulation, but more of the increase is found in the substratum and cell surface compartment; and (iii) accumulate more intracellular free cholesterol in response to LDL.  相似文献   

11.
The characteristics of glycosaminoglycan (GAG) synthesis in normal and transformed human endothelial cells were analyzed by the incorporation of [3H]glucosamine and by the activities of GAG synthetases. The GAG synthesized by normal endothelial cells consisted of mainly heparan sulfate (HS) and chondroitin sulfate/dermatan sulfate but little hyaluronic acid (HA) (less than 1%). The characteristics of GAG synthesis by normal cells reflected the synthetic enzyme activities for each individual GAG: the activity of HA synthetase was very low. In spite of this, the activity of HA synthetase inhibitor, induced in growth-retarded fibroblasts with low HA synthetase activity (Matuoka et al. (1987 J. Cell Biol., 104, 1105-1115), was very low in endothelial cells. In contrast to normal cells, transformed endothelial (ECV304) cells synthesized mainly HA (62% of total GAGs). These findings suggest that the regulatory system of GAG metabolism is cell type specific, and that transformation is accompanied by high levels of HA synthesis in endothelial cells.  相似文献   

12.
The effect of concanavalin A on proteoglycan synthesis by rabbit costal and articular chondrocytes was examined. Chondrocytes were seeded at low density and grown to confluency in medium supplemented with 10% fetal bovine serum, and then the serum concentration was reduced to 0.3%. At the low serum concentration, chondrocytes adopted a fibroblastic morphology. Addition of concanavalin A to the culture medium induced a morphologic alteration of the fibroblastic cells to spherical chondrocytes and increased by 3- to 4-fold incorporation of [35S]sulfate and [3H]glucosamine into large chondroitin sulfate proteoglycan that was characteristically found in cartilage. The stimulation of incorporation of labeled precursors reflected real increases in proteoglycan synthesis, as chemical analyses showed a 4-fold increase in the accumulation of macromolecules containing hexuronic acid in concanavalin A-maintained cultures. Furthermore, the effect of concanavalin A on [35S]sulfate incorporation into proteoglycans was greater than that of various growth factors or hormones. However, concanavalin A had smaller effects on [35S]sulfate incorporation into small proteoglycans and [3H]glucosamine incorporation into hyaluronic acid and chondroitinase AC-resistant glycosaminoglycans. Since other lectins tested, such as wheat germ agglutinin, lentil lectin, and phytohemagglutinin, had little effect on [35S]sulfate incorporation into proteoglycans, the concanavalin A action on chondrocytes seems specific. Although concanavalin A decreased [3H]thymidine incorporation in chondrocytes, the stimulation of proteoglycan synthesis could be observed in chondrocytes exposed to the inhibitor of DNA synthesis, cytosine arabinoside. These results indicate that concanavalin A is a potent modulator of proteoglycan synthesis by chondrocytes.  相似文献   

13.
Mouse mastocytoma cells were cultured with brefeldin A in medium containing [35S]sulfate and [3H]glucosamine in order to determine the effects of this fungal metabolite on the formation of chondroitin 4-sulfate by these cells. There was a marked reduction in the incorporation of [35S]sulfate into the glycosaminoglycan which was approximately equal to the reduction in the incorporation of [3H]hexosamine into the same molecule. The chondroitin 4-sulfate chain size was greatly diminished, while the number of chains appeared to remain relatively constant, indicating that the brefeldin A partially disrupted the polymerizing system, but had little effect upon movement of the nascent proteochondroitin to the site for chondroitin polymerization and sulfation.  相似文献   

14.
Bovine aortic endothelial cells were cultured in medium containing [3H]glucosamine and concentrations of [35S]sulfate ranging from 0.01 to 0.31 mM. While the amount of [3H]hexosamine incorporated into chondroitin sulfate and heparan sulfate was constant, decreasing concentrations of sulfate resulted in lower [35S]sulfate incorporation. Sulfate concentrations greater than 0.11 mM were required for maximal [35S]sulfate incorporation. Chondroitin sulfate was particularly affected so that the sulfate to hexosamine ratio in [3H]chondroitin [35S]sulfate dropped considerably more than the sulfate to hexosamine ratio in [3H] heparan [35S]sulfate. Sulfate concentration had no effect on the ratio of chondroitin 4-sulfate to chondroitin 6-sulfate. The ratios of sulfate to hexosamine in cell-associated glycosaminoglycans were essentially identical with the ratios in media glycosaminoglycans at all sulfate concentrations. DEAE-cellulose chromatography confirmed that sulfation of chondroitin sulfate was particularly sensitive to low sulfate concentrations. While cells incubated in medium containing 0.31 mM sulfate produced chondroitin sulfate which eluted later than heparan sulfate, cells incubated in medium containing less than 0.04 mM sulfate produced chondroitin sulfate which eluted before heparan sulfate and near hyaluronic acid, indicating that many chains were essentially unsulfated. At intermediate concentrations of sulfate, chondroitin sulfate was found in very broad elution patterns suggesting that most did not fit an "all or nothing" mechanism. Heparan sulfate produced at low concentrations of sulfate eluted with narrower elution patterns than chondroitin sulfate, and there was no indication of any "all or nothing" sulfation.  相似文献   

15.
The accumulation of sulfated GAG in embryonic mouse molars before, during, and after terminal differentiation of odontoblasts was localized by [35S]autoradiography combined with the use of chondroitin ABC lyase. Much more sulfated GAG were accumulated in the dental papilla than in the dental epithelium. High incorporation of [35S]sulfate occurred at the epithelio-mesenchymal junction, which is the site of dental basement membrane and predentin. Before terminal differentiation of odontoblasts, the distribution of sulfated GAG was uniform at the basement membrane. After the onset of terminal differentiation of odontoblasts, much more sulfated GAG accumulated at the tip of principal cusps than at the apical (inferior) parts of cusps, and sulfated GAG were then found to be degraded more rapidly at the epithelio-mesenchymal junction than at other parts of the tooth germ. Thus regional variation in the rate of degradation of GAG exists in the tooth germs. Trypsin-isolated dental epithelia cultured in vitro synthesized a new basement membrane that could be labeled with [3H]glucosamine but not with 35SO4(-2). The epithelial-derived basal lamina contains little or no sulfatated GAG.  相似文献   

16.
Amputated, regenerating forelimbs have been compared with the contralateral, denervated non-regenerating limb stumps in the adult newt Notophthalmus viridescens, with respect to hyaluronidase activity and the incorporation of 3H-acetate into glycosaminoglycans (GAG). At 10 days after amputation, which is the time of maximum hyaluronate production in the early growing regenerate, incorporation of 3H-acetate into GAG (cpm/mg protein) in the denervated, nonregenerating limb stump was approximately 50% of that in the contralateral regenerating limbs. At this stage, hyaluronate was the major GAG being produced, but the ratio of incorporation into hyaluronate relative to chondroitin sulfate was reduced in the denervated limbs. In intact, nonamputated limbs, the incorporation into GAG was 5% of that in the regenerating limb 10 days after amputation, and 10% of that in the denervated stumps.At 25 days, cartilage is forming and chondroitin sulfate synthesis predominates in the normal regenerate whilst the contralateral, denervated limb stumps are forming scars. GAG synthesis in the latter was less than one-quarter the level seen in the regenerating limbs, mostly due to low incorporation into chondroitin sulfate.Hyaluronidase activity, which appears in the regenerating limb during differentiation of skeletal elements (20–45 days), was not detectable in limbs denervated early enough to prevent regeneration. However, limbs denervated after formation of the blastema will regenerate without nerve, and hyaluronidase activity in such limbs was normal. Thus, hyaluronidase activity appears when regeneration reaches the cartilage deposition stage, with or without nerve.  相似文献   

17.
Glycosaminoglycans of Rat Cerebellum: II. A Developmental Study   总被引:2,自引:2,他引:0  
Total and individual glycosaminoglycans (GAGs) were determined in rat cerebellum in tissue explants at various postnatal ages. The major constituents of GAGs were chondroitin sulfate (CS), hyaluronic acid (HA), and heparan sulfate (HS). Dermatan sulfate (DS) and keratan sulfate (KS) could not be detected and therefore each amounts to less than 5% of all GAGs at all ages studied. HA was the prominent GAG during postnatal development and only a minor constituent at adult ages, whereas CS was the predominant GAG in adulthood. HS remained relatively constant throughout development. The incorporation of [3H]glucosamine into individual GAGs was highest for HS at postnatal day 6, whereas HA showed intermediate and CS the lowest levels of incorporation during the first postnatal week. All major GAGs showed the lowest incorporation values at adult ages.  相似文献   

18.
Using primary hepatocytes in culture, various 2-acetamido-2-deoxy-D-glucose (GlcNAc) analogs were examined for their effects on the incorporation of D-[3H]glucosamine, [35S]sulfate, and L-[14C]leucine into cellular glycoconjugates. A series of acetylated GlcNAc analogs, namely methyl 2-acetamido-3,4,6-tri-O-acetyl-2-deoxy-α-(3) and β-D-glucopyranoside (4) and 2-acetamido-1,3,4,6-tetra-O-acetyl-2-deoxy-D-glucopyranose (5), exhibited a concentration-dependent reduction of D-[3H]glucosamine, but not of [35S]sulfate incorporation into isolated glycosaminoglycans (GAGs), without affecting L-[14C]leucine incorporation into total protein synthesis. These results suggest that analogs 3–5 exhibit an inhibitory effect on D-[3H]glucosamine incorporation into isolated GAGs by diluting the specific activity of cellular D-[3H]glucosamine and by competing for the same metabolic pathways. In the case of the corresponding series of 4-deoxy-GlcNAc analogs, namely methyl 2-acetamido-3,6-di-O-acetyl-2,4-dideoxy-α-(6) and β-D-xylo-hexopyranoside (7) and 2-acetamido-1,3,6-tri-O-acetyl-2,4-dideoxy-D-xylo-hexopyranose (8), compound 8 at 1.0 mM exhibited the greatest reduction of D-[3H]glucosamine and [35S]sulfate incorporation into isolated GAGs, namely to ∼7% of controls, and a moderate inhibition of total protein synthesis, namely to 60% of controls. Exogenous uridine was able to restore the inhibition of total protein synthesis by compound 8 at 1.0 mM. Isolated GAGs from cultures treated with compound 8 were shown to be smaller in size (∼40 kDa) than for control cultures (∼77 kDa). These results suggest that the inhibitory effects of compound 8 on cellular GAG synthesis may be mediated by the incorporation of a 4-deoxy moiety into GAGs resulting in premature chain termination and/or by its serving as an enzymatic inhibitor of the normal sugar metabolites. The inhibition of total protein synthesis from cultures treated with compound 8 suggests a uridine trapping mechanism which would result in the depletion of UTP pools and cause the inhibition of total protein synthesis. A 1-deoxy-GlcNAc analog, namely 2-acetamido-3,4,6-tri-O-acetyl-1,5-anhydro-2-deoxy-D-glucitol (9), also exhibited a reduction in both D -[3H]glucosamine and [35S]sulfate incorporation into isolated GAGs by 19 and 57%, of the control cells, respectively, at 1.0 mM without affecting total protein synthesis. The inability of compound 9 to form a UDP-sugar and, hence, be incorporated into GAGs presents another metabolic route for the inhibition of cellular GAG synthesis. Potential metabolic routes for each analog's effects are presented.  相似文献   

19.
A Fisher rat thyroid cell line was maintained in culture and the cells were labeled with [3H]glucosamine, [35S]sulfate, and [35S]cysteine to examine the synthesis of proteoglycans. 3H and 35S radioactivity from these precursors were incorporated into both chondroitin sulfate (CS) and heparan sulfate (HS) proteoglycans. CS proteoglycans were almost exclusively secreted into the medium while HS proteoglycans remained mainly associated with the cell layer. Single chain glycosaminoglycans released by papain digestion or alkaline borohydride treatment of either the CS or HS proteoglycans had average molecular weights of approximately 30,000 on Sepharose CL-6B chromatography. Both CS and HS proteoglycans were relatively small and contained only one or two glycosaminoglycans chains. 3H and 35S incorporation into both CS and HS proteoglycans were increased by thyroid-stimulating hormone (TSH) in a dose-dependent manner, which is in part explained by an adenylate cyclase-dependent mechanism as indicated by a similar effect in response to dibutyryl cAMP. TSH enhanced the incorporation of 35S into CS from [35S]cysteine about 1.5-fold and that from [35S]sulfate about 2-fold. This result demonstrated that the increased 35S incorporation from the [35S]sulfate precursor reflects an actual increase in sulfate incorporation and is not simply a result from an apparent increase in specific activity of the phosphoadenosine phosphosulfate donor. Analysis of disaccharides from chondroitinase digests revealed that the proportion of non-sulfated, 4-sulfated, and 6-sulfated disaccharides was not altered appreciably by TSH. These results, together with the disproportionate increase in 3H incorporation into CS from [3H]glucosamine, indicated that TSH increased the specific activity of the 3H label as well. Chase experiments revealed that CS proteoglycans were rapidly (t1/2 = 15 min) secreted into the medium and that the degradation of cell-associated proteoglycans was enhanced by TSH.  相似文献   

20.
Our previous work showed that vitamin C deficiency caused about a 70-80% decrease in the incorporation of [35S]sulfate into proteoglycan of guinea pig costal cartilage, coordinately with a decrease in collagen synthesis (Bird, T. A., Spanheimer, R. G., and Peterkofsky, B. (1986) Arch. Biochem. Biophys. 246, 42-51). We examined the mechanism for decreased proteoglycan synthesis by labeling normal and scorbutic cartilage in vitro with radioactive precursors. Proteoglycan monomers from scorbutic tissue were of a slightly smaller average hydrodynamic size than normal but there was no difference in the size of the glycosaminoglycan chains isolated after papain digestion. The type of glycosaminoglycans synthesized and the degree of sulfation were unaffected as determined by chondroitinase ABC digestion and duel labeling with [35S]sulfate and [3H]glucosamine. Conversion of [3H]glucosamine to [3H]galactosamine also was unimpaired. There was about a 40% decrease in core protein synthesis, measured by [14C]serine incorporation and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Nevertheless, decreased incorporation of [35S]sulfate into scorbutic tissue persisted in the presence of p-nitrophenyl-beta-D-xyloside and cycloheximide, which indicated that the site of the scorbutic defect was beyond core protein synthesis and xylosylation. Galactosyltransferase activity in scorbutic cartilage decreased to about one-third the levels in control samples in parallel with the decreases in proteoglycan and collagen synthesis. Our results suggest that the step catalyzed by this enzyme activity, the addition of galactose to xylose prior to chondroitin sulfate chain elongation, is the major site of the scorbutic defect in proteoglycan synthesis. Decreased enzyme activity may be related to increased cortisol levels in scorbutic serum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号