首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
MOTIVATION: Many current studies of complex microbial communities rely on the isolation of community genomic DNA, amplification of 16S ribosomal RNA genes (rDNA) and subsequent examination of community structure through interrogation of the amplified 16S rDNA pool by high-throughput sequencing, phylogenetic microarrays or quantitative PCR. RESULTS: Here we describe the development of a mathematical model aimed to simulate multitemplate amplification of 16S ribosomal DNA sample and subsequent detection of these amplified 16S rDNA species by phylogenetic microarray. Using parameters estimated from the experimental results obtained in the analysis of intestinal microbial communities with Microbiota Array, we show that both species detection and the accuracy of species abundance estimates depended heavily on the number of PCR cycles used to amplify 16S rDNA. Both parameters initially improved with each additional PCR cycle and reached optimum between 15 and 20 cycles of amplification. The use of more than 20 cycles of PCR amplification and/or more than 50 ng of starting genomic DNA template was, however, detrimental to both the fraction of detected community members and the accuracy of abundance estimates. Overall, the outcomes of the model simulations matched well available experimental data. Our simulations also showed that species detection and the accuracy of abundance measurements correlated positively with the higher sample-wide PCR amplification rate, lower template-to-template PCR bias and lower number of species in the interrogated community. The developed model can be easily modified to simulate other multitemplate DNA mixtures as well as other microarray designs and PCR amplification protocols.  相似文献   

2.
For restriction fragment length polymorphism (RFLP) analysis of 16S rRNA genes, the rDNA fragments of 1.5 kb were amplified by polymerase chain reaction (PCR) from crude cell lysates of various methanogenic species which were prepared by a combined technique of ultrasonic treatment and protease digestion. The PCR products were purified by the polyethylene glycol precipitation method and treated with various restriction enzymes. The 16S rDNA fragments digested with HaeIII or HhaI gave species-specific RFLP profiles on simplified agarose gel electrophoresis. 16S rDNA gragments of 0.4 kb from the bulk DNA extracted from mixed populations of anaerobic sludge were also amplified by PCR with a pair of methanogen-specific primers and cloned directly by the T-A cloning technique. The cloned 16S rDNAs from recombinants were reamplified by PCR, and RFLP pattern analysis was performed following digestion with HhaI. The PCR-RFLP analysis of 16S rDNA with the present protocol can be completed within one day, provided that sufficient amounts of test cells are available, and has great promise as a simple and rapid technique for identification of methanogens. A combined method consisting of PCR amplification, direc cloning with T vectors, and RFLP analysis of 16S rDNA is also useful for rapid estimation of the mixed population structure of methanogens without the need for cultivation and isolation.  相似文献   

3.
Molecular and biochemical assays were used to determine the identification of thermophilic bacilli isolated from New Zealand milk powder. One hundred and forty one isolates of thermophilic bacilli were classified into six species using biochemical profiles. Geobacillus stearothermophilus represented 56% of the isolates. All isolates were also analysed by randomly amplified polymorphic DNA (RAPD) analysis, with 45 types identified. Amplification of the 16S-23S rDNA internal spacer region produced two to eight amplification products per strain. The patterns from gel electrophoresis of the internal spacer region amplicons formed two major groupings suggesting the possibility of two distinct species. Partial sequences of 16S rDNA from representatives from each group were compared with sequences in GeneBank and were found to match the 16S rDNA sequences of B. flavothermus and G. thermoleovorans. Primers were designed for these species and used to screen an arbitrary selection of 59 of the dairy isolates. This enabled the identification of 28 isolates as B. flavothermus and 31 isolates as Geobacillus species and these appear to be the predominant isolates in the New Zealand milk powder samples examined. Comparison of the fragment pattern generated by amplification of the 16S-23S rDNA internal spacer region is a simple method to differentiate thermophilic Bacillus species associated with the dairy industry.  相似文献   

4.
The composition of polychlorinated biphenyl (PCB) dechlorinating mixed communities was analysed by restriction fragment length polymorphism of PCR amplified rDNAs (ARDRA) and partial sequencing of 16S rRNA genes amplified from PCB degrading enrichments. Restriction analysis confirms that the 16S rRNA genes amplified from PCB dechlorinating communities vary depending on the PCB congener dechlorinated. Comparison of 16S rRNA sequences to published ribosomal databases indicates that the two most abundant Operational Taxonomic Units (OTUs) appear to be species of the genus Clostridium . The amount that the amplification procedure contributed to this result was determined by varying the amplification procedure and by creating an artificial template mixture. Varying the amount of template by sixfold in the amplification did not affect the distribution of OTUs but the number of OTUs observed decreased with decreasing template concentration. Comparison of products amplified from mixtures of 16S rDNA clones indicates that the more abundant Clostridium OTU did not amplify more efficiently than those of less abundant OTUs. Hybridization to a probe designed to detect the most abundant OTUs indicates that two other OTUs are closely related to this Clostridium species.  相似文献   

5.
Based on the 16S rDNA sequences, species specific primers were designed for the rapid identification by DNA amplification of nine human Bifidobacterium spp., namely B. adolescentis, B. angulatum, B. bifidum, B. breve, B. catenulatum, B. dentium, B. infantis, B. longum, B. pseudocatenulatum. B. lactis currently included in dairy products was added to the series. The primers were designed to target different positions of the 16S rDNA, allowing the simultaneous identification of these ten species of Bifidobacterium using two mixtures of primers. The identification procedure described in this paper was validated by establishing a correlation with an AluI restriction pattern of the different full length amplified 16S rDNA. This multiple primer DNA amplification technique was applied for the identification of pure colonies of Bifidobacterium spp. or directly from total bacteria recovered from human fecal samples. The technique was shown to be useful to detect dominant species and, when primers were used in separate reactions, underrepresented species could be identified as well.  相似文献   

6.
The nucleotide sequences of the rRNA genes and the 5 flanking region were determined for R. salmoninarum ATCC 33209T from overlapping products generated by PCR amplification from the genomic DNA. Comparison of the sequences with rRNA genes from a variety of bacteria demonstrated the close relatedness between R. salmoninarum and the high G+C group of the actinobacteria, in particular, Arthrobacter species. A regulatory element within the 5 leader of the rRNA operon was identical to an element, CL2, described for mycobacteria. PCR, DNA sequence analysis, and DNA hybridisation were performed to examine variation between isolates from diverse sources which represented the four 16S–23S rRNA intergenic spacer sequevars previously described for R. salmoninarum. Two 23S–5S rRNA intergenic spacer sequevars of identical length were found. DNA hybridisation using probes complementary to 23S rDNA and 16S rDNA identified two rRNA operons which were identical or nearly identical amongst 40 isolates sourced from a variety of countries.  相似文献   

7.
Sequences of 16S rDNAs and the intergenic spacer (IGS) regions between the 16S and 23S rDNA of bacterial strains from genus Erwinia were determined. Comparison of 16S rDNA sequences from different species and subspecies clearly revealed intraspecies-subspecies homology and interspecies heterogeneity. Phylogenetic analyses of 16S rDNA sequence data revealed that Erwinia spp. formed a discrete monophyletic clade with moderate to high bootstrap values. PCR amplification of the 16S-23S rDNA regions using primers complementary to the 3' end of 16S and 5' end of 23S rRNA genes generated two DNA fragments. The small 16S-23S rDNA IGS regions of Erwinia spp. examined in this study varied considerably in size and nucleotide sequence. Multiple sequence alignment and phylogenetic analysis of small IGS sequence data showed a consistent relationship among the test strains that was roughly in agreement with the 16S rDNA data that reflected the accepted species and subspecies structure of the taxon. Sequence data derived from the large IGS resolved the strains into coherent groups; however, the sequence information would not allow any phylogenetic conclusion, because it failed to reflect the accepted species structure of the test strains.  相似文献   

8.
A polyphasic PCR-DGGE approach was used to describe the microbial population occurring in natural whey cultures (NWCs) for water-buffalo Mozzarella cheese production. Total microbial community was assessed without cultivation by analyzing DNA directly extracted from the original samples of NWC. In addition, DNA extracted from bulks of cells formed by harvesting colonies from the serial dilution agar plates of a variety of culture media was used to profile the "cultivable" community. The 16S rDNA V3 region was amplified using DNA from NWC as well as DNA from bulks as templates and the amplicons were separated by DGGE. The microbial entities occurring in NWCs were identified by partial 16S rDNA sequencing of DGGE bands: four lactic acid bacteria (LAB) closest relative of Streptococcus thermophilus, Lactococcus lactis, Lactobacillus delbrueckii and Lactobacillus crispatus were revealed by the analysis of DNA directly extracted from NWC while two other LAB, Lactobacillus fermentum and Enterococcus faecalis, were identified by analyzing DNA from the cultivable community. The developed PCR-DGGE analysis of the "cultivable" community showed good potential in evaluating microbial diversity of a dairy environment: it usefully highlighted the bias introduced by selective amplification when compared to the analysis of the total community from NWC and allowed suitability of media and growth conditions to be evaluated. Moreover, it could be used to complete the culture independent study of microbial diversity to give information on concentration ratios among species occurring in a particular environment and can be proposed for rapid identification of dominant microorganisms in alternative to traditional tools.  相似文献   

9.
Bias in Template-to-Product Ratios in Multitemplate PCR   总被引:48,自引:2,他引:46       下载免费PDF全文
Bias introduced by the simultaneous amplification of specific genes from complex mixtures of templates remains poorly understood. To explore potential causes and the extent of bias in PCR amplification of 16S ribosomal DNAs (rDNAs), genomic DNAs of two closely and one distantly related bacterial species were mixed and amplified with universal, degenerate primers. Quantification and comparison of template and product ratios showed that there was considerable and reproducible overamplification of specific templates. Variability between replicates also contributed to the observed bias but in a comparatively minor way. Based on these initial observations, template dosage and differences in binding energies of permutations of the degenerate, universal primers were tested as two likely causes of this template-specific bias by using 16S rDNA templates modified by site-directed mutagenesis. When mixtures of mutagenized templates containing AT- and GC-rich priming sites were used, templates containing the GC-rich permutation amplified with higher efficiency, indicating that different primer binding energies may to a large extent be responsible for overamplification. In contrast, gene copy number was found to be an unlikely cause of the observed bias. Similarly, amplification from DNA extracted from a natural community to which different amounts of genomic DNA of a single bacterial species were added did not affect relative product ratios. Bias was reduced considerably by using high template concentrations, by performing fewer cycles, and by mixing replicate reaction preparations.  相似文献   

10.
【目的】本研究旨在使用基于线粒体基因通用引物的双重PCR技术同时扩增单一样本中两条标记基因,从而达到简化节肢动物物种鉴定流程的目的。【方法】在一次PCR实验中同时加入可扩增线粒体COI基因和16S rDNA两个不同分子标记的引物,对3纲8目14科的14种节肢动物物种标本的基因组DNA进行扩增;扩增产物经电泳和胶回收后测序,并BLAST在线搜索相似序列,验证基于通用引物的双重PCR在不同的动物类群中用于物种鉴定的有效性。【结果】应用基于COI和16S rDNA的引物从分属于3纲8目14科的14种节肢动物基因组DNA中均可成功扩增目的基因;扩增产物测序结果进一步证实了扩增的准确性。【结论】通过本方法进行物种的分子鉴定,不仅可以保证物种鉴定的高准确率,还可以明显减少时间与DNA样本量的消耗,这对需要快速准确鉴定物种或珍稀的材料样本十分重要。  相似文献   

11.
Aims:  To identify an extreme thermophile, strain TMY, isolated from silica scale from the geothermal electric power plant and to examine microdiversity of Thermus thermophilus strains.
Materials and Results:  The isolated strain TMY was identified by morphological, biochemical and physiological tests. Phylogenetic comparison of the strain and other Thermus strains with 16S rDNA analysis, RAPD and ERIC-PCR fingerprinting were performed. Strain TMY was closely related to strain which was isolated from a hot spring in New Zealand and shown to belong to the Japanese Thermus cluster. However, there were considerable genetic differences between strain TMY and other Thermus species using DNA fingerprinting.
Conclusions:  Based on morphological, physiological and genetic properties, strain TMY could be a strain of T. thermophilus . The distinct properties of strain TMY suggest that microdiversity of T. thermophilus strains should be considered.
Significance and Impact of the Study:  The results of this study have demonstrated genetic diversity within T. thermophilus strains, which were previously masked by an almost identical 16S rDNA sequence. RAPD and ERIC-PCR could be potential methods for distinguishing between Thermus strains.  相似文献   

12.
Phylogenetic microarrays present an attractive strategy to high-throughput interrogation of complex microbial communities. In this work, we present several approaches to optimize the analysis of intestinal microbiota with the recently developed Microbiota Array. First, we determined how 16S rDNA-specific PCR amplification influenced bacterial detection and the consistency of measured abundance values. Bacterial detection improved with an increase in the number of PCR amplification cycles, but 25 cycles were sufficient to achieve the maximum possible detection. A PCR-caused deviation in the measured abundance values was also observed. We also developed two mathematical algorithms that aimed to account for a predicted cross-hybridization of 16S rDNA fragments among different species, and to adjust the measured hybridization signal based on the number of 16S rRNA gene copies per species genome. The 16S rRNA gene copy adjustment indicated that the presence of members of the class Clostridia might be overestimated in some 16S rDNA-based studies. Finally, we show that the examination of total community RNA with phylogenetic microarray can provide estimates of the relative metabolic activity of individual community members. Complementary profiling of genomic DNA and total RNA isolated from the same sample presents an opportunity to assess population structure and activity in the same microbial community.  相似文献   

13.
14.
Two hundred and five isolates of atypical Aeromonas salmonicida, recovered from a wide range of hosts and countries were characterized by polymerase chain reaction (PCR) targeting four genes. The chosen genes were those encoding the extracellular A-layer protein (AP), the serine protease (Sprot), the glycerophospholipid:cholestrol acetyltransferase protein (GCAT), and the 16S rRNA (16S rDNA). All the atypical A. salmonicida isolates could be assigned to 4 PCR groups. Group 1 comprised 45 strains which tested positive for PCR amplification, using the 16S rDNA, GCAT2, Sprot2, and AP primer-sets. Group 2 comprised 88 strains with produced PCR products using the 16S rDNA, GCAT2 and AP primer-sets. Group 3 comprised 21 strains which produced PCR products using 16S rDNA, GCAT2 and Sprot2 primer-sets, and group 4 comprised 51 strains which produced PCR products using the 16S rDNA and GCAT2 primer-sets only. A. salmonicida subsp. salmonicida isolates tested, belonged to group 1. The PCR primer-sets separated A. salmonicida from other reference strains of Aeromonas species and related bacteria with the exception of Aeromonas hydrophila. The results indicated that PCR typing is a useful framework for characterization of the increasing number of isolations of atypical A. salmonicida.  相似文献   

15.
Review and re-analysis of domain-specific 16S primers   总被引:33,自引:0,他引:33  
The Polymerase Chain Reaction (PCR) has facilitated the detection of unculturable microorganisms in virtually any environmental source and has thus been used extensively in the assessment of environmental microbial diversity. This technique relies on the assumption that the gene sequences present in the environment are complementary to the "universal" primers used in their amplification. The recent discovery of new taxa with 16S rDNA sequences not complementary to standard universal primers suggests that current 16S rDNA libraries are not representative of true prokaryotic biodiversity. Here we re-assess the specificity of commonly used 16S rRNA gene primers and present these data in tabular form designed as a tool to aid simple analysis, selection and implementation. In addition, we present two new primer pairs specifically designed for effective "universal" Archaeal 16S rDNA sequence amplification. These primers are found to amplify sequences from Crenarchaeote and Euryarchaeote type strains and environmental DNA.  相似文献   

16.
In the house cricket,Acheta domesticus, the 110 genes per haploid genome encoding 18S and 28S rRNA are contained within rDNA repeats which are amplified during oogenesis. The 5S rRNA coding sequences of this cricket are found in two sizes of 5S DNA repeating units (measuring 2.1 and 3.0 kb). The 3.0 kb repeats account for more than 90% of the totalAcheta 5S DNA. We have determined the number of cricket 5S rRNA genes by RNA-DNA hybridization analysis: 310 5S DNA repeats/haploid genome clearly approximates the number of 18S and 28S rRNA genes. Because of the relatively low copy number of 5S rRNA genes the possibility of 5S DNA amplification in oocytes ofA. domesticus was also examined. Although amplification of rDNA is readily detectable, amplification of 5S DNA is not observed in oocytes ofA. domesticus. Unlike the genes coding for 18S and 28S rRNA which are localized at a single chromosomal site in the genome ofA. domesticus, the 5S rRNA genes occupy numerous sites distributed along the length of most chromosomes.  相似文献   

17.
Ribosomal DNA (rDNA) loci encoding 5S and 45S (18S-5.8S-28S) rRNAs are important components of eukaryotic chromosomes. Here, we set up the animal rDNA database containing cytogenetic information about these loci in 1343 animal species (264 families) collected from 542 publications. The data are based on in situ hybridisation studies (both radioactive and fluorescent) carried out in major groups of vertebrates (fish, reptiles, amphibians, birds, and mammals) and invertebrates (mostly insects and mollusks). The database is accessible online at www.animalrdnadatabase.com. The median number of 45S and 5S sites was close to two per diploid chromosome set for both rDNAs despite large variation (1–74 for 5S and 1–54 for 45S sites). No significant correlation between the number of 5S and 45S rDNA loci was observed, suggesting that their distribution and amplification across the chromosomes follow independent evolutionary trajectories. Each group, irrespective of taxonomic classification, contained rDNA sites at any chromosome location. However, the distal and pericentromeric positions were the most prevalent (>?75% karyotypes) for 45S loci, while the position of 5S loci was more variable. We also examined potential relationships between molecular attributes of rDNA (homogenisation and expression) and cytogenetic parameters such as rDNA positions, chromosome number, and morphology.  相似文献   

18.
Clinical isolates of Coccidioides spp. and Blastomyces dermatitidis can be identified by chemiluminescent DNA probes and PCR assays targeting multicopy genes. In fixed tissue samples, cells of the two fungi are specified by in situ hybridization and PCR assays targeting 18S rDNA but sequencing of the products is mandatory. Nested PCR assays targeting genes encoding species- or genus-specific proteins like proline rich antigen of Coccidioides spp. and B. dermatitidis adhesin facilitate amplification of specific DNA from fixed tissue samples. The value of DNA amplification from native specimens of suspected cases of coccidioidomycosis or blastomycosis still needs to be determined.  相似文献   

19.
AIM: To evaluate the rpoB gene as a biomarker for PCR-DGGE microbial analyses using soil DNA from the Cerrado, Brazil. METHODS: DNA extraction from soil was followed by Polymerase Chain Reaction (PCR) amplification of rpoB and 16S rRNA genes. PCR products were compared by Denaturing Gradient Gel Electrophoresis (DGGE) to compare gene/community profiles. RESULTS: The rpoB DGGE profiles comprised fewer bands than the 16S rDNA profiles and were easier to delineate and therefore to analyse. Comparison of the community profiles revealed that the methods were complementary. CONCLUSIONS, SIGNIFICANCE AND IMPACT OF THE STUDY: The gene for the beta subunit of the RNA polymerase, rpoB, is a single copy gene unlike 16S rDNA. Multiple copies of 16S rRNA genes in bacterial genomes complicate diversity assessments made from DGGE profiles. Using the rpoB gene offers a better alternative to the commonly used 16S rRNA gene for microbial community analyses based on DGGE.  相似文献   

20.
Restriction ondonuclease EcoRI was used to study the structure of the free ribosomal DNA molecules from Tetrahymena pyriformis, strain GL. From the following observations we conclude that the free rDNA molecules from Tetrahymena are giant palindromes3, each containing two genes for preribosomal RNA arranged in rotational symmetry as inverted repeating sequences. Analyses of the sizes of products of partial or complete digestion and quantitative analyses of the products of complete digestion of uniformly 32P-labeled rDNA yielded an RI endonucleolytic cleavage map which showed that the EcoRI recognition sites are arranged symmetrically about the center of the rDNA molecule.When heat-denatured rDNA was rapidly cooled under conditions in which no renaturation would occur between separated complementary strands of DNA, molecules of half the size of the original rDNA molecule were produced. These were double-stranded DNA molecules as evidenced by their resistance to digestion with S1 nuclease. Moreover, they could be digested with EcoRI to produce fragments of sizes which would be predicted from the assumption that each single strand of the original rDNA molecule had folded back on itself to form a “hair-pin” double-stranded DNA structure. Hybridization experiments between ribosomal RNA and purified rDNA showed that each rDNA molecule contains two genes for rDNA. Hybridization of the isolated EcoRI fragments of rDNA with 25 S or 17 S rRNA suggested that the two structural genes for 17 S rRNA are located near the center of the rDNA molecule and the two genes for 25 S rRNA are found in distal positions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号