首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The differentiation-inducing signals (DIFs) currently known in Dictyostelium appear unable to account for the full diversity of cell types produced in development. To search for new signals, we analyzed the differentiation in monolayers of cells expressing prestalk (ecmAO, ecmA, ecmO, ecmB and cAR2) and prespore (psA) markers. Expression of each marker drops off as the cell density is reduced, suggesting that cell interaction is required. Expression of each marker is inhibited by cerulenin, an inhibitor of polyketide synthesis, and can be restored by conditioned medium. However, the known stalk-inducing polyketide, DIF-1, could not replace conditioned medium and induce the ecmA or cAR2 prestalk markers, suggesting that they require different polyketide inducers. Polyketide production by fungi is stimulated by cadmium ions, which also dramatically stimulates differentiation in Dictyostelium cell cultures and the accumulation of medium factors. Factors produced with cadmium present were extracted from conditioned medium and fractionated by HPLC. A new factor inducing prespore cell differentiation, called PSI-2, and two inducing stalk cell differentiation (DIFs 6 and 7) were resolved. All are distinct from currently identified factors. DIF-6, but not DIF-7 or PSI-2, appears to have an essential carbonyl group. Thus Dictyostelium may use extensive polyketide signaling in its development.  相似文献   

2.
Abstract. Depending upon environmental conditions, developing cells of the cellular slime mold Dictyostelium discoideum may enter a slug stage in which the cell mass migrates in response to gradients of light and temperature. This developmental stage has often been used to study the divergent differentiation of the cells that will subsequently form spores and stalk in the mature fruiting body. However, still debated is the extent to which the differentiation evident in slug cells is a precondition for development of the mature cells in fruits. Using two-dimensional gel electrophoresis of polypeptides, we have examined the proteins made by prespore and prestalk cells of migrating slugs and by maturing spore and stalk cells. The data indicate that many of the cell-type specific polypeptides in prespore cells of slugs persist as cell-type specific polypeptides of mature spores. Prestalk slug cells, in contrast, do not contain significant amounts of stalk-specific proteins; these proteins appear only during culmination. The precursor cell types also differ in the times and rates of synthesis of cell-specific proteins: prestalk proteins appear much earlier in development than do the prespore, but never reach the levels of expression that the prespore proteins do later in culmination. These findings may explain the well established ability of prespore cells to regulate their cell type more rapidly than do prestalk cells. There are also implications for our general understanding of what is a 'prestalk' gene product.  相似文献   

3.
We show that exceedingly small two-dimensional slugs of Dictyostelium differentiate normally and have an anterior prestalk zone and a posterior prespore zone. Using GFP as a marker attached to the appropriate promoter, prestalk expression is concentrated in the anterior, while prespore expression is produced in the posterior, closely resembling what is found in normal, large slugs.  相似文献   

4.
We have analyzed a developmentally and spatially regulated prestalk-specific gene and a prespore-specific gene from Dictyostelium. The prestalk gene, pst-cathepsin, encodes a protein highly homologous to the lysosomal cysteine proteinases cathepsin H and cathepsin B. The prespore gene encodes a protein with some homology to the anti-bacterial toxin crambin and has been designated beejin. Using the lambda gtll system, we have made polyclonal antibodies directed against a portion of the protein encoded by pst-cathepsin and other antibodies directed against the beejin protein. Both antibodies stain single bands on Western blots. By immunofluorescence and Western blots, pst-cathepsin is not present in vegetative cells or developing cells during the first approximately 10 h of development. It then appears with a punctate distribution in a subset of developing cells. Beejin is detected only after approximately 15 h of development, also in a subset of cells. Pst-cathepsin is distributed in the anterior approximately 1/10 of migrating slugs and on the peripheral posterior surfaces of slugs. Beejin is distributed in the posterior region of slugs. Expression of both pst-cathepsin and beejin can be induced in subsets of isolated cultured cells by a combination of conditioned medium and extracellular cAMP in agreement with the regulation of the mRNAs encoding these proteins. We have used the antibodies as markers for cell type to examine the ontogeny and the spatial distribution of prestalk and prespore cells throughout multicellular development. Our findings suggest that prestalk cell differentiation is independent of position within the aggregate and that the spatial localization of prestalk cells within the multicellular aggregate arises from sorting of the prestalk cells after their induction. We have also found a class of cell in developing aggregates that contains neither the prestalk nor the prespore markers.  相似文献   

5.
Dictyostelium discoideum prestalk cells and prespore cells from migrating slugs and culminating cell aggregates were isolated by Percoll density centrifugation. Several activities relevant to the generation, detection, and turnover of extracellular cyclic AMP (cAMP) signals were determined. It was found that: the two cell types have the same basal adenylate cyclase activity; prespore cells and prestalk cells are able to relay the extracellular cAMP signal equally well; intact prestalk cells show a threefold higher cAMP phosphodiesterase activity on the cell surface than prespore cells, whereas their cytosolic activity is the same; intact prestalk cells bind three to four times more cAMP than prespore cells; no large differences in cAMP metabolism and detection were observed between cells derived from migrating slugs and culminating aggregates. The results are discussed in relation to the possible morphogenetic role of extracellular cAMP in Dictyostelium cell aggregates. On the basis of the properties of the isolated cells we assume that a gradient of extracellular cAMP exists in Dictyostelium aggregates. This gradient appears to be involved in the formation and stabilization of the prestalk-prespore cell pattern.  相似文献   

6.
When cells dissociated from Dictyostelium discoideum slugs were cultured in roller tubes, they formed agglomerates in which prestalk cells were initially dispersed but soon sorted out to the center and then moved to the edge to reconstitute the prestalk/prespore pattern. To examine the mechanism of sorting out, individual prestalk cells were traced by a videotape recorder. The radial component of the rate of movement toward the center of the presumptive prestalk region was calculated. Prestalk cells did not move randomly, but rather directionally toward the center. Their movement was pulsatile, with a period of ca. 15 min, and accompanied by occasional formation of cell streams, thus resembling the movement observable during cell aggregation. These results favor the idea that prestalk cells sort out to the prestalk region due to differential chemotaxis rather than differential adhesiveness. After formation of the prestalk/prespore pattern, the prestalk region rotated along the circumference of the agglomerates. This appears comparable to migration of slugs on the substratum, the rate of rotation being similar to that of slug migration. To examine the processes of pattern formation during development, washed vegetative cells were cultured in roller tubes. Prespore cells identified by antispore immunoglobulin initially appeared randomly within the agglomerates, but then nonprespore cells accumulated in the center and finally moved to the edge to establish the prestalk/prespore pattern, the processes being similar to those of pattern reconstruction with differentiated prestalk and prespore cells.  相似文献   

7.
8.
Cells from the pseudoplasmodial stage of Dictyostelium discoideum differentiation were dispersed and separated on Percoll gradients into prestalk and prespore cells. The requirements for stalk cell formation in low-density monolayers from the two cell types were determined. The isolated prespore cells required both the Differentiation Inducing Factor (DIF) and cyclic AMP for stalk cell formation. In contrast, only part of the isolated prestalk cell population required both cyclic AMP and DIF, the remainder requiring DIF alone, suggesting the possibility that there were two populations of prestalk cells, one independent of cyclic AMP and one dependent on cyclic AMP for stalk cell formation. The finding that part of the prestalk cell population required only a brief incubation in the presence of DIF to induce stalk cell formation, whilst the remainder required a considerably longer incubation in the presence of both DIF and cyclic AMP was consistent with this idea. In addition, stalk cell formation from cyclic-AMP-dependent prestalk cells was relatively more sensitive to caffeine inhibition than stalk cell formation from cyclic-AMP-independent prestalk cells. The latter cells were enriched in the most anterior portion of the migrating pseudoplasmodium, indicating that there is spatial segregation of the two prestalk cell populations. The conversion of prespore cells to stalk cells took longer and was more sensitive to caffeine when compared to stalk cell formation from cyclic-AMP-dependent prestalk cells.  相似文献   

9.
Abstract. The expression of three prestalk cell-specific genes ( ecm A, ecm B and pDd26) was examined during in vitro differentiation in cell monolayers, in an attempt to explain the spatial heterogeneity of the prestalk region of migrating Dictyostelium pseudoplasmodia. Under these conditions ecm A, ecm B and pDd26 mRNAs were expressed sequentially in response to the addition of differentiation inducing factor-1 (DIF)-1, a temporal sequence similar to that observed during normal development. ecm A and ecm B mRNAs reached a maximum level 2–4 h after DIF-1 supplementation and then declined, whereas pDd26 mRNA levels increased more slowly but remained high 24 h after DIF addition. The increases in expression in response to increasing concentrations of either DIF-1 or DIF-2 were identical for the three genes, suggesting that neither alteration in DIF concentration nor species was an important determinant of spatial heterogeneity. Ammonia had the same inhibitory effect on the expression of all three prestalk cell-specific genes and stimulated the expression of the prespore cell-specific gene, D19. These results indicate that ammonia is also not responsible for the spatial heterogeneity of the prestalk cell region. In contrast, cyclic AMP had a differential effect on the expression of the prestalk cell specific genes: ecm A expression was variably stimulated, pDd26 expression was inhibited and ecm B expression was sometimes stimulated and sometimes inhibited. These results are difficult to explain in terms of a gradient of cyclic AMP in the prestalk region. We postulate that temporal responses are more important than spatial responses to cyclic AMP in regulating stalk cell differentiation.  相似文献   

10.
Dictyostelium discoideum pseudoplasmodia exhibit a gradient of the cytosolic free Ca2+-concentration ([Ca2+]i) along their anterior-posterior axis involved in cell-type specific differentiation. [Ca2+]i is high in prestalk and low in prespore cells. We determined the content and localization of calcium and other elements in cryosectioned cells of pseudoplasmodia and fruiting bodies by X-ray microanalysis. Granular stores rich in Ca, Mg and P were identified. Average Ca was higher in prespore than prestalk granules (225vs 111 mmol/kg dry weight). Total Ca stored in granules was also higher in prespore than prestalk cells. The amount of P and S in granules differed between the two cell types indicating different store composition. In spores mean granular Ca was 120 mmol/kg dry weight. Stalk cells had smaller granules with 360 mmol Ca/kg dry weight. Complementary to microanalysis, vesicular Ca2+-fluxes were studied in fractionated cell homogenates. The rate of Ca2+-uptake was higher in pellet fractions of prespore than prestalk amoebae (4.7 vs 3.4 nmol/min x mg). Ca2+-release was greater in supernatant fractions from prestalk than prespore cells (16.5vs 7.7 nmol/10(8)cells). In summary, prestalk and prespore cells possess qualitatively different, high-capacity stores containing distinct amounts of Ca and probably being involved in regulation of the anterior-posterior [Ca2+]i-gradient.  相似文献   

11.
Abstract. It is very likely that oscillatory cAMP secretion and cAMP relay organize postaggregative cell movement in the cellular slime molds. We present evidence indicating that cAMP signaling may also be involved in the formation of the prestalk/prespore pattern in slugs of Dictyostelium discoideum. Reduction of cAMP relay in slugs caused by caffeine increased the proportion of prespore tissue. An even stronger increase was observed in a mutant with a very low CAMP-relay response. The effects on pattern resulting from a reduction of cAMP relay are not due to a reduction in the amount of cAMP in the slug, but to an as yet undefined property of oscillatory cAMP signaling.  相似文献   

12.
Mouse Ltk- cells were stably transfected with cloned genes encoding the mouse major urinary proteins (MUPs). C57BL/6J MUP genomic clones encoding MUP 2 (BL6-25 and BL6-51), MUP 3 (BL6-11 and BL6-3), and MUP 4 (BL6-42) have been identified. In C57BL/6J mice, MUP 2 and MUP 4 are known to be synthesized in male, but not female, liver, and MUP 3 is known to be synthesized in both male and female liver and mammary gland. A BALB/c genomic clone (BJ-31) was shown to encode a MUP that is slightly more basic than MUP 2 and was previously shown to be synthesized in both male and female liver of BALB/c but not C57BL/6 mice. Comigration on two-dimensional polyacrylamide gels of the MUPs encoded by the transfecting gene provides a basis for tentative identification of the tissue specificity and mode of regulation of each gene. DNA sequence analysis of the 5' flanking region indicates that the different MUP genes are highly homologous (0.20 to 2.40% divergence) within the 879 base pairs analyzed. The most prominent differences in sequence occur within an A-rich region just 5' of the TATA box. This region (from -47 to -93) contains primarily A or C(A)N nucleotides and varies from 15 to 46 nucleotides in length in the different clones.  相似文献   

13.
Abstract. We propose that the prestalk/prespore pattern in Dictyostelium is generated in two steps: In a first process, an intermingled, non-position dependent prestalk/prespore pattern is generated by a cell-restricted autocatalysis and the antagonistic action of a long-ranging substrate which becomes depleted during this autocatalysis. By computer simulations we show that the assumed interaction accounts for several experimentally observed features of the prestalk/ prespore pattern: The size-independent ratio of both cell types, the pattern regulation after removal of one cell type, the development towards one or the other pathway before the slug obtains its final shape or even before aggregation is completed. Our hypothetical substrate may be identical with an experimentally found differentiation-inducing factor (DIF). Alternative molecular realizations of the basic mechanism are discussed. A second process leads to the aggregation of the prestalk cells in a particular region of the aggregate, the future tip region. Interactions which en-able tip formation and the coupling between the prestalk/prespore and the tip-forming system are discussed. Our model shows that the formation of a single large patch of differentiated cells and its size regulation requires conflicting parameters. By a separation into a mechanism which determines the position and a second one which determines the size of a structure, each mechanism can be optimized individually without requiring compromises for the other. Such a separation also seems to occur in other developmental systems.  相似文献   

14.
15.
By the use of a shake culture system, we have previously shown (Oyama, M., Okamoto, K., & Takeuchi, I. (1982) J. Cell Sci. 56, 223-232) that both cAMP and cAMP-dependent cell contact are required for prespore differentiation in Dictyostelium discoideum. The present study was undertaken to examine changes of the plasma membrane proteins during prespore differentiation in the shake culture system. Rabbit antibodies prepared against the plasma membrane fraction of the differentiated cells inhibited the reaggregation of the differentiated cells but not that of aggregation-competent cells. This result indicates that new contact sites are formed in the differentiated cells. By the combined use of the antibody-conjugated immuno-adsorbent with sodium dodecyl sulfate-polyacrylamide gel electrophoresis, changes of membrane proteins were analyzed with the cells incubated under various conditions. Three proteins were found to be present specifically in the differentiated cells only in the presence of cAMP, one of which (105K protein) appeared when cells became adhesive, but before prespore specific proteins were detected. Two others (80K and 58K proteins) appeared during prespore differentiation after cells formed agglomerates.  相似文献   

16.
Previous studies have shown that Dictyostelium discoideum spore coat proteins are found in prespore cells, which are localized to the posterior region of migrating slugs, and in the coats of mature spores. Prespore vesicles, identified by morphology and by staining with anti-D. mucoroides spore serum, are also localized in the posterior region of migrating slugs. Using antisera specific to the spore coat proteins, we show that the spore coat proteins are packaged in prespore vesicles. They are present in the vesicles as a complex which can be dissociated by denaturation. The anti-D. mucoroides spore serum reacts with at least five proteins in whole spore extracts including the spore coat proteins SP96 and SP70.  相似文献   

17.
18.
Iba2 is a homolog of ionized calcium-binding adapter molecule 1 (Iba1), a 17-kDa protein that binds and cross-links filamentous actin (F-actin) and localizes to membrane ruffles and phagocytic cups. Here, we present the crystal structure of human Iba2 and its homodimerization properties, F-actin cross-linking activity, cellular localization and recruitment upon bacterial invasion in comparison with Iba1. The Iba2 structure comprises two central EF-hand motifs lacking bound Ca2+. Iba2 crystallized as a homodimer stabilized by a disulfide bridge and zinc ions. Analytical ultracentrifugation revealed a different mode of dimerization under reducing conditions that was independent of Ca2+. Furthermore, no binding of Ca2+ up to 0.1 mM was detected by equilibrium dialysis. Correspondingly, Iba EF-hand motifs lack residues essential for strong Ca2+ coordination. Sedimentation experiments and microscopy detected pronounced, indistinguishable F-actin binding and cross-linking activity of Iba1 and Iba2 with induction of F-actin bundles. Fluorescent Iba fusion proteins were expressed in HeLa cells and co-localized with F-actin. Iba1 was recruited into cellular projections to a larger extent than Iba2. Additionally, we studied Iba recruitment in a Shigella invasion model that induces cytoskeletal rearrangements. Both proteins were recruited into the bacterial invasion zone and Iba1 was again concentrated slightly higher in the cellular extensions.  相似文献   

19.
We describe a method of separating prestalk and prespore cells of Dictyostelium discoideum slugs using a self-generating Percoll gradient. This method gives quantitative recovery of cells and good purity. Separated prestalk and prespore cells possess different levels of the enzymes UDP galactose :polysaccharide transferase, cAMP phosphodiesterase and glycogen phosphorylase. We have used this method, as well as mechanical dissection of slugs, to examine the fate of separated prestalk and prespore cells in Dictyostelium strains that are able to give rise to mature stalk and spore cells in cell monolayers. The results from such experiments provide direct evidence that prestalk and prespore cells from the migrating slug stage are programmed to differentiate into stalk and spore cells respectively.  相似文献   

20.
E Barklis  H F Lodish 《Cell》1983,32(4):1139-1148
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号