首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 734 毫秒
1.
The effect of associating acidic and basic polypeptides with dilute suspensions of vesicles composed of various unsaturated phospholipids was assessed with regard to optical density and ultraviolet absorption. Associating basic polypeptides with phosphatidylserine, phosphatidylethanolamine, and phosphatidylglycerol vesicles, or acidic polypeptide with phosphatidylcholine vesicles, caused an increase in the optical density of the preparations, with no measurable effect on the intensity of the ultraviolet spectrum of the olefinic bonds of the lipid. Associating basic polypeptides with phosphatidylcholine vesicles, in addition to causing similar increases in optical density, resulted in a large decrease in the intensity of ultraviolet absorption by the olefinic bonds. This implies that the interaction between the basic polypeptides and phosphatidylcholine vesicles results in major alterations in the microenvironment of the olefinic bonds, which would require intimate association of the polypeptide with the ninth carbon region of the acyl chains. These observations support the conclusion, drawn from our earlier studies, that the association of basic polypeptides and liquid crystalline phase phosphatidylcholine vesicles is peculiar in that it involves a major hydrophobic component.  相似文献   

2.
J R Silvius 《Biochemistry》1990,29(12):2930-2938
A novel method that uses a carbazole-labeled fluorescent phosphatidylcholine, which partitions preferentially into liquid-crystalline lipid domains, to monitor the kinetics and the extents of thermotropic and ionotropic lateral phase separations in vesicles combining brominated and nonbrominated phosphatidylcholines (PCs), phosphatidic acids (PAs), and phosphatidylserines (PSs) is described. The calcium-induced segregation of several nonbrominated PA species in liquid-crystalline brominated PC bilayers behaves as a well-defined lateral phase separation; the residual solubility of the PA component in the PC-rich phase in the presence of calcium can vary severalfold depending on the PA acyl chain composition. PC/PS mixtures show a pronounced tendency to form metastable solutions in the presence of calcium, particularly when they contain less than equimolar proportions of PS. This metastability is not readily relaxed by repeated freeze-thawing of vesicles in the presence of calcium, by avidin-mediated contacts between PC/PS vesicles containing biotinylated lipids, or by calcium-induced lateral segregation of PA in the same vesicles. Different PS species exhibit different apparent residual solubilities in liquid-crystalline PC bilayers, ranging from less than 10 mol % for dimyristoyl-PS to ca. 45 mol% for dioleoyl-PS, after prolonged incubations of PC/PS multilamellar vesicles with excess calcium. Results are presented, obtained by using the above lipid-segregation assay and parallel assays of intervesicle lipid mixing, that raise questions concerning the relevance of the equilibrium behavior of calcium-treated PS/PC mixtures to the relatively rapid interactions (fusion and lipid mixing) of PC/PS vesicles that follow initial exposure to calcium.  相似文献   

3.
The interactions of three neuroleptic drugs, clozapine (CLZ), chlorpromazine (CPZ), and haloperidol (HPD) with phospholipids were compared using DSC and Langmuir balance. Main emphasis was on the drug-induced effects on the lateral organization of lipid mixtures of the saturated zwitterionic 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) and the unsaturated acidic phosphatidylserine, brainPS. In multilamellar vesicles (MLV) phase separation was observed by DSC at X(PS)> or =0.05. All three drugs bound to these MLVs, abolishing the pretransition at X(drug)> or =0.03. The main transition temperature (T(m)) decreased almost linearly with increasing contents of the drugs, CLZ having the smallest effect. In distinction from the other two drugs, CLZ abolished the phase separation evident in the endotherms for DPPC/brainPS (X(PS)=0.05) MLVs. Compression isotherms of DPPC/brainPS/drug (X(PS)=X(drug)=0.05) monolayers revealed the neuroleptics to increase the average area/molecule, CLZ being the most effective. Penetration into brainPS monolayers showed strong interactions between the three drugs and this acidic phospholipid (in decreasing order CPZ>HPD>CLZ). Hydrophobic interactions demonstrated using neutral eggPC monolayers decreased in a different order, CLZ>CPZ>HPD. Fluorescence microscopy revealed domain morphology of DPPC/brainPS monolayers to be modulated by these drugs, increasing the gel-fluid domain boundary length in the phase coexistence region. To conclude, our data support the view that membrane-partitioning drugs could exert part of their effects by changing the lateral organization and thus also the functions of biomembranes.  相似文献   

4.
Pokorny A  Almeida PF 《Biochemistry》2005,44(27):9538-9544
Delta-lysin is a linear, 26-residue peptide that adopts an alpha-helical, amphipathic structure upon binding to membranes. Delta-lysin preferentially binds to mammalian cell membranes, the outer leaflets of which are enriched in sphingomyelin, cholesterol, and unsaturated phosphatidylcholine. Mixtures including these lipids have been shown to exhibit separation between liquid-disordered (l(d)) and liquid-ordered (l(o)) domains. When rich in sphingomyelin and cholesterol, these ordered domains have been called lipid "rafts". We found that delta-lysin binds poorly to the l(o) (raft) domains; therefore, in mixed-phase lipid vesicles, delta-lysin preferentially binds to the l(d) domains. This leads to the concentration of delta-lysin in l(d) domains, enhancing peptide aggregation and, consequently, the rate of peptide-induced dye efflux from lipid vesicles. The efficient lysis of eukaryotic cells by delta-lysin can thus be attributed not to specific delta-lysin-cholesterol or delta-lysin-sphingomyelin interactions but, rather, to the exclusion of delta-lysin from ordered rafts. The degree to which the kinetics of dye efflux are enhanced in mixed-phase vesicles over those observed in pure, unsaturated phosphatidylcholine vesicles directly reflects the amount of l(d) phase present in mixed-phase systems. This effect of lipid domains has broader consequences, beyond the hemolytic efficiency of delta-lysin. We discuss the hypothesis that bacterial sensitivity to antimicrobial peptides may be determined by a similar mechanism.  相似文献   

5.
Differential scanning calorimetry (DSC) was used to detect phase separation induced by hydrophobic myelin protein, lipophilin, in a mixture of phosphatidylserine (PS) and dipalmitoylphosphatidylcholine (DPPC). Preferential binding of PS to the boundary layer of lipophilin causes a decrease in the PS content of the remaining lamellar phase with a resultant shift in the phase-transition temperature to a higher temperature. The phase diagram for this mixture in the presence and absence of lipophilin is presented. From the phase diagram, it can be estimated that for an equimolar mixture of PS and DPPC, the boundary layer contains only PS, although for higher DPPC contents, some DPPC can also be found in the boundary layer. In the case where partial phase separation in induced in this mixture by Ca2+ alone, lipophilin increases the phase separation indicating that it also binds PS preferentially in the presence of Ca2+. Preferential binding of two other acidic lipids, phosphatidic acid and phosphatidyl-glycerol, to the boundary layer was also found, including a mixture where the acidic lipid was the higher melting component in the mixture.  相似文献   

6.
Bindin from sea urchin sperm associates with gel-phase phospholipid bilayers (Glabe, C. G., 1985, J. Cell Biol., 100:794-799). Bindin also interacts with phospholipid vesicles containing both gel-phase and fluid-phase domains and thereby induces their aggregation. Association of bindin with vesicles containing gel-phase domains of dipalmitoylphosphatidylcholine (DPPC) and fluid-phase domains of brain phosphatidylserine (PS) was found to result in the fusion of the vesicles. After incubation with bindin, these mixed-phase vesicles were much larger as determined by gel filtration chromatography and electron microscopic observations of negatively stained samples. The average diameter of the vesicles after incubation was 190 +/- 109 nm compared with 39 +/- 20 nm for vesicles incubated in the absence of bindin. Resonance energy transfer studies also indicated that bindin induces the fusion of vesicle bilayers. Two fluorescent probes (NBD-PE and Rh-PE) were incorporated into the membrane of mixed-phase DPPC:PS vesicles at a density of 0.5 mol%, where efficient energy transfer occurs between the probes. The efficiency of energy transfer was proportional to the concentration of the fluorescence energy acceptor in the bilayer. The fluorescent vesicles were mixed with an excess of unlabeled target vesicles to quantify fusion. After bindin addition, there was a significant decrease in the efficiency of energy transfer compared with controls incubated in the absence of bindin. Although bindin induced the fusion of vesicles in the absence of calcium, the rate of fusion in the presence of 2 mM calcium was three-fourfold higher. In the presence of calcium, approximately half of the vesicles in the population had fused with another vesicle after incubation with bindin for 20 min. Bindin did not induce the fusion of gel-phase DPPC vesicles or mixed-phase vesicles of DPPC and dioleoylphosphatidylcholine, which suggests that the fusagenic activity of bindin requires specific phospholipids. Electron microscopic observations of DPPC:PS vesicles incubated in the presence of bindin suggest that the outer leaflets of bindin-aggregated vesicles are in close apposition. This is believed to be an important initial event for membrane fusion. These observations suggest that bindin may play a dual role in fertilization: Bindin mediates the attachment of sperm to glycoconjugate receptors of the egg surface and may also participate in the fusion of the sperm and egg plasma membranes.  相似文献   

7.
We have used assays of lipid probe mixing, contents mixing and contents leakage to monitor the divalent cation-mediated interactions between lipid vesicles containing phosphatidylserine (PS) as a minority component together with mixtures of phosphatidylethanolamine (PE), phosphatidylcholine (PC) or sphingomyelin, and cholesterol in varying proportions. The initial rates of calcium- and magnesium-induced lipid probe quenching between vesicles, which reflect primarily the rates of vesicle aggregation, are strongly reduced as progressively higher proportions of PC or sphingomyelin are incorporated into PE/PS vesicles. The initial rates of divalent cation-induced contents mixing and contents leakage for PE/PS vesicles are also strongly reduced when choline phospholipids are incorporated into the vesicles in even low molar proportions. Sphingomyelin has a more potent inhibitory effect on these processes than does PC at an equal level in the vesicle membranes. The inclusion of cholesterol in these vesicles, at levels up to 1:2 moles sterol/mole phospholipid, has little effect on the rates of calcium- or magnesium-induced vesicle aggregation. However, cholesterol significantly enhances the initial rates of vesicle contents mixing and contents leakage in the presence of divalent cations when the vesicles contain choline as well as amino phospholipids. This effect is substantial only when the level of cholesterol exceeds the level of choline phospholipids in the vesicles. These results may have significance for the fusion of certain cellular membranes in mammalian cells, whose cytoplasmic faces have lipid compositions very similar to those of the vesicles examined in this study.  相似文献   

8.
The interaction between a positively charged peptide (poly-L-lysine) and model membranes containing charged lipids has been investigated. Conformational changes of the polypeptide as well as changes in the membrane lipid distribution were observed upon lipid-protein agglutination: 1. The strong binding of polylysine is shown directly by the use of spinlabelled polypeptide. Upon binding to phosphatidic acid a shift in the hyperfine coupling constant from 16.5 to 14.6 Oe is observed. The spectrum of the lipid-bound peptide is superimposed on the spectrum of polylysine in solution. Half of the lysine groups are bound to the charged membranes. A change in the conformation of polylysine from a random coil to a partially ordered configuration is suggested. 2. Spin labelling of the lipid component gives evidence concerning the molecular organization of a lipid mixture containing charged phosphatitid acid. Addition of polylysine induces the formation of crystalline patches of bound phosphatidic acid. 3. Excimer forming pyrene decanoic acid has been employed. Addition of positively charged polylysine (pH 9.0) to phosphatidic acid membranes increases the transition temperature of the lipid from Tt = 50 to Tt = 62 degrees C. Thus, a lipid segregation of lipid into regions of phosphatidic acid bound to the peptide which differ in their microviscosity from the surrounding membrane is induced. One lysine group binds one phosphatidic acid molecule, but only half of the phosphatidic acid is bound. 4. Direct evidence for charge induced domain formation in lipid mixtures containing phosphatidic acid is given by electron microscopy. Addition of polylysine leads to a change in the surface curvature of the bound charged lipid. The domain size is estimated from the electron micrographs. The number of domains present is dependent on both the ratio of charged to uncharged lipids as well as on the amount of polylysine added to the vesicles. The size of the domains is not dependent on membrane composition. However, the size seems to increase in a stepwise manner that is correlated with a multiple of the area covered by one polylysine molecule.  相似文献   

9.
We present a combined atomic force microscopy and fluorescence microscopy study of the behavior of a ternary supported lipid bilayer system containing a saturated lipid (DPPC), an unsaturated lipid (DOPC), and ergosterol in the presence of high ethanol (20 vol %). We find that the fluorescent probe Texas Red DHPE preferentially partitions into the ethanol-induced interdigitated phase, which allows the use of fluorescence imaging to investigate the phase behavior of the system. Atomic force microscopy and fluorescence images of samples with the same lipid mixture show good agreement in sample morphology and area fractions of the observed phases. Using area fractions obtained from fluorescence images over a broad range of compositions, we constructed a phase diagram of the DPPC/DOPC/ergosterol system at 20 vol % ethanol. The phase diagram clearly shows that increasing unsaturated lipid and/or ergosterol protects the membrane by preventing the formation of the interdigitated phase. This result supports the hypothesis that yeast cells increase ergosterol and unsaturated lipid content to prevent interdigitation and maintain an optimal membrane thickness as ethanol concentration increases during anaerobic fermentations. Changes in plasma membrane composition provide an important survival factor for yeast cells to deter ethanol toxicity.  相似文献   

10.
The two-step crystallization of water in multilamellar vesicles (MLVs) of phosphatidylcholines has been investigated. The main crystallization occurs near -15 degrees C and involves bulk water. Contrary to unilamellar vesicles, a sub-zero phase transition is observed for MLVs at -40 degrees C that corresponds to the crystallization of interstitial water, as proved by Fourier transform infrared absorption and differential scanning calorimetry (DSC) experiments. Furthermore, by means of the DSC method and, more specifically, using the enthalpy change values Delta H(sub) at the sub-zero transition, the number of water molecules per 1,2-dipalmitoylphosphatidylcholine (DPPC) molecule giving rise to this transition has been estimated for different H(2)O/DPPC molar ratios. The curve of the molecular fraction of water molecules involved in the sub-zero transition versus the H(2)O/DPPC molar ratio exhibits a maximum for H(2)O/DPPC equal to 27 (40% in mass of water) and tends towards zero for H(2)O/DPPC ratio values approaching that of the swelling limit of the membrane. A smaller enthalpy value of the sub-zero transition is found for 1-oleoyl-2-palmitoyl-3-phosphatidylcholine (OPPC) than for DPPC. This may be explained by the decrease of interstitial water's quantity when the lipid contains an unsaturated chain. When troxerutin, a hydrophilic drug, is added to the DPPC multilayers, the decrease of Delta H(sub) and melting enthalpy of bulk water is attributed to a decrease of the entropy of the liquid phase owing to the network of water molecules surrounding troxerutin molecules. In all cases, the experiments revealed that the sub-zero transition occurs only in the presence of excess water with respect to the swelling limit of membranes. This evidence could be, at least qualitatively, related to an increase of membrane pressure on interstitial water subsequent to bulk water crystallization.  相似文献   

11.
《Biophysical journal》2020,118(8):1830-1837
Laurdan fluorescence, novel spectral fitting, and dynamic light scattering were combined to determine lateral lipid organization in mixed lipid membranes of the oxidized lipid, 1-palmitoyl-2-glutaryl-sn-glycero-3-phosphocholine (PGPC), and each of the three bilayer lipids, 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC), and 1-palmitoyl-2-oleoylphosphatidylcholine (POPC). Second harmonic spectra were computed to determine the number of elementary emissions present. All mixtures indicated two emissions. Accordingly, spectra were fit to two log-normal distributions. Changes with PGPC mole fraction, XPGPC, of the area of the shorter wavelength line and of dynamic light scattering-derived aggregate sizes show that: DPPC and PGPC form component-separated mixed vesicles for XPGPC ≤ 0.2 and coexisting vesicles and micelles for XPGPC > 0.2 in gel and liquid-ordered phases and for all XPGPC in the liquid-disordered phase; POPC and PGPC form randomly mixed vesicles for XPGPC ≤ 0.2 and component-separated mixed vesicles for XPGPC > 0.2. DOPC and PGPC separate into vesicles and micelles. Component segregation is due to unstable inhomogeneous membrane curvature stemming from lipid-specific intrinsic curvature differences between mixing molecules. PGPC is inverse cone-shaped because its truncated tail with a terminal polar group points into the interface. It is similar to and mixes with POPC, also an inverse cone because of mobility of its unsaturated tail. PGPC is least similar to DOPC because mobilities of both unsaturated tails confer a cone shape to DOPC, and PGPC separates form DOPC. DPPC and PGPC do not mix in the liquid-disordered phase because mobility of both tails in this phase renders DPPC a cone. DPPC is a cylinder in the gel phase and of moderate similarity to PGPC and mixes moderately with PGPC.  相似文献   

12.
We use fluorescence microscopy to directly observe liquid phases in giant unilamellar vesicles. We find that a long list of ternary mixtures of high melting temperature (saturated) lipids, low melting temperature (usually unsaturated) lipids, and cholesterol produce liquid domains. For one model mixture in particular, DPPC/DOPC/Chol, we have mapped phase boundaries for the full ternary system. For this mixture we observe two coexisting liquid phases over a wide range of lipid composition and temperature, with one phase rich in the unsaturated lipid and the other rich in the saturated lipid and cholesterol. We find a simple relationship between chain melting temperature and miscibility transition temperature that holds for both phosphatidylcholine and sphingomyelin lipids. We experimentally cross miscibility boundaries both by changing temperature and by the depletion of cholesterol with beta-cyclodextrin. Liquid domains in vesicles exhibit interesting behavior: they collide and coalesce, can finger into stripes, and can bulge out of the vesicle. To date, we have not observed macroscopic separation of liquid phases in only binary lipid mixtures.  相似文献   

13.
Summary Fusion between unilamellar vesicles of both egg phosphatidylcholine and bovine phosphatidylserine was induced by polyethylene glycol. Aggregation and fusion events were monitored by electron microscopy and turbidity measurements. The threshold concentration of polyethylene glycol for aggregation and fusion is found to be independent of lipid concentration. Typically, aggregation of phosphatidylcholine vesicles starts at 2.5% (wt/wt) polyethylene glycol, but fusion is not significant until the polyethylene glycol concentration reaches 35%. Multilamellar vesicles were formed as a result of fusion.Abbreviations PEG Polyethylene glycol - IMP Intramembranous particle - PC Phosphatidylcholine - PS Phosphatidylserine - SUV Small unilamellar vesicles - MLV Multilamellar vesicles - DPPC Dipalmitoyl phosphatidylcholine - DSC Differential scanning calorimetry  相似文献   

14.
Cytochrome P-450 and NADPH-cytochrome P-450 reductase were reconstituted in unilamellar lipid vesicles prepared by the cholate dialysis technique from pure dimyristoylphosphatidylcholine (DMPC), pure dipalmitoylphosphatidylcholine (DPPC), pure dioleoylphosphatidylcholine (DOPC), and phosphatidylcholine/phosphatidylethanolamine/phosphatidylserine (PC/PE/PS) (10:5:1). As probes for the vesicles' hydrocarbon region, 1,6-diphenyl-1,3,5-hexatriene (DPH) and spin-labeled PC were used. The steady-state and time-resolved fluorescence parameters of DPH were determined as a function of temperature and composition of liposomes. Incorporation of either protein alone or together increased the steady-state fluorescence anisotropy (rs) of DPH in DOPC and PC/PE/PS (10:5:1) liposomes. In DMPC and DPPC vesicles, the proteins decreased rs significantly below the transition temperature (Tc) of the gel to liquid-crystalline phase transition. Time-resolved fluorescence measurements of DPH performed in reconstituted PC/PE/PS and DMPC proteoliposomes showed that the proteins disorder the bilayer both in the gel and in the liquid-crystalline phase. Little disordering by the proteins was observed by a spin-label located near the mid-zone of the bilayer 1-palmitoyl-2-(5-doxylstearoyl)-3-sn-phosphatidylcholine (8-doxyl-PC), whereas pronounced disordering was detected by 1-palmitoyl-2-(8-doxylpalmitoyl)-3-sn-phosphatidylcholine (5-doxyl-PC), which probes the lipid zone closer to the polar part of the membrane. Fluorescence lifetime measurements of DPH indicate an average distance of greater than or equal to 60 A between the heme of cytochrome P-450 and DPH.  相似文献   

15.
Two types of sonicated vesicle have been prepared from dipalmitoylphosphatidylcholine (DPPC) by incorporation of phosphatidylinositol (PI) to give negatively charged vesicles and stearylamine to give positively charged vesicles. The absorption of the vesicles by rat liver has been investigated by perfusion techniques. A steady state of vesicle absorption is rapidly established in approx. 2 min and the initial rates of absorption decrease with PI content of the vesicles and increase with stearylamine content. In the steady state, the uptake of vesicles by the liver is similarly dependent on vesicle charge, being inhibited by PI and enhanced by incorporation of stearylamine in the vesicles. Fractionation of the liver into subcellular fractions following perfusion showed that most of the vesicular lipid could be found associated with a nuclear (plus plasma membrane) fraction. The suppression of vesicle absorption by PI may be of value as a means of bypassing the liver in relation to the use of vesicles as a delivery system.  相似文献   

16.
Lipid monolayers exist in several biological systems, including the stratum corneum of the skin, the fluid tear film of the eye, the Eustachian tube of the ear, and airway and alveolar pulmonary surfactants. In this paper, the monolayer-to-bilayer transition was studied using dipalmitoylphosphatidylcholine (DPPC) as the model. Depositing DPPC organic solvent solutions in excess at an air:buffer interface led to the formation of elongated structures which could be imaged on carbon grids by transmission electron microscopy. The structures appeared to be DPPC folds protruding into the sol. The structures were frequently ordered with respect to one another, suggesting that they arose during lateral compression due to excess DPPC and are characteristic of a type of monolayer collapse phase. In some cases, series of short folds in an extended line and series of vesicles in line or parallel to the folds were observed. This suggests the elongated folds are unstable and can resolve by forming vesicles. Fold formation occurred at defined lipid concentrations above which more vesicles were observed. Surfactant protein-A did not influence fold or vesicle formation but bound to the edges of these structures preferentially. It is concluded that DPPC monolayers can form bilayers spontaneously in the absence of surfactant apoproteins, other proteins or agents. Received: 18 May 2000/Revised: 20 November 2000  相似文献   

17.
The sizes and shapes of solidus (gel) phase domains in the hydrated molecular bilayers of dilauroylphosphatidylcholine/dipalmitoylphasphatidylcholine (DLPC/DPPC) (1:1) and phosphatidylserine (PS)/DPPC (1:2) are visualized directly by low dose diffraction-contrast electron microscopy. The temperature and humidity of the bilayers are controlled by an environmental chamber set in an electron microscope. The contrast between crystalline domains is enhanced by electron optical filtering of the diffraction patterns of the bilayers. The domains are seen as a patchwork in the plane of the bilayer, with an average width of 0.2-0.5 micrometer. The percentage of solidus area measured from diffraction-contrast micrographs at various temperatures agrees in general with those depicted by known phase diagrams. The shape and size of the domains resemble those seen by freeze-fracture in multilamellar vesicles. Temperature-related changes in domain size and in phase boundary per unit area are more pronounced in the less miscible DLPC/DPPC mixture. No significant change in these geometric parameters with temperature is found in the PS/DPPC mixture. Mapping domains by their molecular diffraction signals not only verifies the existance of areas of different molecular packing during phase separation but also provides a quantitative measurement of structural boundaries and defects in lipid bilayers.  相似文献   

18.
A method for protein quantitation in the presence of nonprotein cellular components is described. The method is based on measurement of two tryptophan-specific signals in the fourth derivative of the protein's ultraviolet absorption spectrum, a peak at 283 nm and a trough at 288 nm. The amplitude between these two extremes is shown to vary linearly with protein concentration for bovine serum albumin and the outer membrane vesicles of Neissera meningitidis even when these protein solutions are supplemented with enough nucleic acid to completely obscure the parent absorption spectrum of the protein. The utility of this method as an in-process assay during isolation of a protein is demonstrated by comparing estimates of protein content from fourth derivative spectroscopy with those from the Lowry assay for samples at several steps along the isolation pathway for outer membrane vesicles of N. meningitidis. The advantages and limitations of the present method are discussed.  相似文献   

19.
The fluorescence intensity of diphenylhexatriene (DPH) and of trimethylammonium-diphenylhexatriene (TMA-DPH) is measured when these probes are embedded in vesicles of dipalmitoyl- and dioleoylphosphatidylcholine (DPPC and DOPC), in mixtures of these vesicles as well as in vesicles of the mixed phospholipids, in trout intestinal brush border membranes and in mitoplasts of rat liver cells. The intensity in DOPC vesicles is found to be significantly higher than in DPPC vesicles. When these systems are irradiated with strong ultraviolet light radiation, a decrease in the fluorescence intensity is observed; this effect is much stronger in DOPC than in DPPC vesicles. The fluorescence anisotropy values in the mixture of vesicles as well as in the membranes show an initial increase with irradiation which is followed by a significant decrease. A transfer of DPH molecules between DPPC and DOPC vesicles is observed. For TMA-DPH this transfer takes place only from DPPC to DOPC vesicles, but not vice-versa. These results are related to intensity and anisotropy measurements of these probes in cell cultures.  相似文献   

20.
There are several bacterial polysaccharides (PSs) which contain a terminal lipid moiety. It has been postulated that these terminal lipid moieties anchor the PSs to the outer membrane of the bacteria. Our studies have shown that incubation of native PS from group C Neisseria meningitidis or Haemophilus influenzae type b with isolated outer membrane vesicles results in association of a portion of the PS with the vesicles. Removal of the terminal lipid from the PS by treatment with phospholipase A2 or phospholipase D eliminates this association. In other studies, it was shown that delipidated PSs are not suitable as solid-phase antigens in a currently used enzyme-linked immunosorbent assay (ELISA). Measurement of antibody units in the reference sera by using delipidated PSs as antigens in an ELISA yielded negligible absorbance compared with native PSs when methylated human serum albumin was used to coat the PSs to the plate. Nevertheless, phospholipase A2 and phospholipase D treatment did not noticeably affect antigenic epitopes, since soluble group C PS without the terminal lipid bound antibody as effectively as the native PS did, as measured by a competitive inhibition assay. Both hydrophobic and electrostatic interactions are important for the binding of group C N. meningitidis PS to the ELISA plate, while charge interactions seem to be sufficient for binding the more negatively charged H. influenzae type b PS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号