首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Interleukin-17 (IL-17) is a T cell cytokine spontaneously produced by cultures of rheumatoid arthritis (RA) synovial membranes. High levels have been detected in the synovial fluid of patients with RA. The trigger for IL-17 is not fully identified; however, IL-23 promotes the production of IL-17 and a strong correlation between IL-15 and IL-17 levels in synovial fluid has been observed. IL-17 is a potent inducer of various cytokines such as tumor necrosis factor (TNF)-alpha, IL-1, and receptor activator of NF-kappaB ligand (RANKL). Additive or even synergistic effects with IL-1 and TNF-alpha in inducing cytokine expression and joint damage have been shown in vitro and in vivo. This review describes the role of IL-17 in the pathogenesis of destructive arthritis with a major focus on studies in vivo in arthritis models. From these studies in vivo it can be concluded that IL-17 becomes significant when T cells are a major element of the arthritis process. Moreover, IL-17 has the capacity to induce joint destruction in an IL-1-independent manner and can bypass TNF-dependent arthritis. Anti-IL-17 cytokine therapy is of interest as an additional new anti-rheumatic strategy for RA, in particular in situations in which elevated IL-17 might attenuate the response to anti-TNF/anti-IL-1 therapy.  相似文献   

2.
The role of cytokines in osteoarthritis pathophysiology   总被引:54,自引:0,他引:54  
  相似文献   

3.
4.
The rheumatoid arthritis (RA) joint is characterized by an inflammatory synovial pannus which mediates tissue destruction. IL-13 is a cytokine that inhibits activated monocytes/macrophages from secreting a variety of proinflammatory molecules. The aim of this study was to examine whether gene therapy-delivered IL-13 could reduce the production of key proinflammatory mediators in RA synovial tissue (ST) explants. Adenoviral vectors encoding the genes for human IL-13 (AxCAIL-13) and bacterial beta-galactosidase were generated and examined for protein production. Vectors were used to infect RA ST explants and RA synovial fibroblasts, and conditioned medium (CM) was collected at various times for analysis by ELISA and competitive immunoassay. AxCAIL-13 decreased the production of RA ST explant proinflammatory IL-1beta by 85% after 24 h. Likewise, TNF-alpha levels were decreased by 82 and 75% whereas IL-8 levels were reduced 54 and 82% after 24 and 48 h, respectively, in RA ST explant CM. Monocyte chemotactic protein-1 concentrations were decreased by 88% after 72 h in RA ST explant CM. RA ST explant epithelial neutrophil-activating peptide-78 concentrations were decreased 85 and 94% whereas growth-related gene product-alpha levels were decreased by 77 and 85% at 24 and 48 h, respectively, by AxCAIL-13. Further, IL-13 significantly decreased PGE2 and macrophage inflammatory protein-1alpha production. These results demonstrate that increased expression of IL-13 via gene therapy may decrease RA-associated inflammation by reducing secretion of proinflammatory cytokines and PGE2.  相似文献   

5.
Rheumatoid arthritis (RA) is characterized by chronic inflammation of the synovial joints resulting from hyperplasia of synovial fibroblasts and infiltration of lymphocytes, macrophages and plasma cells, all of which manifest signs of activation. All these cells proliferate abnormally, invade bone and cartilage, produce an elevated amount of pro-inflammatory cytokines, metalloproteinases and trigger osteoclast formation and activation. Some of the pathophysiological consequences of the disease may be explained by the inadequate apoptosis, which may promote the survival of autoreactive T cells, macrophages or synovial fibroblasts. Although RA does not result from single genetic mutations, elucidation of the molecular mechanisms implicated in joint destruction has revealed novel targets for gene therapy. Gene transfer strategies include inhibition of pro-inflammatory cytokines, blockade of cartilage-degrading metalloproteinases, inhibition of synovial cell activation and manipulation of the Th1-Th2 cytokine balance. Recent findings have iluminated the idea that induction of apoptosis in the rheumatoid joint can be also used to gain therapeutic advantage in the disease. In the present review we will discuss different strategies used for gene transfer in RA and chronic inflammation. Particularly, we will high-light the importance of programmed cell death as a novel target for gene therapy using endogenous biological mediators, such as galectin-1, a beta-galactoside-binding protein that induces apoptosis of activated T cells and immature thymocytes.  相似文献   

6.
We investigated the therapeutic potential and mechanism of action of IFN-beta protein for the treatment of rheumatoid arthritis (RA). Collagen-induced arthritis was induced in DBA/1 mice. At the first clinical sign of disease, mice were given daily injections of recombinant mouse IFN-beta or saline for 7 days. Disease progression was monitored by visual clinical scoring and measurement of paw swelling. Inflammation and joint destruction were assessed histologically 8 days after the onset of arthritis. Proteoglycan depletion was determined by safranin O staining. Expression of cytokines, receptor activator of NF-kappaB ligand, and c-Fos was evaluated immunohistochemically. The IL-1-induced expression of IL-6, IL-8, and granulocyte/macrophage-colony-stimulating factor (GM-CSF) was studied by ELISA in supernatant of RA and osteoarthritis fibroblast-like synoviocytes incubated with IFN-beta. We also examined the effect of IFN-beta on NF-kappaB activity. IFN-beta, at 0.25 microg/injection and higher, significantly reduced disease severity in two experiments, each using 8-10 mice per treatment group. IFN-beta-treated animals displayed significantly less cartilage and bone destruction than controls, paralleled by a decreased number of positive cells of two gene products required for osteoclastogenesis, receptor activator of NF-kappaB ligand and c-Fos. Tumor necrosis factor alpha and IL-6 expression were significantly reduced, while IL-10 production was increased after IFN-beta treatment. IFN-beta reduced expression of IL-6, IL-8, and GM-CSF in RA and osteoarthritis fibroblast-like synoviocytes, correlating with reduced NF-kappaB activity. The data support the view that IFN-beta is a potential therapy for RA that might help to diminish both joint inflammation and destruction by cytokine modulation.  相似文献   

7.
8.
IL-4 is a cytokine with anti-inflammatory properties on activated macrophages. Rheumatoid arthritis, an autoimmune inflammatory disease, is characterized by a paucity of IL-4 and an abundance of synovial macrophage-derived mediators. Herein, the effect of a single injection of adenovirus-producing rat IL-4 (AxCAIL-4) or a control virus with no inserted gene was compared with the effect of PBS injection into rat ankles. Ankles were injected before arthritis onset or at maximal inflammation. Preventatively, AxCAIL-4 reduced adjuvant-induced arthritis (AIA)- and/or AIA/adenoviral-induced ankle inflammation, decreasing articular index scores, ankle circumferences, paw volumes, radiographic scores, mean levels of monocyte chemoattractant protein-1, the number of inflammatory cells, and the number of synovial blood vessels. Therapeutically, AxCAIL-4 also decreased ankle circumferences and paw volumes in comparison with a control virus with no inserted gene and PBS groups. After arthritis onset, mean levels of TNF-alpha, IL-1beta, macrophage inflammatory protein-2, and RANTES were decreased in AxCAIL-4 rat ankle homogenates compared with PBS-treated homogenates. Thus, increased expression of IL-4 via gene therapy administered in a preventative and/or therapeutic manner reduced joint inflammation, synovial cellularity, levels of proinflammatory cytokines, vascularization, and bony destruction in rat AIA, suggesting that a similar treatment in humans may be beneficial.  相似文献   

9.
Quantitative analysis of cytokine gene expression in rheumatoid arthritis   总被引:39,自引:0,他引:39  
Previous studies of the cytokine profile of rheumatoid arthritis (RA) have been primarily limited to the assessment of the levels of these mediators in synovial fluid (SF) or synovial tissues (ST) by biologic or immunologic assays. We have studied cytokine gene expression in RA by in situ hybridization of SF cells, enzymatically dispersed ST cells, and frozen sections of ST. RA ST cells (n = 7) were studied and a high percentage of cells hybridized to the following anti-sense probes: IL-6 = 19 +/- 3.3%; IL-1 beta = 9.9 +/- 1.7%; TNF-alpha = 5.8 +/- 1.4%; granulocyte-macrophage-CSF = 2.2 +/- 0.8%; transforming growth factor-beta 1 = 1.3 +/- 0.2% (p less than 0.05 for each compared to sense probes). Similar results were found using osteoarthritis ST cells, although the percentage of cells expressing the IL-6 gene (7.1 +/- 2.5%) was significantly less in osteoarthritis compared to RA. RA ST cells did not significantly bind the IFN-gamma probe (0.2 +/- 0.1% positive), although they were capable of expressing the IFN-gamma gene if stimulated with PHA. The OKM1+ population of ST cells (i.e., macrophage lineage cells) was greatly enriched for IL-1 beta and TNF-alpha, whereas the OKM1- population (lymphocytes, fibroblasts, and type B synoviocytes) was enriched for IL-6. The vast majority of cells expressing the IL-6 gene were non-T cells. Furthermore, hybridization to RA ST frozen sections localized IL-6 mRNA to the synovial lining layer, which is comprised of type A and type B synoviocytes. In contrast to the high level of cytokine gene expression observed in ST, SF cells did not hybridize significantly to any of the cytokine probes. If stimulated with LPS or PHA, SF cells expressed IL-1 beta or IFN-gamma genes, respectively.  相似文献   

10.
IL-10 down-regulates the APC function of many dendritic cells (DC), including human peripheral blood (PB) DC. In rheumatoid arthritis (RA), synovial fluid (SF) DC express markers of differentiation and are effective APC despite abundant synovial IL-10. The regulation of DC responsiveness to IL-10 was therefore examined by comparing the effect of IL-10 on normal PB and RA SF DC. Whereas IL-10 down-modulated APC function and MHC class II and B7 expression of PB DC, IL-10 had no such effect on SF DC. Since SF DC have differentiated in vivo in the presence of proinflammatory cytokines, PB DC were cocultured in the presence of IL-10 and either GM-CSF, IL-1beta, TNF-alpha, IL-6, or TGF-beta. GM-CSF, IL-1beta, and TNF-alpha were all able to restore APC function. Whereas the effects of IL-10 on PB DC were shown to be mediated by IL-10R1, neither PB nor RA SF DC constitutively expressed IL-10R1 mRNA or detectable surface protein. In contrast, IL-10R1 protein was demonstrated in PB and SF DC whole cell lysates, suggestive of predominant intracellular localization of the receptor. Thus, DC responsiveness to IL-10 may be regulated through modulation of cell surface IL-10R1 expression or signaling.  相似文献   

11.
Although the etiology of early events in rheumatoid arthritis (RA) remains undefined, an anomaly in T cell homeostasis and hyperproliferation of synovial-lining cells are involved in the disease process. Since it has been reported that the ephrin/Eph receptor system plays important signaling roles in inflammation processes, we attempted to examine ephrinB molecules in T cells and synovial cells derived from RA in this study. The expression level of ephrinB1 was significantly high in synovial fibroblasts and CD3-positive exudate lymphocytes in synovial tissues derived from patients with RA compared with those in osteoarthritis (OA). Protein and mRNA levels of ephrinB1 were also higher in peripheral blood lymphocytes (PBLs) prepared from patients with RA than those from normal controls. Similar results were obtained from an animal model of human RA, collagen antibody-induced arthritis mice. Moreover, a recombinant ephrinB1/Fc fusion protein stimulated normal PBLs to exhibit enhanced migration and production of TNF-alpha. EphrinB1/Fc also activated synovial cells established from patients with RA to produce IL-6. Tyrosine phosphorylation of EphB1 was induced in these cells by ephrinB1/Fc. The CpG islands in the 5' upstream regulatory region of the ephrinB1 gene were hypomethylated in RA patients compared with those of normal donors. These results suggest that ephrinB1 and EphB1 receptors play an important role in the inflammatory states of RA, especially by affecting the population and function of T cells. Inhibition of the ephrinB/EphB system might be a novel target for the treatment of RA.  相似文献   

12.
A major neurotransmitter dopamine transmits signals via five different seven-transmembrane G protein-coupled receptors termed D1-D5. Several studies have shown that dopamine not only mediates interactions into the nervous system, but can contribute to the modulation of immunity via receptors expressed on immune cells. We have previously shown an autocrine/paracrine release of dopamine by dendritic cells (DCs) during Ag presentation to naive CD4(+) T cells and found efficacious results of a D1-like receptor antagonist SCH-23390 in the experimental autoimmune encephalomyelitis mouse model of multiple sclerosis and in the NOD mouse model of type I diabetes, with inhibition of Th17 response. This study aimed to assess the role of dopaminergic signaling in Th17-mediated immune responses and in the pathogenesis of rheumatoid arthritis (RA). In human naive CD4(+) T cells, dopamine increased IL-6-dependent IL-17 production via D1-like receptors, in response to anti-CD3 plus anti-CD28 mAb. Furthermore, dopamine was localized with DCs in the synovial tissue of RA patients and significantly increased in RA synovial fluid. In the RA synovial/SCID mouse chimera model, although a selective D2-like receptor antagonist haloperidol significantly induced accumulation of IL-6(+) and IL-17(+) T cells with exacerbated cartilage destruction, SCH-23390 strongly suppressed these responses. Taken together, these findings indicate that dopamine released by DCs induces IL-6-Th17 axis and causes aggravation of synovial inflammation of RA, which is the first time, to our knowledge, that actual evidence has shown the pathological relevance of dopaminergic signaling with RA.  相似文献   

13.
Cytokines play an important role in the regulation of homeostasis and inflammation. A de-regulated cytokine function can subsequently promote chronic inflammation. This is supported by clinical evidence showing the beneficial effect of inhibiting TNF-alpha through injection of antibodies and soluble receptor in disorders such as rheumatoid arthritis and Crohn's disease. Systemic anti-TNF-alpha therapy however is associated with infectious complications. We therefore suggest a concept for the local deposition of therapeutically active agents into areas of inflammation or malignancy, based on the use of hematopoietic storage and secretory granules as delivery vehicles. Hematopoietic cells are induced to express the therapeutically active protein and to store it in the secretory lysosomes. The cells migrate into a tumour or site of inflammation, where the cells become activated and release the contents of their secretory lysosomes resulting in the local delivery of the therapeutically active protein. In support of this concept, gene transfer and granule loading can be achieved using the soluble TNF-alpha receptor (sTNFR1) after cDNA expression in hematopoietic cell lines. Endoplasmic reticulum (ER)-export can be facilitated by the addition of a transmembrane domain, and constitutive secretion can be prevented by incorporating a cytosol-sorting signal resulting in secretory lysosome targeting. The sTNFR1 is released from the transmembrane domain by proteolytic cleavage and finally, regulated sTNFR1-secretion can be triggered by a calcium signal. In vivo investigations are currently determining the feasibility of local protein delivery at sites of inflammation.  相似文献   

14.
可溶性肿瘤坏死因子受体(sTNFR)可以拮抗肿瘤坏死因子的活性,因此已被用来治疗与TNF相关的炎性疾病。本研究将sTNFR与IgGFc片段的融合蛋白基因克隆到真核表达载体pStar上,转染到人的内皮细胞中,获得了表达。表达的sTNFR-IgGFc能够拮抗TNFα对L929细胞的细胞毒活性。将该质粒DNA与脂质体混合,经尾静脉注射到Ⅱ型胶原诱导的关节炎小鼠体内后,应用RT-PCR在鼠的肝脏检测到了sTNFR-IgGFc的表达,并显著地改善了治疗组小鼠关节炎症状和病理反应。这表明抗TNF基因治疗有可能作为治疗类风湿性关节炎的新的途径。  相似文献   

15.
Vascular endothelial growth factor (VEGF) has been suggested to play a critical role in the pathogenesis of rheumatoid arthritis (RA). We previously identified a novel RRKRRR hexapeptide that blocked the interaction between VEGF and its receptor through the screening of peptide libraries. In this study, we investigated whether anti-VEGF peptide RRKRRR (dRK6) could suppress collagen-induced arthritis (CIA) and regulate the activation of mononuclear cells of RA patients. A s.c. injection of dRK6 resulted in a dose-dependent decrease in the severity and incidence of CIA and suppressed synovial infiltration of inflammatory cells in DBA/1 mice. In these mice, the T cell responses to type II collagen (CII) in lymph node cells and circulating IgG Abs to CII were also dose-dependently inhibited by the peptides. In addition, VEGF directly increased the production of TNF-alpha and IL-6 from human PBMC. Synovial fluid mononuclear cells of RA patients showed a greater response to VEGF stimulation than the PBMC of healthy controls. The major cell types responding to VEGF were monocytes. Moreover, anti-VEGF dRK6 inhibited the VEGF-induced production of TNF-alpha and IL-6 from synovial fluid mononuclear cells of RA patients and decreased serum IL-6 levels in CIA mice. In summary, we observed first that dRK6 suppressed the ongoing paw inflammation in mice and blocked the VEGF-induced production of proinflammatory cytokines. These data suggest that dRK6 may be an effective strategy in the treatment of RA, and could be applied to modulate various chronic VEGF-dependent inflammatory diseases.  相似文献   

16.
17.
类风湿关节炎(RA)是一种慢性、多系统的以关节的炎症损害为主要特点的自身免疫性疾病。其发病过程与多种细胞因子有关,包括TNF-α、IL-1、MMPS、IL-6、IL-17、IL-18等,这些细胞因子在RA的发病进程中起了很重要的作用,可作为治疗RA的新靶点。  相似文献   

18.
Nuclear factor (NF)-kappaB is a key regulator of synovial inflammation. We investigated the effect of local NF-kappaB inhibition in rat adjuvant arthritis (AA), using the specific IkappaB kinase (IKK)-beta blocking NF-kappaB essential modulator-binding domain (NBD) peptide. The effects of the NBD peptide on human fibroblast-like synoviocytes (FLS) and macrophages, as well as rheumatoid arthritis (RA) whole-tissue biopsies, were also evaluated. First, we investigated the effects of the NBD peptide on RA FLS in vitro. Subsequently, NBD peptides were administered intra-articularly into the right ankle joint of rats at the onset of disease. The severity of arthritis was monitored over time, rats were sacrificed on day 20, and tissue specimens were collected for routine histology and x-rays of the ankle joints. Human macrophages or RA synovial tissues were cultured ex vivo in the presence or absence of NBD peptides, and cytokine production was measured in the supernatant by enzyme-linked immunosorbent assay. The NBD peptide blocked interleukin (IL)-1-beta-induced IkappaB alpha phosphorylation and IL-6 production in RA FLS. Intra-articular injection of the NBD peptide led to significantly reduced severity of arthritis (p < 0.0001) and reduced radiological damage (p = 0.04). This was associated with decreased synovial cellularity and reduced expression of tumor necrosis factor (TNF)-alpha and IL-1-beta in the synovium. Incubation of human macrophages with NBD peptides resulted in 50% inhibition of IL-1-beta-induced TNF-alpha production in the supernatant (p < 0.01). In addition, the NBD peptide decreased TNF-alpha-induced IL-6 production by human RA synovial tissue biopsies by approximately 42% (p < 0.01). Specific NF-kappaB blockade using a small peptide inhibitor of IKK-beta has anti-inflammatory effects in AA and human RA synovial tissue as well as in two important cell types in the pathogenesis of RA: macrophages and FLS. These results indicate that IKK-beta-targeted NF-kappaB blockade using the NBD peptide could offer a new approach for the local treatment of arthritis.  相似文献   

19.
Synovial tissue macrophage as a source of the chemotactic cytokine IL-8   总被引:30,自引:0,他引:30  
Cells of the synovial microenvironment may recruit neutrophils (PMN) and lymphocytes into synovial fluid, as well as lymphocytes into the synovial tissues, of arthritic patients. We have investigated the production of the chemotactic cytokine IL-8 by using sera, synovial fluid, synovial tissue, and macrophages and fibroblasts isolated from synovial tissues from 75 arthritic patients. IL-8 levels were higher in synovial fluid from rheumatoid (RA) patients (mean +/- SE, 14.37 +/- 5.8 ng/ml), compared with synovial fluid from osteoarthritis patients (0.135 +/- 17 ng/ml) (p less than 0.05) or from patients with other arthritides (5.52 +/- 5.11 ng/ml). IL-8 from RA sera was 8.44 +/- 2.33 ng/ml, compared with nondetectable levels found in normal sera. IL-8 levels from RA sera and synovial fluid were strongly positively correlated (r = 0.96, p less than 0.05). Moreover, RA synovial fluid chemotactic activity for PMN in these fluids was inhibited 40 +/- 5% upon incubation with neutralizing polyclonal antibody to IL-8. Synovial tissue fibroblasts released only small amounts of constitutive IL-8 but could be induced to produce IL-8 by stimulation with either IL-1 beta, TNF-alpha, or LPS. In contrast, unlike normal PBMC or alveolar macrophages, macrophages isolated from RA synovial tissue constitutively expressed both IL-8 mRNA and antigenic IL-8. RA synovial macrophage IL-8 expression was not augmented by incubation with either LPS, TNF-alpha, or IL-1 beta. Immunohistochemical analysis of synovial tissue showed that a greater percentage of RA macrophages than osteoarthritis macrophages reacted with anti-IL-8. Whereas macrophages were the predominant cell for immunolocalization of IL-8, less than 5% of synovial tissue fibroblasts were positive for immunolocalized IL-8. These results suggest that macrophage-derived IL-8 may play an important role in the recruitment of PMN in synovial inflammation associated with RA.  相似文献   

20.
Rheumatoid arthritis (RA) is a chronic, persistent inflammatory joint disease with systemic involvement that affects about 1% of the world’s population, that ultimately leads to the progressive destruction of joint. Effective medical treatment for joint destruction in RA is lacking because the knowledge about molecular mechanisms leading to joint destruction are incompletely understood. It has been confirmed that cytokine-mediated immunity plays a crucial role in the pathogenesis of various autoimmune diseases including RA. Recently, IL-17 was identified, which production by Th17 cells. IL-17 has proinflammatory properties and may promote bone and joint damage through induction of matrix metalloproteinases and osteoclasts. In mice, intra-articular injection of IL-17 into the knee joint results in joint inflammation and damage. In addition, it has been shown that blocking IL-17/IL-17R signaling is effective in the control of rheumatoid arthritis symptoms and in the prevention of joint destruction. In this article, we will briefly discuss the biological features of IL-17/IL-17R and summarize recent advances on the role of IL-17/IL-17R in the pathogenesis and treatment of joint destruction in RA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号