首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
Prenyltransferases are a group of enzymes involved in the biosynthesis of both sterol and nonsterol isoprene compounds. Somatic cell hybrid studies and in situ hybridization show that the human genome contains five distinct loci that hybridize to the cDNA for the enzyme farnesyl pyrophosphate synthetase (FPS), a prenyltransferase that catalyzes the synthesis of an intermediate common to both the sterol and the nonsterol branches of the isoprene biosynthetic pathway. The loci identified in this report may correspond to unique prenyltransferase genes related to FPS or to pseudogenes. The loci mapped have been identified as farnesyl pyrophosphate synthetase-"like"-1 (FPSL-1) on chromosome 1q24-31, FPSL-2 on chromosome 7, FPSL-3 on chromosome 14, FPSL-4 on chromosome 15q14-q21, and FPSL-5 on chromosome Xq21-22. Multiple copies of sequences similar to those of FPS are also present in both the mouse and the rat.  相似文献   

3.
4.
5.
Amyloid-β peptide (Aβ) is the principal component of plaques in the brains of patients with Alzheimer's disease (AD), and the most toxic form of Aβ may be as soluble oligomers. We report here the results of a microarray study of gene expression profiles in primary mouse cortical neurons in response to oligomeric Aβ(1-42). A major and unexpected finding was the down-regulation of genes involved in the biosynthesis of cholesterol and other steroids and lipids (such as Fdft1, Fdps, Idi1, Ldr, Mvd, Mvk, Nsdhl, Sc4mol), the expression of which was verified by quantitative real-time RT-PCR (qPCR). The ATP-binding cassette gene Abca1, which has a major role in cholesterol transport in brain and other tissues and has been genetically linked to AD, was notably up-regulated. The possible involvement of cholesterol and other lipids in Aβ synthesis and action in Alzheimer's disease has been studied and debated extensively but remains unresolved. These new data suggest that Aβ may influence steroid and lipid metabolism in neurons via multiple gene-expression changes.  相似文献   

6.
Mapping of the bovine genes of the de novo AMP synthesis pathway   总被引:1,自引:0,他引:1  
Summary The purine nucleotides adenosine monophosphate (AMP) and guanosine monophosphate (GMP) are critical for energy metabolism, cell signalling and cell reproduction. Despite their essential function, little is known about the regulation and in vivo expression pattern of the genes involved in the de novo purine synthesis pathway. The complete coding region of the bovine phosphoribosylaminoimidazole carboxylase gene (PAICS), which catalyses steps 6 and 7 of the de novo purine biosynthesis pathway, as well as bovine genomic sequences of the six other genes in the pathway producing inosine monophosphate (IMP) and AMP [phosphoribosyl pyrophosphate amidotransferase (PPAT), phosphoribosylglycinamide formyltransferase (GART), phosphoribosylformylglycinamidine synthase (PFAS), adenylosuccinate lyase (ADSL), 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase/IMP cyclohydrolase (ATIC) and adenylosuccinate synthase (ADSS)], were identified. The genes were mapped to segments of six different bovine chromosomes using a radiation hybrid (RH) cell panel. The gene PPAT, coding for the presumed rate-limiting enzyme of the purine de novo pathway was closely linked to PAICS on BTA6. These, and the other bovine locations i.e. GART at BTA1, PFAS at BTA19, ADSL at BTA5, ATIC at BTA2 and ADSS at BTA16, are in agreement with published comparative maps of cattle and man. PAICS and PPAT genes are known to be closely linked in human, rat and chicken. Previously, an expressed sequence fragment of PAICS (Bos taurus corpus luteum, BTCL9) was mapped to BTA13. By isolation and characterization of a BAC clone, we have now identified a PAICS processed pseudogene sequence (psiPAICS) on BTA13. Processed pseudogene sequences of PAICS and other genes of the purine biosynthesis pathway were identified in several mammalian species, indicating that the genes of this pathway have been susceptible to retrotransposition. The seven bovine genes are expressed at a higher level in testicular and ovary tissues compared with skeletal muscle.  相似文献   

7.
8.
Control of RAS mRNA level by the mevalonate pathway.   总被引:1,自引:0,他引:1       下载免费PDF全文
The ability of Ras proteins to initiate eukaryotic cell proliferation requires the post-translational attachment of a farnesyl group, an isoprenoid lipid moiety derived from mevalonate, to the carboxyl-terminus of the protein. This modification is essential for the subsequent processing and intracellular targeting of the Ras protein. Here we report that mevalonate is also required for the efficient synthesis of Ras proteins in Saccharomyces cerevisiae. Depletion of intracellular mevalonate resulted in decreased steady-state levels of Ras1p and Ras2p, an effect that was mediated at the level of mRNA accumulation. The sequences controlling the response of RAS2 mRNA level to mevalonate availability, mapped to the coding region of the RAS2 gene. Mevalonate starvation also had a significant effect on the expression of some, but not all, genes encoding prenylated proteins. The regulatory effect on RAS2 mRNA did not require a functional farnesyl transferase. These results uncover a novel regulatory role for mevalonate-derived products and expand the potential for inhibitors of mevalonate metabolism as anti-cancer agents.  相似文献   

9.
Cellular cholesterol metabolism is regulated primarily through sterol-mediated feedback suppression of the activity of the low-density lipoprotein receptor and several enzymes of the cholesterol biosynthetic pathway. We previously described the cloning of a rabbit cDNA for the oxysterol-binding protein (OSBP), a cytosolic protein of 809 amino acids that may participate in these regulatory events. We now use the rabbit OSBP cDNA to clone the human OSBP cDNA and 5' genomic region. Comparison of the human and rabbit OSBP sequences revealed a remarkably high degree of conservation. The cDNA sequence in the coding region showed 94% identity between the two species, and the predicted amino acid sequence showed 98% identity. The human cDNA was used to determine the chromosomal localization of the OSBP gene by Southern blot hybridization to panels of somatic cell hybrid clones containing subsets of human or mouse chromosomes and by RFLP analysis of recombinant inbred mouse strains. The OSBP locus mapped to the long arm of human chromosome 11 and the proximal end of mouse chromosome 19. Along with previously mapped genes including Ly-1 and CD20, OSBP defines a new conserved syntenic group on the long arm of chromosome 11 in the human and the proximal end of chromosome 19 in the mouse.  相似文献   

10.
G-banding analysis of LRec-1 and LRec-3, spontaneously immortalized cell lines from rat embryo fibroblast, revealed diploid karyotypes with specific clonal structural rearrangements of chromosomes 7 and 19 - del(7)(q11.2q22.1), t(7;19)(q11.1;q12) in malignant stage. Both clonal abnormalities of chromosomes 7 and 19 were also revealed in LRec-1k clone and LRec-1 sf cell line. Previous study of LRec-1 and LRec-3 cells showed the presence of karyotypes with pseudodiploid modal chromosome number, partial trisomy of chromosome 7 and same clonal structural rearrangements of chromosomes 7 and 19 in immortalized stage. In malignant stage, the trisomy 6 and new clonal structural rearrangements of chromosomes 1, 2, 11, 15, 18, 19 and of chromosomes 10, 20 were also found in LRec-1 sf and LRec-1 cells, accordingly. There were no new clonal structural chromosome rearrangements in LRec-1 k and LRec-3 cells. We compared locies of chromosomes involved in rearrangements with mapped genes on these chromosomes according to RATMAP. Supposedly these genes are involved in spontaneous immortalization of rat embryo fibroblast and malignant transformation of LRec-1 and LRec-3 cells and rearrangements of chromosomes 1, 2, 11, 15 and 18 facilitate expression of growth factors of LRec-1 sf cells.  相似文献   

11.
Erigeron breviscapus is an important medicinal plant in Compositae and the first species to realize the whole process from the decoding of the draft genome sequence to scutellarin biosynthesis in yeast. However, the previous low‐quality genome assembly has hindered the optimization of candidate genes involved in scutellarin synthesis and the development of molecular‐assisted breeding based on the genome. Here, the E. breviscapus genome was updated using PacBio RSII sequencing data and Hi‐C data, and increased in size from 1.2 Gb to 1.43 Gb, with a scaffold N50 of 156.82 Mb and contig N50 of 140.95 kb, and a total of 43,514 protein‐coding genes were obtained and oriented onto nine pseudo‐chromosomes, thus becoming the third plant species assembled to chromosome level after sunflower and lettuce in Compositae. Fourteen genes with evidence for positive selection were identified and found to be related to leaf morphology, flowering and secondary metabolism. The number of genes in some gene families involved in flavonoid biosynthesis in E. breviscapus have been significantly expanded. In particular, additional candidate genes involved in scutellarin biosynthesis, such as flavonoid‐7‐O‐glucuronosyltransferase genes (F7GATs) were identified using updated genome. In addition, three candidate genes encoding indole‐3‐pyruvate monooxygenase YUCCA2 (YUC2), serine carboxypeptidase‐like 18 (SCPL18), and F‐box protein (FBP), respectively, were identified to be probably related to leaf development and flowering by resequencing 99 individuals. These results provided a substantial genetic basis for improving agronomic and quality traits of E. breviscapus, and provided a platform for improving other draft genome assemblies to chromosome‐level.  相似文献   

12.
13.
Rat prostatic binding protein genes C1, C2, and C3 were mapped on rat chromosome 5 by in situ hybridization on rat peripheral blood chromosome preparations using three different cDNA probes. Of the grains detected, 15.9%, 25.2%, and 19.6%, respectively, mapped to chromosome 5. For each probe, the label was predominantly located on 5q31, but for C2 and C3 an additional site on 5q21 was found. The results suggest that three genes coding for the different polypeptide chains of rat prostatic binding protein map to the same chromosome and presumably to the same chromosome band.  相似文献   

14.
The possible role of HMG-CoA (3-hydroxy-3-methylglutaryl coenzyme A) reductase (the rate-controlling enzyme of cholesterol biosynthesis) in regulating the rate of dolichyl phosphate biosynthesis in rat liver was investigated. Rats were either fasted 48 h or fed diets supplemented with the drug cholestyramine. The activity of HMG-CoA reductase was 5000-fold greater in liver from cholestyramine-fed rats as compared to fasted rats. The activity of dolichyl phosphate synthetase, the prenyl transferase responsible for the biosynthesis of dolichyl phosphate from farnesyl pyrophosphate and isopentenyl pyrophosphate, was similar in both nutritional conditions and was markedly less active than HMG-CoA reductase even in the fasted state. Acetate incorporation into cholesterol was 2200-fold greater in liver slices from cholestyramine-fed rats as compared to fasted rats. By contrast, acetate incorporation into dolichyl phosphate was only 6-fold higher. Further studies suggested that the levels of farnesyl pyrophosphate and isopentenyl pyrophosphate are several hundred-fold greater in liver from cholestyramine-treated rats. From these results, it is concluded that the rate of dolichyl phosphate biosynthesis in rat liver is not regulated by the activity of HMG-CoA reductase but is probably regulated at the level of dolichyl phosphate synthetase.  相似文献   

15.
Farnesyl pyrophosphate synthase (FPS) catalyzes the synthesis of farnesyl pyrophosphate, a key intermediate in sterol and sesquiterpene biosynthesis. Using a polymerase chain reaction-based approach, we have characterized LeFPS1, a tomato (Lycoperscion esculentum cv Wva 106) fruit cDNA, which encodes a functional FPS. We demonstrate that tomato FPSs are encoded by a small multigenic family with genes located on chromosomes 10 and 12. Consistent with farnesyl pyrophosphate requirement in sterol biosynthesis, FPS genes are ubiquitously expressed in tomato plants. Using an LeFPS1 specific probe, we show that the corresponding gene can account for most of FPS mRNA in most plant organs, but not during young seedling development, indicating a differential regulation of FPS genes in tomato. FPS gene expression is also under strict developmental control: FPS mRNA was mainly abundant in young organs and decreased as organs matured with the exception of fruits that presented a biphasic accumulation pattern. In this latter case in situ hybridization studies have shown that FPS mRNA is similarly abundant in all tissues of young fruit. Taken together our results suggest that several FPS isoforms are involved in tomato farnesyl pyrophosphate metabolism and that FPS genes are mostly expressed in relation to cell division and enlargement.  相似文献   

16.
Aldose reductase (AR), best known as the first enzyme in the polyol pathway of sugar metabolism, has been implicated in a wide variety of physiological functions and in the etiology of diabetic complications. We have determined the structures and chromosomal locations of the mouse AR gene (Aldor1) and of two genes highly homologous to Aldor1: the fibroblast growth factor regulated protein gene (Fgfrp) and the androgen regulated vas deferens protein gene (Avdp). The number of introns and their locations in the mouse Aldor1 gene are identical to those of rat and human AR genes and also to those of Fgfrp and Avdp. Mouse Aldor1 gene was found to be located near the Cald1 (Caldesmon) and Ptn (Pleiotropin) loci at the proximal end of chromosome 6. The closely related genes Fgfrp and Avdp were also mapped in this region of the chromosome, suggesting that these three genes may have arisen by a gene duplication event.  相似文献   

17.
The first two steps of aflatoxin biosynthesis are catalyzed by the HexA/B and by the Pks protein. The phylogenetic analysis clearly distinguished fungal HexA/B from FAS subunits and from other homologous proteins. The phylogenetic trees of the HexA and HexB set of proteins share the same clustering. Proteins involved in the synthesis of fatty acids or in the aflatoxin or sterigmatocystin biosynthesis cluster separately. The Pks phylogenetic tree also differentiates the aflatoxin-related polypeptide sequences from those of other kinds of secondary metabolism. The function of some of the A. flavus Pks homologues may be deduced from the phylogenetic analysis. The conserved sequence motifs of protein domains shared by HexA/B and Pks - namely, β-polyketide synthase (KS), acetyl transferase (AT) and acyl carrier protein (ACP) - have been identified, and the HexA/B and Pks involved in aflatoxin biosynthesis have been distinguished from those involved in primary metabolism or other kinds of secondary metabolism.  相似文献   

18.
The ability of different lipid-binding proteins in liver cytosol to affect enzyme activities in bile-acid biosynthesis was studied in whole microsomes (microsomal fractions) and mitochondria and in purified enzyme systems. Sterol carrier protein2 stimulated the 7 alpha-hydroxylation of cholesterol and the 12 alpha-hydroxylation of 5 beta-cholestane-3 alpha, 7 alpha-diol in microsomes and the 26-hydroxylation of cholesterol in mitochondria 2-3-fold. It also stimulated the oxidation of 5-cholestene-3 beta, 7 alpha-diol into 7 alpha-hydroxy-4-cholesten-3-one in microsomes. The stimulatory effect of sterol carrier protein2 was much less with purified cholesterol 7 alpha- and 26-hydroxylase systems than with microsomes and mitochondria. No stimulatory effect of sterol carrier protein2 was observed with purified 12 alpha-hydroxylase and 3 beta-hydroxy-delta 5-C27-steroid oxidoreductase. Sterol carrier protein (fatty-acid-binding protein), 'DEAE-peak I protein' [Dempsey, McCoy, Baker, Dimitriadou-Vafiadou, Lorsbach & Howards (1981) J. Biol. Chem. 256, 1867-1873], ligandin (glutathione transferase B) and serum albumin had no marked stimulatory effects in either crude or in purified systems. The results suggest that sterol carrier protein2 facilitates the introduction of the less-polar substrates in bile-acid biosynthesis to the membrane-bound enzymes in crude systems in vitro. The broad substrate specificity appears, however, not to be consistent with a specific regulatory function for sterol carrier protein2 in bile-acid biosynthesis.  相似文献   

19.

Background

Elevated plant sterol accumulation has been reported in the spontaneously hypertensive rat (SHR), the stroke-prone spontaneously hypertensive rat (SHRSP) and the Wistar-Kyoto (WKY) rat. Additionally, a blood pressure quantitative trait locus (QTL) has been mapped to rat chromosome 6 in a New Zealand genetically hypertensive rat strain (GH rat). ABCG5 and ABCG8 (encoding sterolin-1 and sterolin-2 respectively) have been shown to be responsible for causing sitosterolemia in humans. These genes are organized in a head-to-head configuration at the STSL locus on human chromosome 2p21.

Methods

To investigate whether mutations in Abcg5 or Abcg8 exist in SHR, SHRSP, WKY and GH rats, we initiated a systematic search for the genetic variation in coding and non-coding region of Abcg5 and Abcg8 genes in these strains. We isolated the rat cDNAs for these genes and characterized the genomic structure and tissue expression patterns, using standard molecular biology techniques and FISH for chromosomal assignments.

Results

Both rat Abcg5 and Abcg8 genes map to chromosome band 6q12. These genes span ~40 kb and contain 13 exons and 12 introns each, in a pattern identical to that of the STSL loci in mouse and man. Both Abcg5 and Abcg8 were expressed only in liver and intestine. Analyses of DNA from SHR, SHRSP, GH, WKY, Wistar, Wistar King A (WKA) and Brown Norway (BN) rat strains revealed a homozygous G to T substitution at nucleotide 1754, resulting in the coding change Gly583Cys in sterolin-1 only in rats that are both sitosterolemic and hypertensive (SHR, SHRSP and WKY).

Conclusions

The rat STSL locus maps to chromosome 6q12. A non-synonymous mutation in Abcg5, Gly583Cys, results in sitosterolemia in rat strains that are also hypertensive (WKY, SHR and SHRSP). Those rat strains that are hypertensive, but not sitosterolemic (e.g. GH rat) do not have mutations in Abcg5 or Abcg8. This mutation allows for expression and apparent apical targeting of Abcg5 protein in the intestine. These rat strains may therefore allow us to study the pathophysiological mechanisms involved in the human disease of sitosterolemia.  相似文献   

20.
Polymorphisms that have been proven to influence gene functions are called functional polymorphisms. It is significant to know the distribution of functional polymorphisms in the rat, widely used in animal models for human diseases. In this study, we assessed 16 functional polymorphisms consisting of 3 coat color and 13 disease-associated genes in 136 rat strains, as a part of the genetic profiling program of the National Bio Resource Project for the Rat (NBRP-Rat). Polymorphisms of Cdkn1a, Fcgr3, Grp10, Lss, and Fdft1, which were proven to function in prostate tumorigenesis, glomerulonephritis, hyperphagia, and cholesterol biosynthesis, were shared among various inbred strains. These findings indicated that most rat strains harbored the disease-associated alleles and suggested that many unidentified functional polymorphisms might exist in inbred rat strains. The functional polymorphisms shared in inbred strains were also observed within outbred stocks available commercially. Therefore, this implies that experimental plans based on either rat inbred strains or outbred stocks need to be carefully designed with a full understanding of the genetic characteristics of the animals. To select the most suitable strains for experiments, the NBRP-Rat will periodically improve and update the genetic profiles of rat strains.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号