首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This study reviews the frequency and distribution of numerical and structural chromosomal abnormalities in spermatozoa from normal men obtained by the human-hamster system and by multicolor-FISH analysis on decondensed sperm nuclei. Results from large sperm karyotyping series analyzed by chromosome banding techniques and results from multicolor FISH in sperm nuclei (of at least 10(4) spermatozoa per donor and per probe) were reviewed in order to establish baseline values of the sperm chromosome abnormalities in normal men. In karyotyping studies, the mean disomy frequency in human sperm is 0.03% for each of the autosomes, and 0.11% for the sex chromosomes, lower than those reported in sperm nuclei by FISH studies using a similar methodology (0.09% and 0.26%, respectively). Both types of studies coincide in that chromosome 21 and sex chromosomes have a greater tendency to suffer segregation errors than the rest of the autosomes. The mean incidence of diploidy, only available from multicolor FISH in sperm nuclei, is 0.19%. Inter-donor differences observed for disomy and diploidy frequencies among FISH studies of decondensed sperm nuclei using a similar methodology could reflect real differences among normal men, but they could also reflect the subjective application of the scoring criteria among laboratories. The mean frequency of structural aberrations in sperm karyotypes is 6.6%, including all chromosome types of abnormalities. Chromosome 9 shows a high susceptibility to be broken and 50% of the breakpoints are located in 9q, between the centromere and the 9qh+ region. Structural chromosome aberrations for chromosomes 1 and 9 have also been analyzed in human sperm nuclei by multicolor FISH. Unfortunately, this assay does not allow to determine the specific type of structural aberrations observed in sperm nuclei. An association between advancing donor age and increased frequency of numerical and structural chromosome abnormalities has been reported in spermatozoa of normal men.  相似文献   

2.
Meiotic segregation products of carriers with pericentric inversion are very important for assessing the risk of unbalanced forms and appropriate genetic counseling. We investigated the incidence of recombinant and nonrecombinant products of chromosome 1 with pericentric inversion, in the sperm nuclei of the carrier by using triple color fluorescence in situ hybridization (FISH). The centromere specific and telomere specific probes for chromosome 1 were used. In the segregation analysis, 1,636 sperm nuclei were analyzed; 82.5% of the sperms were including normal or inverted chromosome 1, and the dup(p)/del(q) and del(p)/dup(q) recombinant products in sperm nuclei of our carrier were 8.7 and 7.3%, respectively. The number of recombinant products may be dependent on the formation of an inversion loop, which the number of the formation of chiasmata results in the different number of normal/balanced and recombinant products. The use of FISH, using different probe combination, in sperm nuclei has proved to be an accurate approach to determine the meiotic segregation patterns and could help to better establish a reproductive prognosis and genetic counseling.  相似文献   

3.
Reciprocal translocations, the most frequent structural aberration in humans, are mainly transmitted by one of the parents. In order to analyze the chromosomal content of the spermatozoa from carriers of chromosomal reorganizations, two methods have been used, karyotyping of sperm chromosomes by the human-hamster system and fluorescence in situ hybridization (FISH) in decondensed sperm nuclei. In this work, we review 92 sperm chromosome segregation studies from 85 different reciprocal translocation carriers, including a triple translocation carrier. Using the human-hamster method, a total of 5,818 spermatozoa from 44 reciprocal translocation carriers have been analyzed, 43 of them carrying a single reciprocal translocation and one was a carrier of a double reciprocal translocation. A segregation analysis in a carrier of a t(2;22;11) has been also reported. Carrying out FISH in sperm nuclei, a total of 237,042 spermatozoa from 46 reciprocal translocation carriers have been analyzed. Six of these were also analyzed by the human-hamster system. Taking into account both methods, a total of 76 different reciprocal translocations have been studied. In 74 of these 76 translocations, the reorganization occurs between autosomes, and in the other two, the Y chromosome is involved. Although along general lines, there are similarities between the results obtained by the two methods of analysis, variations are observed when the distribution of the different types of segregations that produce imbalances is compared. As a general rule reciprocal translocation carriers produce more unbalanced sperm than normal or balanced sperm. The results reported also corroborate that the proportion of unbalanced forms depends on the characteristics of the reorganization and that it varies widely. Thus the importance of performing a detailed meiotic behavior analysis for each particular translocation in order to obtain enough information to give adequate genetic counseling is stressed. Aspects as to the possible overestimation of 3:1 segregations or the presence of interchromosomal effects still need to be elucidated.  相似文献   

4.
The meiotic segregation of a balanced reciprocal translocation (7;8) (q11.21;cen) was analysed by interphase fluorescence in situ hybridization (FISH) on carrier spermatozoa. A dual interphase FISH technique was applied to 34527 decondensed sperm heads with chromosome-7- and chromosome-8-specific alpha-satellite probes. Analysis with such probes was possible according to the cytogenetic characteristics of these translocation breakpoints, which implied a centromeric breakpoint. The majority of the analysed nuclei (56.70%) showed normal (30.40%) or balanced (26.30%) chromosomal equipment resulting from alternate segregation during meiosis. A total of 14935 spermatozoa (43.26%) was unbalanced with a predominance of gametes resulting from adjacent-I (25.10%) or adjacent-II (11.10%) segregation ; such gametes could produce partial mono- or trisomies at term. The frequency of analysed cells resulting from a 3:1 segregation, which could induce complete mono- and trisomies at term, was 7.06%; 0.04% of scored cells were diploid. The same dual-FISH technique was carried out either with chromosome-15- and chromosome-18-specific probes or with gonosome-specific probes, in order to detect a possible interchromosomal effect. A significant increase of disomic18 spermatozoa was observed in the carrier. Such studies are not yet frequent. Multicolour-FISH seems a rapid and accurate tool for direct analyses of spermatogenetic segregation mechanisms in a carrier of balanced chromosomal abnormalities and provides interesting information for characterizing the possible risks for the offspring. Received: 14 November 1997 / Accepted: 19 December 1997  相似文献   

5.
Chromosome segregation and interchromosomal effect were studied in spermatozoa from a carrier of a pericentric chromosome 17 inversion, 46,XY,inv(17)(p13.1q25.3). Sperm chromosome segregation, lymphocytes of the inversion carrier, and cells from his offspring were analysed by multicolour fluorescence in situ hybridization. The frequency of balanced sperm was 73%. An unusual segregation of recombinants was observed, viz. deletion of the p arm (14.6%) or duplication of the p arm with the presence of one q arm (8.4%), instead of the expected recombinants, viz. duplication of one arm with deletion of the other and vice versa. These unusual recombinants were explained by the position of the 17q breakpoint, which was between the q arm telomere-associated repeats and the unique q subtelomere region. The offspring of the donor were found to have a 17p deletion including the Miller-Dieker critical region, similar to the most frequent recombinant sperm class. The disomy frequency was significantly increased for chromosome 17 compared with other autosomes, suggesting that pairing and recombination of the inversion may predispose to non-disjunction. There was no significant difference between the frequencies of aneuploidy for chromosomes 13, 21, X and Y in the chromosome inversion heterozygote compared with controls. Thus, this unique pericentric inversion of chromosome 17 produces unusual recombinant products; no evidence was apparent of an interchromosomal effect in any of the tested chromosomes.  相似文献   

6.
Meiotic segregation patterns of carriers of Robertsonian translocations (RT) are important for assessing the risk of unbalanced forms. We investigated the ratio of sperm with t(21;21) to sperm with nullisomy for chromosome 21; the segregation of the t(21;21) along with sex chromosomes, and also interchromosomal effects on chromosome 10 by using three color fluorescence in situ hybridization (FISH) with telomere specific (Tel 21q) and centromere-specific alpha satellite probes for chromosomes X, Y, and 10. The percentage of cosegregation of t(21;21) with sex chromosomes (49.50%) and without sex chromosomes (46.98%) was not significant. There are no significant differences between the percentages of cosegregation of t(21;21) with chromosome X (23.36%) and with chromosome Y (26.16%). No evidence of an interchromosomal effect on chromosome 10 was detected, the percentage of chromosome 10 aneuploidy being similar to that in controls. In addition, the frequency of diploid sperm nuclei was not significantly higher in the carrier (0.32%) than in the controls (0.44%) (P > 0.05). The sex ratio was similar within the carrier and the controls and between the carrier and the control. Three color-FISH analysis, using different probe combinations, seems a rapid and accurate tool for direct analysis of meiotic segregation product.  相似文献   

7.
Using three-color fluorescence in situ hybridization (FISH) with specific DNA probes, we have determined the chromosome segregation pattern of the translocated chromosomes in a human male carrier of a reciprocal translocation, t(5;8)(q33;q13). At the same time, we have assessed the possible interchromosomal effect on pair 21 using dual-color FISH. The segregation results showed that a 45.12% of the spermatozoa analyzed resulted from alternate segregation, 38.31% resulted from adjacent I, 6.97% from adjacent II, and 6.56% from 3:1 segregation. Finally, 1.23% could be either diploid sperm or 4:0 segregation. In both types of adjacent segregations, an excess of products containing short translocated segments (adjacent I) and interstitial regions (adjacent II) were found. Products resulting from the presence of an interstitial chiasma in pair 5 (1.26%), were found much more frequently (P < 0.0001) than those resulting from an interstitial chiasma in pair 8 (0.13%) (evaluated after adjacent II segregation). In 3:1 segregation, the products containing one chromosome were observed more frequently than those containing three chromosomes (P < 0.0001). No evidence of an interchromosomal effect on chromosome 21 was detected, the percentage of disomy 21 being similar to that in the controls (0.23% vs. 0.37%). However, the percentage of diploid sperm (1.18%) was significantly higher (P < 0. 0001) than that in the controls (0.27%). FISH therefore appears to be a useful technique for assessing the percentage of abnormal sperm in translocation carriers. Their application in assisted reproduction centers could offer patients more accurate genetic counseling.  相似文献   

8.
In 1964, Gustavsson and Rockborn first described the 1/29 Robertsonian translocation in cattle. Since then, several studies have demonstrated the negative effect of this particular chromosomal rearrangement on the fertility of carrier animals. During the last decade, meiotic segregation patterns have been studied on human males carrying balanced translocations using FISH on decondensed sperm nuclei. In this work, we have applied the 'Sperm-FISH' technique to determine the chromosomal content of spermatozoa from two bulls heterozygous for the 1/29 translocation and one normal bull (control). 5425 and 2702 sperm nuclei were scored, respectively, for the two heterozygous bulls, using whole chromosome painting probes of chromosomes 1 and 29. Very similar proportions of normal (or balanced) spermatozoa resulting from alternate segregation were observed (97.42% and 96.78%). For both heterozygous bulls, the proportions of nullisomic and disomic spermatozoa did not follow the theoretical 1:1 ratio. Indeed, proportions of nullisomic spermatozoa were higher than those of disomic sperma tozoa (1.40% vs 0.09% (bull 1) and 1.29% vs 0.15% (bull 2) for BTA1, and 0.65% vs 0.40% (bull 1) and 1.11% vs 0.63% (bull 2) for BTA29). The average frequencies of disomic and diploid spermatozoa in the normal bull were 0.11% and 0.05%, respectively.  相似文献   

9.
Meiotic segregation, recombination, and aneuploidy was assessed for sperm from a t(1;10)(p22.1;q22.3) reciprocal translocation carrier, by use of two multicolor FISH methods. The first method utilized three DNA probes (a telomeric and a centromeric probe on chromosome 1 plus a centromeric probe on chromosome 10) to analyze segregation patterns, in sperm, of the chromosomes involved in the translocation. The aggregate frequency of sperm products from alternate and adjacent I segregation was 90.5%, and the total frequency of normal and chromosomally balanced sperm was 48.1%. The frequencies of sperm products from adjacent II segregation and from 3:1 segregation were 4.9% and 3.9%, respectively. Reciprocal sperm products from adjacent I segregation deviated significantly from the expected 1:1 ratio (P < .0001). Our assay allowed us to evaluate recombination events in the interstitial segments at adjacent II segregation. The frequencies of sperm products resulting from interstitial recombination in chromosome 10 were significantly higher than those resulting from interstitial recombination in chromosome 1 (P < .006). No evidence of an interchromosomal effect on aneuploidy was found by use of a second FISH method that simultaneously utilized four chromosome-specific DNA probes to quantify the frequencies of aneuploid sperm for chromosomes X, Y, 18, and 21. However, a significant higher frequency of diploid sperm was detected in the translocation carrier than was detected in chromosomally normal and healthy controls. This study illustrates the advantages of multicolor FISH for assessment of the reproductive risk associated with translocation carriers and for investigation of the mechanisms of meiotic segregation of chromosomes.  相似文献   

10.
Honda H  Miharu N  Samura O  He H  Ohama K 《Human genetics》2000,106(2):188-193
Meiotic segregation of chromosomes 14 and 21 in sperm from a 14;21 Robertsonian translocation carrier was analyzed with dual-color FISH using two locus-specific DNA probes (Tel 14q and LSI 21). The frequency of normal or chromosomally balanced sperm, resulting from alternate segregation, was 88.42%. The frequency of unbalanced sperm, resulting from adjacent segregation, was 11.25%. These observed frequencies deviated significantly from the theoretical frequencies (33.33% and 66.67%, respectively) based on random chromosome segregation, with sperm resulting from alternate segregation being preferentially produced in the translocation carrier. With respect to the chromosomally unbalanced sperm, the frequency of 21q disomic sperm was 2.45%, which is in agreement with the frequencies of unbalanced fetuses or offspring at the time of amniocentesis or at term (0-4.3%) reported by others. Although the frequency of 14 or 21 nullisomic sperm should be theoretically equal to that of 14q or 21q disomic sperm in both the carrier and controls, the frequency of nullisomic sperm was significantly higher than that of disomic sperm in the carrier (P=0.0009 for chromosome 14, P<0.0001 for chromosome 21) but not in the controls (P=0.091 for chromosome 14, P=0.74 for chromosome 21). This evidence suggests the occurrence of maturation arrest during spermatogenesis of the carrier.  相似文献   

11.
Structural chromosome abnormalities in spermatozoa represent an important category of paternally transmittable genetic damage. A couple was referred to our centre because of repetitive abortions and the man was found to be a carrier of a reciprocal translocation t(3;11)(q27.3;q24.3). A tailored fluorescence in situ hybridisation (FISH) approach was developed to study the meiotic segregation patterns in spermatozoa from this translocation carrier. A combination of three DNA probes was used, a centromeric probe for chromosome 11, a cosmid probe for chromosome 11q and a YAC probe for chromosome 3q. The frequency of spermatozoa carrying an abnormal chromosome constitution was compared with baseline frequencies in control semen specimens and it was found that a significantly higher percentage of spermatozoa carried an abnormal constitution for the chromosomes involved in the translocation. A normal or balanced chromosome constitution was found in 44.3% of the analysed spermatozoa, while the remainder exhibited an abnormal chromosome constitution reflecting different modes of segregation (15.9% adjacent I segregation, 6.5% adjacent II segregation, 28.9% 3 : 1 segregation, 0.8% 4 : 0 segregation, 3.6% aberrant segregation). The frequency of aneuploidy for chromosomes X, Y, 13 and 21 was assessed using specific probes but there was no evidence of interchromosomal effects or variations in the sex ratio in spermatozoa from the translocation carrier. In conclusion, structural aberrations can be reliably assessed in interphase spermatozoa using unique DNA probe cocktails, and this method provides insight into the genetic constitution of germ cells and enables evaluation of potential risks for the offspring. Received: 19 September 1997 / Accepted: 27 October 1997  相似文献   

12.
Blanco J  Egozcue J  Vidal F 《Human genetics》2000,106(5):500-505
We have used dual color fluorescence in situ hybridization (FISH) on decondensed sperm heads from four carriers of structural chromosome reorganizations, viz. t(3;15), t(Y;7), t(13;22) and inv(9), to assess the possible existence of an interchromosomal effect (ICE) on the segregation of chromosome 21. In the carriers of t(Y;7), t(13;22) and inv(9), all results were within the limits described in controls. A highly significant increase (P<0.0001) of disomy 21 (1.90% v 0.37%), which could be considered as a positive ICE, was observed in the t(3;15) carrier. Significantly higher percentages (P<0.0001) of diploid sperm (5.71% v. 0.27%) were also observed in this patient. Our results suggests that the occurrence of an ICE may depend on the reorganization and on the chromosome and chromosome regions involved, resulting in a particular meiotic behaviour (presence of unsynapsed regions, preferential meiotic configurations) that could lead to the observed increase in chromosome 21 disomies. Further studies with this technical approach in a wide range of structural reorganizations could help to elucidate the actual occurrence of ICEs.  相似文献   

13.
The meiotic segregation of chromosomes 14 and 21 was analysed in 1116 spermatozoa from an oligoasthenospermic carrier of a Robsertsonian translocation t(14q21q), and in 16 392 spermatozoa from a control donor, using two-colour fluorescence in situ hybridisation (FISH). Two YAC probes (cloned in yeast artificial chromosomes) specific for regions on the long arms of these chromosomes were co-hybridised. Of the spermatozoa, 12% were unbalanced, resulting from adjacent segregations. Chromosomes X, Y and 1 were also simultaneously detected in 1335 spermatozoa from the same carrier. Whereas gonosomal disomy rates were not significantly different from those of the control donors, disomy 1 were slightly but significantly increased to 0.7%. The diploidy rate was also slightly increased to approximately 1% in the translocation carrier.  相似文献   

14.
Honda H  Miharu N  Ohashi Y  Honda N  Hara T  Ohama K 《Human genetics》1999,105(5):428-436
Meiotic segregation patterns of chromosomes 3 and 9 were analyzed in sperm of two translocation carriers (t(3;9)(q26.2;q32) and t(3;9)(p25;q32)) by triple-color fluorescent in situ hybridization (FISH) with a telomeric DNA probe in addition to two centromeric probes. The frequencies of each sperm product resulting from alternate or adjacent I, adjacent II and 3:1 segregation in a t(3;9)(q26.2;q32) translocation carrier were 88.35%, 5.44% and 5.94%, respectively. On the other hand, the frequencies of each sperm product in a t(3;9)(p25;q32) translocation carrier were 89.23%, 6.02% and 4.48%, respectively. Of all the sperm products, the frequency of normal or chromosomally balanced sperm in a t(3;9)(q26.2;q32) and a t(3;9)(p25;q32) were 52.49% and 47.25%, respectively. The frequencies of each sperm product resulting from various segregations were different between both carriers and significantly deviated from the expected frequencies. Additional dual-color and triple-color FISH were performed to analyze aneuploidy rates for chromosomes 12, 17, 18, X and Y in order to detect any interchromosomal effect; no evidence of an interchromosomal effect was found.  相似文献   

15.
We reviewed the frequency and distribution of disomy in spermatozoa obtained by multicolor-FISH analysis on decondensed sperm nuclei in (a) healthy men, (b) fathers of aneuploid offspring of paternal origin and (c) individuals with Klinefelter syndrome and XYY males. In series of healthy men, disomy per autosome is approximately 0.1% but may range from 0.03 (chromosome 8) to 0.47 (chromosome 22). The great majority of authors find that chromosome 21 (0.18%) and the sex chromosomes (0.27%) have significantly elevated frequencies of disomy although these findings are not universal. The total disomy in FISH studies is 2.26% and the estimated aneuploidy (2× disomy) is 4.5%, more than double that seen in sperm karyotypes (1.8%). Increased disomy levels of low orders of magnitude have been reported in spermatozoa of some normal men (stable variants) and in men who have fathered children with Down, Turner and Klinefelter syndromes. These findings suggest that men with a moderately elevated aneuploidy rate may be at a higher risk of fathering paternally derived aneuploid pregnancies. Among lifestyle factors, smoking, alcohol and caffeine have been studied extensively but the compounding effects of the 3 are difficult to separate because they are common lifestyle behaviors. Increases in sex chromosome abnormalities, some autosomal disomies, and in the number of diploid spermatozoa are general features in 47,XXY and 47,XYY males. Aneuploidy of the sex chromosomes is more frequent than aneuploidy of any of the autosomes not only in normal control individuals, but also in patients with sex chromosome abnormalities and fathers of paternally derived Klinefelter, Turner and Down syndromes.  相似文献   

16.
Analysis of sperm karyotypes and two-color fluorescent in situ hybridization (FISH) on sperm nuclei were carried out in a man heterozygous for the pericentric inversion inv(9)(p11q13). Sperm chromosome complements were obtained after in vitro fusion of zona-free hamster oocytes and donor sperm. A total of 314 sperm complements was analyzed: 153 (48.7%) carried the inverted chromosome 9 and 161 (51.3%) carried the normal one. None of the sperm complements contained a recombinant chromosome 9, suggesting that no chiasmata were formed in the heterochromatic region. The frequency of structural chromosome aberrations unrelated to the inversion (8.3%) and the frequency of conservative aneuploidy (3.2%) were within the limits observed in our control donors. The proportions of X-bearing (47.3%) and Y-bearing sperm (52.7%) were not significantly different from the expected 1:1 ratio. The percentage of disomy for chromosome 21 was analyzed by two-color FISH in 10 336 sperm nuclei. The disomy rate for chromosome 21 (0.30%) was not significantly different from that found in our controls. These results suggest that the risk for this man of producing chromosomally abnormal offspring or spontaneous abortions was not increased, and do not support the existence of an interchromosomal effect for chromosome 21. Received: 28 October 1996  相似文献   

17.
Occupational exposure to styrene, a chemical extensively used worldwide, is under investigation for possible detrimental effects on human health, including male reproductive capacity. Aneuploidy in germ cells is the main cause of infertility, abortions and congenital diseases. Fluorescence in situ hybridisation (FISH), is the most efficient cytogenetic molecular technique to date to analyse numerical alterations of chromosomes in spermatozoa. We investigated the frequencies of aneuploidy and diploidy in individuals occupationally exposed to styrene and in healthy unexposed controls. We performed multicolour FISH, using DNA probes specific for the centromeric regions of sex chromosomes and chromosome 2, in decondensed sperm nuclei of samples with normal semen parameters for a total of 18 styrene-exposed subjects and 13 unexposed controls of the same age range. Exposed individuals had worked for at least 2 years during the last 5 years, and continuously for 6 months, in factories producing reinforced plastics. The incidence of aneuploidy and diploidy for the tested chromosomes did not show a statistically significant difference between workers and controls. The exposure to styrene was associated with increased frequencies of nullisomy for sex chromosomes in the group of non-smokers, although only a limited number of subjects belonged to this sub-group. Considering the whole study population, age was associated with an increased frequency of XX disomy, whereas smoking was associated with meiosis II non-disjunction of sex chromosomes. Overall, confounding factors appeared to exert a more important effect than exposure to styrene on numerical chromosome alterations in sperm nuclei of subjects selected for normal semen parameters.  相似文献   

18.
Chromosome translocations have been known to affect disjunction of chromosomes unrelated to the translocation in the mouse and in Drosophila. However, in humans, an interchromosomal effect in chromosome translocations has not been demonstrated. The availability of techniques that allow the study of nondisjunction in sperm cells has permitted us to evaluate the possibility of an interchromosomal effect in male translocation heterozygotes. In this study, multicolor fluorescence in situ hybridization was used to determine levels of disomy for the clinically relevant chromosomes X, Y, 13, 18, and 21 in 332,858 spermatozoa from nine reciprocal translocation heterozygotes and nine controls with normal karyotypes. The specific translocations studied were as follows: t(10;12)(p26.1;p13.3), t(2;18)(p21;q11.2), t(3;19)(p25;q12), t(5;8)(q33;q13), t(11;22)(q23;q11), t(3;4)(p25;p16), t(8;9) (q24.2;q32), t(10;18)(q24.1;p11.2), and t(4;10)(q33;p12.2). Comparisons of disomy rates between carriers and controls were performed by using the Mann-Whitney test. Our results showed that the rates of sex chromosome hyperhaploidy were similar in controls (0.21%) and in translocation carriers (0.19%). Similarly, the frequencies of disomy for chromosomes 13, 18, and 21 did not differ significantly between controls and carriers (0.05% versus 0.08%, 0.07% versus 0.03%, and 0.14% versus 0.20%, respectively). Sex chromosome nondisjunction was more common than nondisjunction of chromosomes 13 and 18 both in controls (P=0.0057) and in carriers (P=0.0008). Similarly, the rates of chromosome disomy for chromosome 21 were higher than those for chromosomes 13 and 18 in both controls (P=0.0031) and translocation carriers (P=0.0057). In our study, the excess of chromosome 21 disomy versus disomy of the other autosomes was more pronounced in carriers than in controls. Thus, although the difference of disomy 21 between controls and carriers was not statistically significant, it is worthy of attention.  相似文献   

19.
Sperm analysis was performed in a male with oligoasthenoteratozoospermia (OAT) and a reciprocal t(Y;16) (q11. 21;q24), using four-color FISH. Intracytoplasmic sperm injection (ICSI) treatment in this patient had resulted in the birth of one chromosomally balanced and two chromosomally normal children. To assess the risk of having a chromosomally unbalanced conception after ICSI, morphologically normal spermatozoa were studied with a set of probes allowing detection of all segregation variants. There were 51% normal or balanced sperm cells. The fraction of sperm products resulting from alternate and adjacent I segregation was 87%, 12% were products of 3:1 disjunction, and the other 1% had other types of aneuploidy. If morphologically abnormal cells were also included in the FISH analysis, nearly 90% of all the spermatozoa were unbalanced. We conclude that although the majority of males with a Y/autosome translocation are infertile due to azoospermia, our patient produces sufficient morphologically and chromosomally normal spermatozoa to have chromosomally normal or balanced offspring after ICSI. Assuming that ICSI with an unbalanced spermatozoon from this patient would result in a nonviable embryo in many cases, the combination of in vitro and subsequent in vivo selection probably results in a risk of unbalanced offspring of much less than 50%. Hence, FISH studies on the sperm of translocation carriers are useful for estimating the risk of having unbalanced offspring after ICSI and in understanding the mechanisms underlying infertility in such carriers.  相似文献   

20.
Disomy and diploidy frequencies for autosomes 1–22 and the gonosomes were assessed in 299,442 sperm nuclei from four normal fertile men by chromosome painting. This novel approach allowed us to perform a specific and sensitive detection of each chromosome. A minimum of 5000 sperm nuclei per subject were evaluated for each chromosome by dual colour fluorescence in situ hybridization. The disomy rate proved to be similar for all the autosomes (0.24%) and the diploidy rate varied from 0.12% to 0.15%. No interchromosomal or interindividual differences in the frequency of disomic and diploid sperm nuclei were observed between the four subjects. The mean frequency of XX-, YY- and XY-bearing spermatozoa was estimated to 0.17%, 0.17% and 0.32%, respectively. This strategy constitutes a new approach for detecting aneuploidy in human sperm nuclei and suggests an equal repartition of non-disjunction among chromosomes in male gametes. Received: 7 October 1997 / Accepted: 13 January 1998  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号