首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
X-chromosome inactivation is an epigenetic process whereby one X chromosome is silenced in mammalian female cells. Since it was first proposed by Lyon in 1961, mouse models have been valuable tools to uncover the molecular mechanisms underlying X inactivation. However, there are also inherent differences between mouse and human X inactivation, ranging from sequence content of the X inactivation center to the phenotypic outcomes of X-chromosome abnormalities. X-linked gene dosage in males, females, and individuals with X aneuploidies and X/autosome translocations has demonstrated that many human genes escape X inactivation, implicating cis-regulatory elements in the spread of silencing. We discuss the potential nature of these elements and also review the elements in the X inactivation center involved in the early events in X-chromosome inactivation.  相似文献   

2.
The enlargement of the genome size and the decrease in genome compactness with increase in the number and size of introns is a general pattern during the evolution of eukaryotes. Among the possible mechanisms for modifying intron size, it has been suggested that the insertion of transposable elements might have an important role in driving intron evolution. The analysis of large portions of the human genome demonstrated that a relatively recent (50 to 100 MYA) accumulation of transposable elements appears to be biased, favoring a preferential insertion of LINE1 transposons into sex chromosomes rather than into autosomes. In the present work, the effect of chromosomal location on the increase in size of introns was evaluated with a comparative analysis performed on pairs of human paralogous genes, one located on the X chromosome and the second on an autosome. A phylogenetic analysis was also performed on the X-encoded proteins and their paralogs to confirm orthology-paralogy and to approximately estimate the time of gene duplication. Statistical analysis of total intron length for each pair of paralogous genes provided no evidence for a larger size of introns in the gene copies located on the X chromosome. On the opposite, introns of autosomal genes were found to be significantly longer than introns of their X-linked paralogs. Likewise, LINE1 elements were not significantly more frequent in X-chromosome introns, whereas the frequency of SINE elements showed a marginally significant bias toward autosomal introns.  相似文献   

3.
4.
5.
The observation that LINE-1 transposable elements are enriched on the X in comparison to the autosomes led to the hypothesis that LINE-1s play a role in X chromosome inactivation. If this hypothesis is correct, loss of LINE-1 activity would be expected to result in species extinction or in an alternate pathway of dosage compensation. One such alternative pathway would be to evolve a karyotype that does not require dosage compensation between the sexes. Two of the three extant species of the Ryukyu spiny rat Tokudaia have such a karyotype; both males and females are XO. We asked whether this karyotype arose due to loss of LINE-1 activity and thus the loss of a putative component in the X inactivation pathway. Although XO Tokudaia has no need for dosage compensation, LINE-1s have been recently active in Tokudaia osimensis and show higher density on the lone X than on the autosomes.  相似文献   

6.
SINEs and LINEs cluster in distinct DNA fragments of Giemsa band size   总被引:8,自引:0,他引:8  
By in situ hybridization, short interspersed repeated DNA elements (SINEs), exemplified by Alu repeats, are located principally in Giemsa-light human metaphase chromosome bands. In contrast, the L1 family of long interspersed repeats (LINEs) preferentially cluster in Giemsa-dark bands. These SINE/LINE patterns also generally correspond to early and later replication band patterns. In order to provide a molecular link between structurally visible chromosome bands and a framework of interspersed repeats, we investigated patterns of SINE and LINE hybridization using pulse-field gel electrophoresis (PFGE). Interspersed SINEs and LINEs hybridize with high intensity to specific size fragments of 0.2–3 megabase pairs (Mb). Using appropriate restriction enzymes and pulse-field conditions, a number of fragments were delineated that were either SINE or LINE rich, and were mutually exclusive. Control studies with a human endogenous retroviral repeat that is related in sequence to the major LINE family, delineated a subset of fragments of 0.07–0.4 Mb with unequal intensity. Thus these less numerous repeats also appear to cluster selectively in DNA domains that are larger than a chromosome loop (60–120 kb). In summary, PFGE studies independently confirm the clustering of interspersed repeats on contiguous DNA loops. Selective clustering of repeat motifs may contribute to special structural or functional properties of large chromosome domains, such as chromatin extension/condensation or replication characteristics. In some cases the DNA fragments defined by these repeats approach the size of tandem satellite arrays.  相似文献   

7.
The X chromosome in quantitative trait locus mapping   总被引:4,自引:0,他引:4       下载免费PDF全文
The X chromosome requires special treatment in the mapping of quantitative trait loci (QTL). However, most QTL mapping methods, and most computer programs for QTL mapping, have focused exclusively on autosomal loci. We describe a method for appropriate treatment of the X chromosome for QTL mapping in experimental crosses. We address the important issue of formulating the null hypothesis of no linkage appropriately. If the X chromosome is treated like an autosome, a sex difference in the phenotype can lead to spurious linkage on the X chromosome. Further, the number of degrees of freedom for the linkage test may be different for the X chromosome than for autosomes, and so an X chromosome-specific significance threshold is required. To address this issue, we propose a general procedure to obtain chromosome-specific significance thresholds that controls the genomewide false positive rate at the desired level. We apply our methods to data on gut length in a large intercross of mice carrying the Sox10Dom mutation, a model of Hirschsprung disease. We identified QTL contributing to variation in gut length on chromosomes 5 and 18. We found suggestive evidence of linkage to the X chromosome, which would be viewed as strong evidence of linkage if the X chromosome was treated as an autosome. Our methods have been implemented in the package R/qtl.  相似文献   

8.
Summary A new case of an unbalanced X/autosome translocation, karyotype 46,X,der(X),t(X;14)(q22;q11), is described. The derivative X chromosome was inactivated and showed various degrees of incomplete spreading of late replication into the translocated autosome. This enabled us to test the hypothesis that the extent of this spreading is primarily determined during X inactivation in the early embryo so that the various DNA replication patterns of the derivative X occur in a clonal fashion. However a dilution plating experiment gave no evidence that such a clonality exists. In the inactivated autosome, late-replicating bands obviously turned to earlier replication during cell aging in vitro. It is suggested that the degree of spreading of X inactivation into an autosome is not primarily induced but results from ineffective maintenance of the inactivation on the autosome, presumably due to an irreversible loss of methyl cytosine.  相似文献   

9.
Meneely PM  Farago AF  Kauffman TM 《Genetics》2002,162(3):1169-1177
Regulation of both the number and the location of crossovers during meiosis is important for normal chromosome segregation. We used sequence-tagged site polymorphisms to examine the distribution of all crossovers on the X chromosome during oogenesis and on one autosome during both oogenesis and spermatogenesis in Caenorhabditis elegans. The X chromosome has essentially one crossover during oogenesis, with only three possible double crossover exceptions among 220 recombinant X chromosomes. All three had one of the two crossovers in the same chromosomal interval, suggesting that crossovers in that interval do not cause interference. No other interval was associated with double crossovers. Very high interference was also found on an autosome during oogenesis, implying that each chromosome has only one crossover during oogenesis. During spermatogenesis, recombination on this autosome was reduced by approximately 30% compared to oogenesis, but the relative distribution of the residual crossovers was only slightly different. In contrast to previous results with other autosomes, no double crossover chromosomes were observed. Despite an increased frequency of nonrecombinant chromosomes, segregation of a nonrecombinant autosome during spermatogenesis appears to occur normally. This indicates that an achiasmate segregation system helps to ensure faithful disjunction of autosomes during spermatogenesis.  相似文献   

10.
A repeat sequence island, located at the A3 Giemsa dark band on the mouse X chromosome and consisting of 50 copies of a localised long complex repeat unit (LCRU), features an unusually high concentration of L1 LINE repeat sequences juxtaposed and inserted within the LCRU. Sequence analysis of three independent genomic clones containing L1 LINE elements juxtaposed with the LCRU demonstrates a common junction sequence at the L1/LCRU boundary, suggesting that the high concentration of L1 LINE sequences in the repeat sequence island has arisen by association of an L1 element with an LCRU followed by amplification. The LCRU target site at this common junction sequence bears no resemblance to the target site of an L1 element inserted within one LCRU, indicating there is no specific preferential target site for L1 integration. We propose that co-amplification of L1 LINE elements with localised low copy repeat families throughout the genome could have a major effect on the chromosomal distribution of L1 LINE elements.  相似文献   

11.
It has been hypothesised that the massive accumulation of L1 transposable elements on the X chromosome is due to their function in X inactivation, and that the accumulation of Alu elements near genes is adaptive. We tested the possible selective advantage of these two transposable element (TE) families with a novel method, interruption analysis. In mammalian genomes, a large number of TEs interrupt other TEs due to the high overall abundance and age of repeats, and these interruptions can be used to test whether TEs are selectively neutral. Interruptions of TEs, which are beneficial for the host, are expected to be deleterious and underrepresented compared with neutral ones. We found that L1 elements in the regions of the X chromosome that contain the majority of the inactivated genes are significantly less frequently interrupted than on the autosomes, while L1s near genes that escape inactivation are interrupted with higher frequency, supporting the hypothesis that L1s on the X chromosome play a role in its inactivation. In addition, we show that TEs are less frequently interrupted in introns than in intergenic regions, probably due to selection against the expansion of introns, but the insertion pattern of Alus is comparable to other repeats.  相似文献   

12.
The replication sequence of the bands carried by chromosomes X and Y has been studied in normal individuals and in patients with structural abnormalities of the X. By comparing the segment with that of the autosomal bands (which had been previously studied), it was shown that the normal early X replicates in early X-phase for its R-bands and in late S-phase for its Q bands. The late X replicates entirely in late S-phase, and the sequence of band replication is not as stringent as for the early X and the autosomes. The study of fourteen cases of anomalies of chromosome X in females showed the following: in balanced reciprocal X-autosome translocations the rearranged X most often replicates early and the normal X late. Both show a normal replication sequence of their bands. In non-balanced X-autosome translocations, inactivation of the autosome fragment attached to the AUTOSOME FRAGMENT ATTACHED TO THE X may take place. In Xq- or in ter rea (X;X) (pter;pter), band p22 has a delayed replication. In iso-Xor Xp-, the long-arm-band sequence of replication shows a variation comparable to that of the late X in fibroblasts. These replication modifications are likely to induce partial inactivations or changes in activity which correspond to the so-called position effect in Drosophila.  相似文献   

13.
14.
X-chromosome inactivation, which was discovered by Mary Lyon in 1961 results in random silencing of one X chromosome in female mammals. This review is dedicated to Mary Lyon, who passed away last year. She predicted many of the features of X inactivation, for e.g., the existence of an X inactivation center, the role of L1 elements in spreading of silencing and the existence of genes that escape X inactivation. Starting from her published work here we summarize advances in the field.  相似文献   

15.
X inactivation is the process of a chromosome-wide silencing of the majority of genes on the X chromosome during early mammalian development. This process may be aberrant in cloned animals. Here we show that repressive modifications, such as methylation of DNA, and the presence of methylated histones, H3K9me2 and H3K27me3, exhibit distinct aberrance on the inactive X chromosome in live clones. In contrast, H3K4me3, an active gene marker, is obviously missing from the inactive X chromosome in all cattle studied. This suggests that the disappearance of active histone modifications (H3K4me3) seems to be more important for X inactivation than deposition of marks associated with heterochromatin (DNA methylation, H3K27me3 and H3K9me2). It also implies that even apparently normal clones may have subtle abnormalities in repressive, but not activating epigenetic modifications on the inactive X when they survive to term. We also found that the histone H3 methylations were enriched and co-localized at q21-31 of the active X chromosome, which may be associated with an abundance of LINE1 repeat elements.  相似文献   

16.
X inactivation has evolved in the soma of mammalian females so that both sexes have the same ratio of X:autosomal gene expression. The X chromosome in the germ cells of XY males is also precociously inactivated for reasons that remain unclear. Unlike X inactivation in the soma, this germline X inactivation is not restricted to mammals but has evolved independently in several animal phyla. Thus, germline X inactivation might have been the precursor of somatic X inactivation in mammals. We now propose a hypothesis for the evolution of germline X inactivation. The hypothesis predicts a redistribution of late spermatogenic genes from the X chromosome to the autosomes, leading eventually to germline X inactivation as the X chromosome becomes 'demasculinized'. Sexual antagonism could be the mechanism driving this redistribution. Recent expression and genetic studies in mammals, nematodes and Drosophila support this hypothesis, and expression data on taxa that have not evolved germline X inactivation, such as birds and butterflies, should shed further light on it.  相似文献   

17.
18.
The dosage compensation machinery of Caenorhabditis elegans is targeted specifically to the X chromosomes of hermaphrodites (XX) to reduce gene expression by half. Many of the trans-acting factors that direct the dosage compensation machinery to X have been identified, but none of the proposed cis-acting X chromosome-recognition elements needed to recruit dosage compensation components have been found. To study X chromosome recognition, we explored whether portions of an X chromosome attached to an autosome are competent to bind the C. elegans dosage compensation complex (DCC). To do so, we devised a three-dimensional in situ approach that allowed us to compare the volume, position, and number of chromosomal and subchromosomal bodies bound by the dosage compensation machinery in wild-type XX nuclei and XX nuclei carrying an X duplication. The dosage compensation complex was found to associate with a duplication of the right 30% of X, but the complex did not spread onto adjacent autosomal sequences. This result indicates that all the information required to specify X chromosome identity resides on the duplication and that the dosage compensation machinery can localize to a site distinct from the full-length hermaphrodite X chromosome. In contrast, smaller duplications of other regions of X appeared to not support localization of the DCC. In a separate effort to identify cis-acting X recognition elements, we used a computational approach to analyze genomic DNA sequences for the presence of short motifs that were abundant and overrepresented on X relative to autosomes. Fourteen families of X-enriched motifs were discovered and mapped onto the X chromosome.  相似文献   

19.
Robertsonian translocations resulting in fusions between sex chromosomes and autosomes shape karyotype evolution by creating new sex chromosomes from autosomes. These translocations can also reverse sex chromosomes back into autosomes, which is especially intriguing given the dramatic differences between autosomes and sex chromosomes. To study the genomic events following a Y chromosome reversal, we investigated an autosome‐Y translocation in Drosophila pseudoobscura. The ancestral Y chromosome fused to a small autosome (the dot chromosome) approximately 10–15 Mya. We used single molecule real‐time sequencing reads to assemble the D. pseudoobscura dot chromosome, including this Y‐to‐dot translocation. We find that the intervening sequence between the ancestral Y and the rest of the dot chromosome is only ~78 Kb and is not repeat‐dense, suggesting that the centromere now falls outside, rather than between, the fused chromosomes. The Y‐to‐dot region is 100 times smaller than the D. melanogaster Y chromosome, owing to changes in repeat landscape. However, we do not find a consistent reduction in intron sizes across the Y‐to‐dot region. Instead, deletions in intergenic regions and possibly a small ancestral Y chromosome size may explain the compact size of the Y‐to‐dot translocation.  相似文献   

20.
The complex sex chromosome system of Lagorchestes conspicillatus has been reinvestigated using G-banding, Hoechst 33258 sensitivity, and Ag staining. These investigations demonstrate that, as proposed, three exchanges have been involved in the evolution of this system. An autosome was translocated to the original X and the homologue of that autosome was translocated to the original Y. An additional autosome has been translocated to the Y. There is no sex vesicle at meiosis in the male, and no association between the original X and Y elements of the compound chromosomes. The inadequacies of the present terminology for complex sex chromosomes are considered and an alternative system suggested.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号