首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A Bardhan  T Sharma 《Génome》2000,43(1):172-180
Sequential meiotic prophase development has been followed in the pubertal male pygmy mouse Mus terricolor, with the objective to identify early meiotic prophase stages. The pygmy mouse differs from the common mouse by having large heterochromatic blocks in the X and Y chromosomes. These mice also show various chromosomal mutations; for example, fixed variations of autosomal short arms heterochromatin among different chromosomal species and pericentric inversion polymorphism. Identification of prophase stages was crucial to analyzing effects of heterozygosity for these chromosomal changes on the process of homologous synapsis. Here we describe identification of the prophase stages in M. terricolor, especially the pachytene substages, on the basis of morphology of the XY bivalent. Based on this substaging, we show delayed pairing of the heterochromatic short arms, which may be the reason for their lack of chiasmata. The identification of precise pachytene substages also reveals an early occurrence of "synaptic adjustment" in the pericentric inversion heterobivalents, a mechanism that would prevent chiasma formation in the inverted segment and thereby would abate adverse effects of such heterozygosity. The identification of pachytene substages would serve as the basis to analyze the nature of synaptic anomalies met in M. terricolor hybrids (which will be the basis of a subsequent paper).  相似文献   

2.
Ag-NOR staining and fluorescence in situ hybridization with rDNA probes showed an unusually high number of NORs in the Indian pygmy field mice, Mus booduga and the M. terricolor complex. The chromosomal location of the NORs was also altered in terricolor, they were shifted from the proximal regions of the long arms to the tips of the perceptible heterochromatic short arms of the acrocentric autosomes. The results suggested dispersion of the NORs in the booduga-terricolor lineage probably by transposition, and relocalization of the NORs in the terricolor complex by centric reorganization during the process of replacement of the Mus musculus-related AT-rich heterochromatin with the terricolor-specific heterochromatin.  相似文献   

3.
Mus terricolor I, II and III are the three chromosomal species which differ in stable autosomal short-arm heterochromatin variations established in homozygous condition. Analysis of meiosis in the laboratory-generated F1 male hybrids from crosses (both ways) betweenM. terricolor I and II and betweenM. terricolor I and III shows high frequencies of pairing abnormalities at pachytene. The backcross (N3 generation) male hybrids betweenM. terricolor I and II have meiotic abnormalities as in the F1male hybrids, though to a lesser extent. They show difference in pairing abnormalities in the different karyotypic forms; the backcross hybrids heterozygous for the heterochromatic short arms have more anomalies compared to the homokaryotypic hybrids. This suggests a negative influence of the heterochromatin heterozygosity in meiotic pairing. The results indicate a role for heterochromatin variations in the development of a reproductive barrier in the speciatingM. terricolor complex.  相似文献   

4.
Conventional observations of mitotic chromosomes from two male blue foxes, revealing a centric-fusion translocation and whole-arm heterochromatin, were verified by synaptonemal complex analysis. This analysis revealed that the centric fusion had been preceded by a conspicuous loss of chromosome material in the two one-armed chromosomes involved, but the chromosomal origin of the centric-fusion kinetochore could not be established. The nontranslocated chromosomes of the trivalent, which in all cells but one were in cis configuration, had reached by early pachytene a stage in which almost complete homologous pairing and nonhomologous association or pairing of the free ends of the chromosomes could be observed. In later stages, complete pairing of the nontranslocated chromosomes with the corresponding arms of the centric-fusion translocation was seen occasionally. One to six autosomal bivalents demonstrated unpaired heterochromatic arms in early pachytene, and the heterochromatic chromosome arms were sometimes unpaired even in late pachytene. Some of them showed a distinct size heteromorphism in late zygotene and early pachytene. In most late-pachytene cells, however, the heteromorphic chromosomes were completely length-adjusted. Only a small fraction of the cells showed pairing interference between nonhomologous chromosomes.  相似文献   

5.
A cytogenetic analysis was performed in experimental hybrids between species of Chagas disease transmitting bugs with remarkable differences in the amount and distribution of heterochromatin. Using C-banding technique, we identified the parental species chromosomes and analysed the meiotic behaviour in the male hybrids between Triatoma platensis and T. infestans, T. platensis and T. delpontei, and T. infestans and T. rubrovaria. The two former hybrids have an entirely normal meiotic behaviour despite the extensive differences in C-banded karyotypes observed in the parental species, indicating that heterochromatin differences between homeologous chromosomes are not a barrier that influences meiotic synapsis and recombination. On the contrary, the experimental hybrids between T. infestans and T. rubrovaria show failures in pairing of homeologous chromosomes that lead to the production of abnormal spermatids and hybrid sterility. Our data suggest that karyotypic repatterning within triatomines has involved at least two different pathways. Among closely related species, chromosomal changes have largely involved addition or deletion of heterochromatic regions. In more distant species, chromosomal rearrangements (i.e. inversions and translocations) have also arisen. Hybridisation data also allow to hypothesize about the origin and divergence of this taxonomic group, as well as the mechanisms that maintain species isolation.  相似文献   

6.
7.
The ICF syndrome (immunodeficiency, centromeric region instability, facial anomalies) is a unique DNA methylation deficiency disease diagnosed by an extraordinary collection of chromosomal anomalies specifically in the vicinity of the centromeres of chromosomes 1 and 16 (Chr1 and Chr16) in mitogen-stimulated lymphocytes. These aberrations include decondensation of centromere-adjacent (qh) heterochromatin, multiradial chromosomes with up to 12 arms, and whole-arm deletions. We demonstrate that lymphoblastoid cell lines from two ICF patients exhibit these Chr1 and Chr16 anomalies in 61% of the cells and continuously generate 1qh or 16qh breaks. No other consistent chromosomal abnormality was seen except for various telomeric associations, which had not been previously noted in ICF cells. Surprisingly, multiradials composed of arms of both Chr1 and Chr16 were favored over homologous associations and cells containing multiradials with 3 or >4 arms almost always displayed losses or gains of Chr1 or Chr16 arms from the metaphase. Our results suggest that decondensation of 1qh and 16qh often leads to unresolved Holliday junctions, chromosome breakage, arm missegregation, and the formation of multiradials that may yield more stable chromosomal abnormalities, such as translocations. These cell lines maintained the abnormal hypomethylation in 1qh and 16qh seen in ICF tissues. The ICF-specific hypomethylation occurs in only a small percentage of the genome, e.g., ICF brain DNA had 7% less 5-methylcytosine than normal brain DNA. The ICF lymphoblastoid cell lines, therefore, retain not only the ICF-specific pattern of chromosome rearrangements, but also of targeted DNA hypomethylation. This hypomethylation of heterochromatic DNA sequences is seen in many cancers and may predispose to chromosome rearrangements in cancer as well as in ICF.  相似文献   

8.
The results of qualitative heterochromatin analysis in 16 species of primates: Homo sapiens , Pan troglodytes and Gorilla gorilla (F. Hominidae), Hylobates syndactilus (F. Hylobatidae), Macaca fascicularis , M. tibetana , Mandrillus sphinx , M. leucophaeus , Cercopithecus aethiops , C. sabaeus and C. albogularis (F. Cercopithecidae), Cebus apella , Ateles belzebuth hybridus , Aotus azarae , Saimiri sciureus and Lagothrix lagothricha (F. Cebidae) are presented in this work. We characterized heterochromatin using: (a) in situ digestion with restriction enzymes AluI, HaeIII, RsaI and Sau3A, and (b) chromosome staining with DA/DAPI on unbanded chromosomes, on C-banded chromosomes and on sequentially G-C-banded chromosomes. The aim of this work was to relate the qualitative characteristics of constitutive heterochromatin observed with the cytogenetic evolutive processes in the primate group. Results obtained show that (1) in the family Cercopithecidae, Papionini species do not present chromosomal rearrangements when their karyotypes are compared and the heterochromatin characteristics are uniform, while Cercopithecini species show a high number of chromosomal reorganizations, but they have the same heterochromatic characteristics; (2) the Platyrrhini species analysed show variability in their karyological and heterochromatic characteristics; (3) the Hominoidea present two different situations: Pan , Gorilla and Homo with few chromosomal reorganizations among their karyotypes but with a high variability in their heterochromatin characteristics, and Hylobates with low heterochromatin variability and a highly derived karyotype. Speciation processes related to chromosome changes and heterochromatin variations in different groups of primates are discussed.  © 2003 The Linnean Society of London, Biological Journal of the Linnean Society , 2003, 80 , 107–124.  相似文献   

9.
Some groups of fish, such as those belonging to the Order Tetraodontiformes, may differ significantly in the amount and location of heterochromatin in the chromosomes. There is a marked variation in DNA content of more than seven-fold among the families of this Order. However, the karyoevolutionary mechanisms responsible for this variation are essentially unknown. The largest genomic contents are present in species of the family Ostraciidae (2.20–2.60 pg). The present study cytogenetically characterized two species of the family Ostraciidae, Acanthostracion polygonius and A. quadricornis, using conventional staining, C-bandings, Ag-NOR, CMA3/DAPI, AluI, PstI, EcoRI, TaqI and HinfI restriction enzymes (REs) and double FISH with 18S and 5S rDNA probes. The karyotypes of both species showed 2n = 52 acrocentric chromosomes (FN = 52; chromosome arms) and pronounced conserved structural characteristics. A significant heterochromatic content was observed equilocally distributed in pericentromeric position in all the chromosome pairs. This condition is unusual in relation to the karyotypes of other families of Tetraodontiformes and probability is the cause of the higher DNA content in Ostraciidae. Given the role played by repetitive sequences in the genomic reorganization of this Order, it is suggested that the conspicuous heterochromatic blocks, present in the same chromosomal position and with apparently similar composition, may have arisen or undergo evolutionary changes in concert providing clues about the chromosomal mechanisms which led to extensive variation in genomic content of different Tetraodontiformes families.  相似文献   

10.
The three chromosomal species of theMus terricolor complex possess 2n = 40 chromosomes. We show that their karyotypes differ in stable heterochromatin variations fixed in homozygous condition as prominent short arms in autosomes 1, 3 and 6. The three chromosomal species exhibit a high incidence of polymorphisms for Robertsonian fusions and pericentric inversions. Breeding experiments and histological analysis of testis show that heterozygosity for pericentric inversions and Robertsonian fusions had no effect on fertility. Meiotic analysis shows normal overall progression of meiosis in the heterozygotes, which is consistent with their normal gametogenesis. Nevertheless, both the inversion and fusion heterozygotes had undergone some alterations in the regular process of homologous synapsis, and it appeared that certain features of the meiotic system circumvented the potential negative effects of these polymorphic chromosomal rearrangements. The results indicate that the attributes of the meiotic system in a given organism could modulate the potential of a chromosomal rearrangement as reproductive barrier. The meiotic modulation hypothesis offers an explanation for the contradictory effects of the similar kinds of chromosomal mutations reported in different species.  相似文献   

11.
Summary Pericentric inversion of chromosome 9, a common abnormality, has been much studied because of its possible genetic effect. Apart from total inversion, in which the whole heterochromatic segment of chromosome 9 appears to be situated on the short arm, some authors describe partial inversion, in which the heterochromatin is found partly on the long arm and partly on the short arm.Our study indicates that firstly, the heterochromatic segment of chromosome 9 is composed of two biochemically different subunits: the heterochromatin of the centromere itself and the heterochromatin of the secondary constriction. Secondly, it suggests that partial inversion of the secondary constriction of chromosome 9 is an unusual event, as the majority of published cases can be interpreted as the result of an increase in the centromeric heterochromatin without alteration of the secondary constriction.Supported by grants from INSERM (A.T.P. 79-110)  相似文献   

12.
Heterochromatin comprises a significant component of many eukaryotic genomes. In comparison to euchromatin, heterochromatin is gene poor, transposon rich, and late replicating. It serves many important biological roles, from gene silencing to accurate chromosome segregation, yet little is known about the evolutionary constraints that shape heterochromatin. A complementary approach to the traditional one of directly studying heterochromatic DNA sequence is to study the evolution of proteins that bind and define heterochromatin. One of the best markers for heterochromatin is the heterochromatin protein 1 (HP1), which is an essential, nonhistone chromosomal protein. Here we investigate the molecular evolution of five HP1 paralogs present in Drosophila melanogaster. Three of these paralogs have ubiquitous expression patterns in adult Drosophila tissues, whereas HP1D/rhino and HP1E are expressed predominantly in ovaries and testes respectively. The HP1 paralogs also have distinct localization preferences in Drosophila cells. Thus, Rhino localizes to the heterochromatic compartment in Drosophila tissue culture cells, but in a pattern distinct from HP1A and lysine-9 dimethylated H3. Using molecular evolution and population genetic analyses, we find that rhino has been subject to positive selection in all three domains of the protein: the N-terminal chromo domain, the C-terminal chromo-shadow domain, and the hinge region that connects these two modules. Maximum likelihood analysis of rhino sequences from 20 species of Drosophila reveals that a small number of residues of the chromo and shadow domains have been subject to repeated positive selection. The rapid and positive selection of rhino is highly unusual for a gene encoding a chromosomal protein and suggests that rhino is involved in a genetic conflict that affects the germline, belying the notion that heterochromatin is simply a passive recipient of "junk DNA" in eukaryotic genomes.  相似文献   

13.
A large amount of heterochromatin is observed in two species of the genus Gerbillus, G. nigeriae and G. hesperinus. The C-band material represents about one-half of the total karyotype length in the former species, and about one-third in the latter. Several banding techniques and various 5-bromodeoxyuridine (BrdU) treatments were used to characterise these heterochromatic segments. After applying the R-banding technique, three different staining responses of the heterochromatin can be distinguished. In G. nigeriae, strongly stained segments (R-band positive) appear in most chromosomes and, in particular, constitute the short arms of all the larger chromosomes. Palely staining heterochromatic segments (R-band negative) are less abundant in G. nigeriae but predominate in G. hesperinus. In addition, in both species an intermediate staining of heterochromatin is observed near the centromere or in the heterochromatic short arms of some acrocentric and small submetacentric chromosomes. Very short BrdU treatment during the end of the last cell cycle results in asymmetrical staining of chromatids in heterochromatic segments after applying the acridine orange or FPG (fluorescence plus Giemsa) technique. The alternating location of strongly staining segments in one or the other chromatid simulates sister chromatid exchanges (pseudo-SCE). This pattern persists after longer BrdU treatment during different stages of the last cell cycle and is independent of the R-staining properties of the heterochromatin. The lateral asymmetric appearance of the large heterochromatic segments in Gerbillus is interpreted as reflecting an uneven distribution of adenine and thymidine between the two strands of DNA.  相似文献   

14.
Restriction endonucleases have been used to digest DNA in fixed metaphase chromosomes of animal species. However, constitutive C-heterochromatin of plant species is resistant to these enzymes suggesting that the special structural organization of plant C-bands is an impediment to the activity of restriction endonucleases. In order to test this hypothesis, we have chosen the species Scilla siberica, whose purified satellite DNA, localised at the heterochromatic regions, is extensively digested by HaeIII. In situ treatment with HaeIII alone does not produce significant digestion of heterochromatin, but subsequent treatment with proteinase K results in extensive digestion of heterochromatic regions producing unstained gaps. These results indicate that HaeIII is able to access and cut chromosomal DNA from C-bands, but the DNA fragments remain attached to chromosomal proteins that characterize the complex structure of heterochromatin in this species. Although there are no reasons to suppose that accessibility of chromosomal DNA of S. siberica to restriction enzymes can be impeded, it would be reasonable to think from our results that some special features of heterochromatin organization in plants contribute to the formation of a complex structure that makes chromosomal DNA extraction impossible.by D. Schweizer  相似文献   

15.
Metaphase chromosomes prepared from colcemid-treated mouse L929 cells by non-ionic detergent lysis exhibit distinct heterochromatic centromere regions and associated kinetochores when viewed by whole mount electron microscopy. Deoxyribonuclease I treatment of these chromosomes results in the preferential digestion of the chromosomal arms leaving the centromeric heterochromatin and kinetochores apparently intact. Enrichment in centromere material after DNase I digestion was quantitated by examining the increase in 10,000xg pellets of the 1.691 g/cc satellite DNA relative to main band DNA. This satellite species has been localized at the centromeres of mouse chromosomes by in situ hybridization. From our analysis it was determined that DNase I digestion results in a five to six-fold increase in centromeric material. In contrast to the effect of DNase I, micrococcal nuclease was found to be less selective in its action. Digestion with this enzyme solubilized both chromosome arms and centromeres leaving only a small amount of chromatin and intact kinetochores.  相似文献   

16.
R H Devlin  D G Holm  K R Morin  B M Honda 《Génome》1990,33(3):405-415
Although little is known about the molecular organization of most genes within heterochromatin, the unusual properties of these chromosomal regions suggest that genes therein may be organized and expressed very differently from those in euchromatin. We report here the cloning, by P transposon tagging, of sequences associated with the expression of the light locus, an essential gene found in the heterochromatin of chromosome 2 of Drosophila melanogaster. We conclude that this DNA is either a segment of the light locus, or a closely linked, heterochromatic sequence affecting its expression. While other functional DNA sequences previously described in heterochromatin have been repetitive, light gene function may be associated, at least in part, with single-copy DNA. This conclusion is based upon analysis of DNA from mutations and reversions induced by P transposable elements. The cloned region is unusual in that this single-copy DNA is embedded within middle-repetitive sequences. The in situ hybridization experiments also show that, unlike most other sequences in heterochromatin, this light-associated DNA evidently replicates in polytene chromosomes, but its diffuse hybridization signal may suggest an unusual chromosomal organization.  相似文献   

17.
M. Schmid 《Chromosoma》1978,66(4):361-388
The distribution and quantity of constitutive heterochromatin and of the nucleolus organizer regions (NORs) on the chromosomes of 22 species of bufonids and hylids (Amphibia, Anura) was investigated. Three different kinds of constitutive heterochromatin were found and the frequency of brightly fluorescing heterochromatic regions was remarkably high. On almost all chromosomes there is centric and telomeric heterochromatin. Quantitative estimates of heterochromatin demonstrate that large DNA differences among closely related species can not be attributed to differing quantities of constitutive heterochromatin. In all species investigated, only one homologous pair of NORs was found, which lies preferentially in the proximal and interstitial segments of the long chromosome arms. The NORs are always associated with constitutive heterochromatin on both sides. The size variability between homologous NORs is very high. In the euchromatic regions of the metaphase chromosomes, neither Q- nor G-bands can be demonstrated; this can be attributed to an extremely strong contraction of the anuran chromosomes. On the basis of these results various mechanism of the chromosomal evolution in Anura are discussed.  相似文献   

18.
Prophase chromosomes of Drosophila hydei were stained with 0.5 g/ml Hoechst 33258 and examined under a fluorescence microscope. While autosomal and X chromosome heterochromatin are homogeneously fluorescent, the entirely heterochromatic Y chromosome exhibits an extremely fine longitudinal differentiation, being subdivided into 18 different regions defined by the degree of fluorescence and the presence of constrictions. Thus high resolution Hoechst banding of prophase chromosomes provides a tool comparable to polytene chromosomes for the cytogenetic analysis of the Y chromosome of D. hydei. — D. hydei heterochromatin was further characterized by Hoechst staining of chromosomes exposed to 5-bromodeoxyuridine for one round of DNA replication. After this treatment the pericentromeric autosomal heterochromatin, the X heterochromatin and the Y chromosome exhibit numerous regions of lateral asymmetry. Moreover, while the heterochromatic short arms of the major autosomes show simple lateral asymmetry, the X and the Y heterochromatin exhibit complex patterns of contralateral asymmetry. These observations, coupled with the data on the molecular content of D. hydei heterochromatin, give some insight into the chromosomal organization of highly and moderately repetitive heterochromatic DNA.  相似文献   

19.
G R Bauchan  M A Hossain 《Génome》1999,42(5):930-935
A Giemsa C-banding technique was used to study the amount and location of constitutive heterochromatin in diploid (2n = 2x = 16) Medicago sativa ssp. falcata (L.) Arcangeli. Most accessions had the standard C-banding pattern with centromeric bands on all the chromosomes and a prominent heterochromatic band at the nucleolar organizer regions (NOR) of the satellited (SAT) chromosomes. However, we observed in various accessions that constitutive heterochromatic C-bands can exist at the telomeric ends of all the chromosomes. Interstitial bands occurred on the short arms of all chromosomes except for chromosome 3 and on the long arms of chromosomes 1, 2, 3, and 6, only. Rearranged chromosomes such as isochromosomes have been observed for the short arms of chromosomes 2 and 6. This is the first report on the existence of C-banding polymorphisms and the detection of putative isochromsomes in the chromosomes of diploid ssp. falcata which could have contributed to the variation observed in cultivated alfalfa.  相似文献   

20.
Several lines of evidence suggest that, within a lineage, particular genomic regions are subject to instability that can lead to specific types of chromosome rearrangements important in species incompatibility. Within family Macropodidae (kangaroos, wallabies, bettongs, and potoroos), which exhibit recent and extensive karyotypic evolution, rearrangements involve chiefly the centromere. We propose that centromeres are the primary target for destabilization in cases of genomic instability, such as interspecific hybridization, and participate in the formation of novel chromosome rearrangements. Here we use standard cytological staining, cross-species chromosome painting, DNA probe analyses, and scanning electron microscopy to examine four interspecific macropodid hybrids (Macropus rufogriseus x Macropus agilis). The parental complements share the same centric fusions relative to the presumed macropodid ancestral karyotype, but can be differentiated on the basis of heterochromatic content, M. rufogriseus having larger centromeres with large C-banding positive regions. All hybrids exhibited the same pattern of chromosomal instability and remodeling specifically within the centromeres derived from the maternal (M. rufogriseus) complement. This instability included amplification of a satellite repeat and a transposable element, changes in chromatin structure, and de novo whole-arm rearrangements. We discuss possible reasons and mechanisms for the centromeric instability and remodeling observed in all four macropodid hybrids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号