首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Interleukin-10 (IL-10), a potent antiinflammatory and immunosuppressive cytokine, plays an important role in the regulation of immune responses. To discover small molecules that stimulate IL-10 production, a cell-based screening assay was performed using a murine macrophage cell line, RAW264.7. Imidocarb, (3,3'-bis-2-imidazolin-2-yl)-carbanilide, which has been used as an anti-protozoan drug for the prevention and treatment of babesiosis in cattle, was thus identified. Imidocarb markedly enhanced LPS-induced IL-10 production not only by RAW264.7 cells but also by murine peritoneal macrophages in a concentration-dependent manner. It also augmented IL-10 production in the presence of zymosan, a yeast cell wall component. In contrast, imidocarb inhibited LPS-induced tumor necrosis factor (TNF)-alpha production by peritoneal macrophages. In mice, intraperitoneal administration of imidocarb significantly increased serum IL-10 levels and lowered TNF-alpha levels. Our results suggest that a novel anti-inflammatory property of imidocarb could lead to new therapeutic approaches in inflammatory conditions.  相似文献   

3.
IL-13 is a Th2 cytokine that regulates the effector functions and alters the phenotype and function of normal macrophages switching to alternatively activated or type II polarized macrophages. The type II polarized macrophages differ from normal macrophages greatly in terms of receptor expression, NO and other cytokine production. It produces chemokines that preferentially attract Th2 cells, which increases the local concentration of Th2 cytokines including IL-13. As a result, normal macrophage population gets polarized as type II macrophages at the site of the tumor-microenvironment. In the present investigation, we have determined the IL-13 serum level in DL-bearing host and the effect of IL-13 on peritoneal macrophages harvested from normal healthy, control DL-bearing, and treated DL-bearing mice with respect to reactive oxygen intermediate production. It has been observed that IL-13 significantly inhibits the ROI generation in all macrophage types while by neutralizing with in vivo administration of IL-13Rα2 and/or potentiation with Th1 cytokine, the production of reactive oxygen intermediate increases, which indicates that IL-13Rα2 and/or potentiation with Th1 cytokine could restore the cytotoxic ability of macrophage in a murine T-cell lymphoma.  相似文献   

4.
Abstract The phagocytic and candidacidal activities of the peritoneal cells of Candida albicans -infected mice were studied 20 days following experimental infection. Both activities were enhanced during infection. The production of nitric oxide (NO) by the peritoneal cells of infected mice was determined, and an increase in the nitrite concentration in supernatants of peritoneal cell cultures was detected. The period of NO production by the peritoneal cells coincided partially with the period of enhanced C. albicans killing. The inhibition of NO synthesis by N -monomethyl- l -arginine was concomitant with inhibition of candidacidal activity. We conclude that NO systhesis is the primary candidacidal mechanism of the murine peritoneal cells activated by C. albicans infection.  相似文献   

5.
Wallace FA  Miles EA  Calder PC 《Cytokine》2000,12(9):1374-1379
Studies investigating the effect of dietary fats on pro-inflammatory cytokine production by macrophages (M phis) have yielded conflicting results. We hypothesised that this may be due to the different capacities of the M phis studied commonly (resident, thioglycollate-elicited) to produce prostaglandin E(2)(PGE(2)) and leukotriene B(4)(LTB(4)) which inhibit and stimulate, respectively, tumour necrosis factor-alpha (TNF-alpha) and interleukin-1 beta (IL-1 beta) production. To investigate this, male C57Bl6 mice were fed for 6 weeks on a low fat (LF) diet or on high fat diets which contained coconut oil (CO), olive oil (OO), safflower oil (SO) or fish oil (FO) as the main fat source. Production of TNF-alpha, IL-1 beta, PGE(2)and LTB(4)by lipopolysaccharide-stimulated resident and thioglycollate-elicited (i.e. inflammatory) peritoneal M phis was measured. PGE(2)production by both inflammatory and resident M phis was significantly decreased by FO feeding. FO also decreased LTB(4)production by resident M phis compared with LF feeding. Production of both cytokines by inflammatory M phis decreased with increasing unsaturation of the high fat diets, such that cells from FO-fed mice showed significantly decreased production of TNF-alpha and IL-1 beta compared to those from mice fed on each of the other diets. In contrast, resident M phis from mice fed FO showed increased TNF-alpha production compared to those from CO-fed mice. Thus, FO feeding decreases production of TNF-alpha and IL-1 beta by inflammatory M phis and increases production of TNF-alpha by resident M phis, at least in comparison to some other dietary fats. These results indicate the mechanisms by which dietary fats exert their effects upon pro-inflammatory cytokine production are most likely different for resident and inflammatory M phis.  相似文献   

6.
It has been reported previously that oral administration of lactoferrin (LF) provides some host-protective effects against infections, cancers, and inflammations. In this review, we focus on the effect of oral LF on various infectious diseases and discuss the mechanism as elucidated in animal models. In the case of infections occurring at sites other than the digestive canal, it is unclear whether oral LF is absorbed from the intestine and exerts its protective effect at the site of infection. In preterm human infants, neonatal pigs, and rats with colitis, it was reported that LF is detectable in various body fluids after oral administration. We could not detect the transport of oral bovine LF into the blood of adult rats without gastrointestinal illness using several techniques, suggesting that there is an extremely low level of transport of LF, if any. Orally administered LF may act at the oro-gastro-intestinal mucosa and aid the defense system against infections through a network of mucosal immunity and systemic immunity. Indeed, it is reported that oral LF increases the number of cells in the leukocyte subset and cytokine (IFN-gamma and IL-18) production in the intestinal mucosa of mice. Regarding systemic immunity, we have observed an increase of leukocyte number, cytokine (IFN-gamma, TNF-alpha, IL-12, and IL-18) production, and effector activity of macrophages in response to LF administration in several animal models. These enhanced immune responses may contribute to eradication of the pathogen, resolution of the symptoms, and maintenance of the homeostasis during infectious diseases.  相似文献   

7.
Activation of inducible nitric oxide (NO) synthase (iNOS) and resulting high-output NO release is known to depend on the action of cytokines. We investigated in vitro production of NO by resident peritoneal macrophages from mice and rats, and secretion of cytokines by these cells as well as by human peripheral blood mononuclear cells (PBMC). The cells were cultured in the presence of a selected group of acyclic nucleoside phosphonates that have previously been shown to possess immunobiological potential. Several of the compounds enhanced production of NO in animal macrophages. This activity was associated with stimulatory effects on secretion of cytokines such as TNF-alpha in all mouse and rat macrophages and human PBMC, and IL-10 in mouse and human cells. Statistically highly significant correlation between the range of NO biosynthesis in rodent cells and extent of cytokine stimulation in human PBMC has been observed. It is suggested that the NO assay may be regarded as an efficient, economical and relatively reliable tool in primary screening for intrinsic immunostimulatory activity of compounds in human cell system, at least from the point of view of cytokine secretion.  相似文献   

8.
THE purpose of this study was to investigate the effects of Tityus serrulatus venom (TSV) on murine peritoneal macrophages evaluated in terms of activation. The effects of crude TSV were analysed by detection of cytokines, oxygen intermediate metabolites (H2O2) and nitric oxide (NO) in supernatants of peritoneal macrophages. Several functional bioassays were employed including an in vitro model for envenomating: cytotoxicity of TSV was assessed using the lyses percentage. Tumor necrosis factor (TNF) activity was assayed by measuring its cytotoxic activity on L-929 cells, and interleukin-6 (IL-6) and interferon-gamma (IFN-gamma) were assayed by enzyme-linked immunosorbent assay, whereas NO levels were detected by Griess colorimetric reactions in culture supernatant of macrophages incubated with TSV and subsequently exposed to either lipopolysaccharide or IFN-gamma. Incubation of macrophages with TSV increased production of IL-6 and IFN-gamma in a dose-dependent manner. TNF production was not detected in supernatants treated with TSV at any concentration. The increase in IL-6 secretion was not associated with concentration-dependent cytoxicity of TSV on these cells. These data suggest that the cytotoxicity does not appear to be the main cause of an increased cytokine production by these cells. Although NO is an important effector molecule in macrophage microbicidal activity, the inducing potential of the test compounds for its release was found to be very moderate, ranging from 125 to 800 mM. Interestingly, NO levels of peritoneal macrophages were increased after IFN-gamma. Moreover, NO production had an apparent effect on macrophage activity. The results obtained here also shown that the TSV induces an important elevation in H2O2 release. These results combined with NO production suggest that TSV possesses significant immunomodulatory activities capable of stimulating immune functions in vitro.  相似文献   

9.
Zhang Y  Wang H  Ren J  Tang X  Jing Y  Xing D  Zhao G  Yao Z  Yang X  Bai H 《PloS one》2012,7(6):e39214
IFN-γ-mediated inducible nitric oxide synthase (iNOS) expression is critical for controlling chlamydial infection through microbicidal nitric oxide (NO) production. Interleukin-17A (IL-17A), as a new proinflammatory cytokine, has been shown to play a protective role in host defense against Chlamydia muridarum (Cm) infection. To define the related mechanism, we investigated, in the present study, the effect of IL-17A on IFN-γ induced iNOS expression and NO production during Cm infection in vitro and in vivo. Our data showed that IL-17A significantly enhanced IFN-γ-induced iNOS expression and NO production and inhibited Cm growth in Cm-infected murine lung epithelial (TC-1) cells. The synergistic effect of IL-17A and IFN-γ on Chlamydia clearance from TC-1 cells correlated with iNOS induction. Since one of the main antimicrobial mechanisms of activated macrophages is the release of NO, we also examined the inhibitory effect of IL-17A and IFN-γ on Cm growth in peritoneal macrophages. IL-17A (10 ng/ml) synergizes with IFN-γ (200 U/ml) in macrophages to inhibit Cm growth. This effect was largely reversed by aminoguanidine (AG), an iNOS inhibitor. Finally, neutralization of IL-17A in Cm infected mice resulted in reduced iNOS expression in the lung and higher Cm growth. Taken together, the results indicate that IL-17A and IFN-γ play a synergistic role in inhibiting chlamydial lung infection, at least partially through enhancing iNOS expression and NO production in epithelial cells and macrophages.  相似文献   

10.
After activation with IFN-gamma, thioglycollate-elicited murine peritoneal macrophages kill schistosomula of Schistosoma mansoni in vitro by an L-arginine-dependent mechanism which involves the production of reactive nitrogen oxides (NO). In the present study we demonstrate that the regulatory cytokines IL-10, IL-4, and transforming growth factor-beta (TGF-beta) are potent inhibitors of this extracellular killing function of activated macrophages. Each cytokine was found to suppress killing of schistosomula in a dose-dependent fashion. The activity of IL-10 was not permanent, because subsequent treatment with additional IFN-gamma 2 to 6 h later reversed the inhibition of macrophage larval killing. More importantly, the combination of suboptimal levels of any two of these three cytokines was found to give a potent synergistic suppression of schistosomulum killing by IFN-gamma-treated macrophages. Similarly, IL-10, IL-4, or TGF-beta alone blocked the production of NO, and when used in combination these cytokines exhibited an enhanced inhibitory effect on nitrite production. Macrophage-mediated killing of schistosomula through the generation of NO has been shown previously to be a major effector mechanism of schistosome immunity. The results presented here suggest that the suppression of this mechanism by induction of the regulatory cytokines IL-10, IL-4, and TGF-beta, which are known to be produced during schistosome infection, may be an important strategy used by the parasite to evade macrophage-mediated immune destruction.  相似文献   

11.
We herein report the immunostimulatory effect of spinach aqueous extract (SAE) on mouse macrophage-like J774.1 cells and mouse primary peritoneal macrophages. SAE significantly enhanced the production of interleukin (IL)-6 and tumor necrosis factor-α by both J774.1 cells and peritoneal macrophages by enhancing the expression levels of these cytokine genes. In addition, the phagocytosis activity of J774.1 cells was facilitated by SAE. Immunoblot analysis revealed that SAE activates mitogen-activated protein kinase and nuclear factor-κB cascades. It was found that SAE activates macrophages through not only TLR4, but also other receptors. The production of IL-6 was significantly enhanced by peritoneal macrophages from SAE-administered BALB/c mice, suggesting that SAE has a potential to stimulate macrophage activity in vivo. Taken together, these data indicate that SAE would be a beneficial functional food with immunostimulatory effects on macrophages.  相似文献   

12.
Interleukin (IL)-10 is an anti-inflammatory cytokine implicated in the regulation of airway inflammation in asthma. Among other activities, IL-10 suppresses production of nitric oxide (NO); consequently, its absence may permit increased NO production, which can affect airway smooth muscle contractility. Therefore, we investigated airway reactivity (AR) in response to methacholine (MCh) in IL-10 knockout (-/-) mice compared with wild-type C57BL/6 (C57) mice, in which airway NO production was measured as exhaled NO (E(NO)), and NO production was altered with administration of either NO synthase (NOS)-specific inhibitors or recombinant murine (rm)IL-10. AR, measured as enhanced pause in vivo, and tracheal ring tension in vitro were lower in IL-10(-/-) mice by 25-50%, which was associated with elevated E(NO) levels (13 vs. 7 ppb). Administration of NOS inhibitors N(G)-nitro-L-arginine methyl ester (8 mg/kg ip) or L-N(6)-(1-iminoethyl)-lysine (3 mg/kg ip) to IL-10(-/-) mice decreased E(NO) by an average of 50%, which was associated with increased AR, to levels similar to C57 mice. E(NO) in IL-10(-/-) mice decreased in a dose-dependent fashion in response to administered rmIL-10, to levels similar to C57 mice (7 ppb), which was associated with a 30% increment in AR. Thus increased NO production in the absence of IL-10, decreased AR, which was reversed with inhibition of NO, either by inhibition of NOS, or with reconstitution of IL-10. These findings suggest that airway NO production can modulate airway smooth muscle contractility, resulting in airway hyporesponsiveness when IL-10 is absent.  相似文献   

13.
Cecal ligation and puncture (CLP) caused septic peritonitis in wild-type (WT) mice, with approximately 33% mortality within 7 days after the procedure. Concomitantly, the protein level of intraperitoneal CX3CL1/fractalkine was increased, with infiltration by CX3CR1-expressing macrophages into the peritoneum. CLP induced 75% mortality in CX3CR1-deficient (CX3CR1(-/-)) mice, which, however, exhibited a similar degree of intraperitoneal leukocyte infiltration as WT mice. Despite this, CX3CR1(-/-) mice exhibited impairment in intraperitoneal bacterial clearance, together with a reduction in the expression of intraperitoneal inducible NO synthase (iNOS) and bactericidal proinflammatory cytokines, including IL-1beta, TNF-alpha, IFN-gamma, and IL-12, compared with WT mice. Bactericidal ability of peritoneal phagocytes such as neutrophils and macrophages was consistently attenuated in CX3CR1(-/-) mice compared with WT mice. Moreover, when WT macrophages were stimulated in vitro with CX3CL1, their bactericidal activity was augmented in a dose-dependent manner, with enhanced iNOS gene expression and subsequent NO generation. Furthermore, CX3CL1 enhanced the gene expression of IL-1beta, TNF-alpha, IFN-gamma, and IL-12 by WT macrophages with NF-kappaB activation. Thus, CX3CL1-CX3CR1 interaction is crucial for optimal host defense against bacterial infection by activating bacterial killing functions of phagocytes, and by augmenting iNOS-mediated NO generation and bactericidal proinflammatory cytokine production mainly through the NF-kappaB signal pathway, with few effects on macrophage infiltration.  相似文献   

14.
Previous work by our group showed that aged C57BL/6 mice develop an altered innate and adaptive immune response to Candida albicans and are more susceptible to systemic primary candidiasis. In this work, we used young (2-3 months old) and aged (18-20 months old) C57BL/6 mice to study in vitro the influence of aging on (1) the fungicidal activity of neutrophils and macrophages, (2) the production of cytokines by resident peritoneal macrophages in response to C. albicans, and (3) cell surface Toll-like receptor (TLR) 2 expression on resident peritoneal macrophages. Our results indicate that murine phagocytes have a fungicidal activity well preserved with aging. In vitro production of proinflammatory cytokines (IL-6, IL-1beta, and tumor necrosis factor-alpha and chemokines (MIP-2) by purified (CD11b(+)) peritoneal macrophages in response to yeasts and hyphae of C. albicans was significantly lower in aged mice as compared with young mice. However, the production of IL-10 by macrophages, in response to C. albicans, was similar in both young and aged animals. Moreover, baseline TLR2 surface expression level was lower on aged macrophages than on control macrophages. Taken together, these data indicate that the increased susceptibility to C. albicans disseminated infections in aged mice is correlated with defects in TLR2 expression and in cytokine production, but not with an impaired fungicidal activity.  相似文献   

15.
16.
Dietary fats affect macrophage-mediated cytotoxicity towards tumour cells   总被引:2,自引:0,他引:2  
In the present study, the effects of feeding mice diets of different fatty acid compositions on the production of TNF-alpha and nitric oxide by lipopolysaccharide-stimulated peritoneal macrophages and on macrophage-mediated cytotoxicity towards L929 and P815 cells were investigated. C57Bl6 mice were fed on a low-fat (LF) diet or on high-fat diets (21% fat by weight), which included coconut oil (CO), olive oil (OO), safflower oil (SO) or fish oil (FO) as the principal fat source. The fatty acid composition of the macrophages was markedly influenced by that of the diet fed. Lipopolysaccharide (LPS)-stimulated macrophages from FO-fed mice showed significantly lower production (up to 80%) of PGE2 than those from mice fed on each of the other diets. There was a significant positive linear correlation between the proportion of arachidonic acid in macrophage lipids and the ability of macrophages, to produce PGE2. Lipopolysaccharide-stimulated TNF-alpha production by macrophages decreased with increasing unsaturated fatty acid content of the diet (i.e. FO < SO < OO < CO < LF). Macrophages from FO-fed mice showed significantly lower production of TNF-alpha than those from mice fed on each of the other diets. Nitrite production was highest for LPS-stimulated macrophages from mice fed on the LF diet. Macrophages from FO-fed mice showed significantly higher production of nitrite than those from mice fed on the OO and SO diets. Compared with feeding the LF diet, feeding the CO, OO or SO diets significantly decreased macrophage- mediated killing of P815 cells (killed by nitric oxide). Fish oil feeding did not alter killing of P815 cells by macrophages, compared with feeding the LF diet; killing of P815 cells was greater after FO feeding than after feeding the other high fat diets. Compared with feeding the LF diet, feeding the OO or SO diets significantly decreased macrophage-mediated killing of L929 cells (killed by TNF). Coconut oil or FO feeding did not alter killing of L929 cells by macrophages, compared with feeding the LF diet. It is concluded that the type of fat in the diet affects macrophage composition and alters the ability of macrophages to produce cytotoxic and immunoregulatory mediators and to kill target tumour cells.  相似文献   

17.
Lactoferrin (LF), a multifunctional milk protein, is known to inhibit in vitro infection by viruses such as herpes simplex virus type 1 (HSV-1). We evaluated the influence of LF feeding on the HSV-1 cutaneous infection of mice. Bovine LF was administered to mice and, after 10 d, the mice were infected with HSV-1. LF administration did not affect the viral clearance in the skin, but inhibited the appearance of skin lesions. LF prevented body weight loss and the decrease of splenocyte number associated with HSV-1 infection. LF increased the serum interleukin (IL)-18 level and splenocyte production of interferon-gamma and IL-12. These results suggest that LF feeding was not effective for eradication of the virus, but may contribute to the maintenance of homeostasis and the concomitant increases of cytokine responses during HSV-1 infection.  相似文献   

18.
The Candida albicans gpi7/gpi7 null mutant strain (Deltagpi7), which is affected in glycosylphosphatidylinositol (GPI) anchor biosynthesis, showed a reduced virulence following systemic infection of C57BL/6 mice. In vitro production of TNF-alpha, IL-6 and IL-1beta by macrophages in response to Deltagpi7 cells was significantly increased as compared to control (wild type GPI7/GPI7 and revertant gpi7/GPI7) cells; this probably contributes to the enhanced recruitment of neutrophils to the peritoneal cavity in response to Deltagpi7 cells. Survival of knockout mice for Toll-like receptor (TLR) 2 and TLR4 following intravenous injection of Deltagpi7 cells showed no significant differences as compared to C57BL/6 mice. In vitro production of TNF-alpha by macrophages and neutrophil recruitment were significantly inhibited in TLR2-/- mice in response to control yeast strains. Interestingly both TNF-alpha production and neutrophil recruitment in response to Deltagpi7 were significantly increased in all three types of mice, with no differences among them, and laminarin failed to inhibit this increased production of TNF-alpha. These results indicate that the enhanced proinflammatory response to Deltagpi7 does not involve recognition through TLR2, TLR4 nor dectin-1. Therefore, complete GPI anchors confer surface properties that are involved in modulation of cytokine production by macrophages in response to C. albicans.  相似文献   

19.
In the present work, we studied the in vitro immunomodulatory properties of double-stranded Candida albicans DNA and its protective effect in murine disseminated candidiasis. DNA induced the production of TNF-alpha by peritoneal macrophages and splenocytes in vitro through a chloroquine-dependent mechanism. Yeast DNA acted synergistically with IFN-gamma in triggering the secretion of nitric oxide by macrophages and enabled them to stimulate the proliferation of T cells in response to soluble anti-CD3. The effect of DNA on splenocytes is associated with an enhanced synthesis of IFN-gamma, IL-2 and IL-10. In vivo, DNA decreased the mortality and lowered the kidney contamination in mice intraperitoneally inoculated with C. albicans simultaneously with an increase in the specific proliferative response and cytokine production. The present results indicate that C. albicans DNA can provide protection against disseminated infection.  相似文献   

20.
The participation of type I IFNs (IFN-I) in NO production and resistance to Trypanosoma cruzi infection was investigated. Adherent cells obtained from the peritoneal cavity of mice infected by the i.p. route produced NO and IFN-I. Synthesis of NO by these cells was partially inhibited by treatment with anti-IFN-alphabeta or anti-TNF-alpha Abs. Compared with susceptible BALB/c mice, peritoneal cells from parasite-infected resistant C57BL/6 mice produced more NO (2-fold), IFN-I (10-fold), and TNF-alpha (3.5-fold). Later in the infection, IFN-I levels measured in spleen cell (SC) cultures from 8-day infected mice were greater in C57BL/6 than in infected BALB/c mice, and treatment of the cultures with anti-IFN-alphabeta Ab reduced NO production. IFN-gamma or IL-10 production by SCs was not different between the two mouse strains; IL-4 was not detectable. Treatment of C57BL/6 mice with IFN-I reduced parasitemia levels in the acute phase of infection. Mice deprived of the IFN-alphabetaR gene developed 3-fold higher parasitemia levels in the acute phase in comparison with control 129Sv mice. Production of NO by peritoneal macrophages and SCs was reduced in mice that lacked signaling by IFN-alphabeta, whereas parasitism of macrophages was heavier than in control wild-type mice. We conclude that IFN-I costimulate NO synthesis early in T. cruzi infection, which contributes to a better control of the parasitemia in resistant mice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号