首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The search for the gene for choroideremia (MIM 30310), a rare retinal dystrophy, has been of great interest due to the existence of several choroideremia patients with well-defined structural chromosome aberrations, thus providing the basis for a reverse genetics approach to the isolation of this disease gene. This report details our molecular studies of a woman with choroideremia and a de novo X; 13 translocation. Pulsed-field gel electrophoresis using a contour-clamped homogeneous electric field apparatus has allowed detection of the translocation breakpoint with the anonymous DNA marker p1bD5 (DXS165) and the mapping of this probe to within 120 kb of the breakpoint. In addition, we have used this probe to isolate a clone (pCH4) from a 100-kb jumping library which has crossed a rare-cutting restriction site (XhoI) between DXS165 and the choroideremia gene and detects the translocation breakpoint using this enzyme. Although DXS165 lies within 120 kb of the breakpoint and Cremers et al. (1987, Clin. Genet. 32: 421-423; 1989, PNAS 86: 7510-7514) have detected deletions of DXS165 in 3 of 30 choroideremia probands, we have detected no deletions of this marker or of pCH4 in 42 unrelated probands with this retinal disease.  相似文献   

2.
Summary In two unrelated families, males have been identified who suffer from choroideremia and at the same time have an interstitial deletion on the proximal long arm of the X chromosome. By high-resolution banding we have characterized the deletion chromosomes as del(X)(q21.1-q21.33) and del(X)(q21.2-q21.31) respectively. By Southern blot analysis we have mapped ten different polymorphic DNA loci relative to the position of the deletion and the choroideremia locus TCD. One probe, p31, was shown to cover one of the breakpoints of the smallest deletion. The following order of the loci was suggested by deletion mapping: cen-DXS106-DXS72-TCD-(DXYS1/DXYS23/DXYS5)-DXYS2-(DXYS12/DXS3)-(DXS17/DXS101)-Xqter.  相似文献   

3.
Characterization of several male-viable deletions and duplications with 20 random DNA probes has enabled us to subdivide the Xq21 region into seven discernible intervals. Almost all of the deletions spanning part of Xq21 are associated with choroideremia and mental retardation, with deafness being another common feature. The gene locus for choroideremia was assigned to interval 3 spanning the loci DXS95, DXS165, and DXS233. Genes for X-linked deafness and mental retardation were tentatively assigned to interval 2. Deletions of intervals 4 through 7 were not associated with any clinical abnormality. We have constructed a preliminary long-range restriction map of intervals 2 and 3 using field-inversion gel electrophoresis. The DXS232, DXS121, and DXS233 loci are located on the same SfiI fragment, whereas the DXS165 and DXS95 loci could not be linked to this cluster using SfiI and SalI.  相似文献   

4.
The study of contiguous gene deletion syndromes by using reverse genetic techniques provides a powerful tool for precisely defining the map location of the genes involved. We have made use of individuals with overlapping deletions producing choroideremia as part of a complex phenotype, to define the boundaries on the X chromosome for this gene, as well as for X-linked mixed deafness with perilymphatic gusher (DFN3). Two patients with deletions and choroideremia are affected by an X-linked mixed conductive/sensorineural deafness; one patient, XL-62, was confirmed at surgery to have DFN3, while the other patient, XL-45, is suspected clinically to have the same disorder. A third choroideremia deletion patient, MBU, has normal hearing. Patient XL-62 has a cytogenetically detectable deletion that was measured to be 7.7% of the X chromosome by dual laser flow cytometry; the other patient, XL-45, has a cytogenetically undetectable deletion that measures only 3.3% of the X chromosome. We have produced a physical map of the X-chromosome region containing choroideremia and DFN3 by using routine Southern blotting, chromosome walking and jumping techniques, and long-range restriction mapping to generate and link anonymous DNA sequences in this region. DXS232 and DXS233 are located within 450 kb of each other on the same SfiI and MluI fragments and share partial SalI fragments of 750 and greater than 1,000 kb but are separated by at least one SalI site. In addition, DXS232, which lies outside the MBU deletion, detects the proximal breakpoint of this deletion. We have isolated two new anonymous DNA sequences by chromosome jumping from DXS233; one of these detects a new SfiI fragment distal to DXS233 in the direction of the choroideremia gene, while the other jump clone is proximal to DXS233 and detects a new polymorphism. These data refine the map around the loci for choroideremia and for mixed deafness with stapes fixation and will provide points from which to isolate candidate gene sequences for these disorders.  相似文献   

5.
Choroideremia (McK30310), an X-linked retinal dystrophy, causes progressive night blindness, visual field constriction, and eventual central blindness in affected males by the third to fourth decade of life. The biochemical basis of the disease is unknown, and prenatal diagnosis is not available. Subregional localization of the choroideremia locus to Xq13-22 was accomplished initially by linkage to two restriction-fragment-length polymorphisms (RFLPs), DXYS1 (Xq13-q21.1) and DXS3 (Xq21.3-22). We have now extended our linkage analysis to 12 families using nine RFLP markers between Xp11.3 and Xq26. Recombination frequencies of 0%-4% were found between choroideremia and five markers (PGK, DXS3, DXYS12, DXS72, and DXYS1) located in Xq13-22. The families were also used to measure recombination frequencies between RFLP loci to provide parameters for the program LINKMAP. Multipoint analysis with LINKMAP provided overwhelming evidence for placing the choroideremia locus within the region bounded by DXS1 (Xq11-13) and DXS17 (Xq21.3-q22). At a finer level of resolution, multipoint analysis suggested that the choroideremia locus was proximal to DXS3 (384:1 odds) rather than distal to it. Data were insufficient, however, to distinguish between a gene order that puts choroideremia between DXS3 and DXYS1 and one that places choroideremia proximal to both RFLP loci. These results provide linkage mapping of choroideremia and RFLP loci in this region that will be of use for further genetic studies as well as for clinical applications in this and other human diseases.  相似文献   

6.
Choroideremia: further evidence for assignment of the locus to Xq13–Xq21   总被引:10,自引:3,他引:7  
Summary Choroideremia is an X-linked hereditary retinal dystrophy leading to blindness in early adulthood. RFLP analyses in three Danish families were consistent with close linkage between choroideremia and the locus DXYS1, located at Xq13–Xq21. Measurable linkage was found between choroideremia and DXS17, at Xq22. Furthermore, choroideremia was diagnosed in a boy with an interstitial deletion at Xq13–Xq21, strongly suggesting the assignment of the locus for choroideremia to this region of the X chromosome. The deletion also covered DXYS1, but did not include DXS17.  相似文献   

7.
Summary We report linkage studies in 18 choroideremia (TCD) families using four closely linked polymorphic markers. Probe pZ11, which is known to be deleted in several unrelated patients with TCD, showed no recombinations (z max 15.63 at = 0.00). In contrast, one recombination was observed with DXS367, which is also physically very close to TCD. Loci DXS95 and DXYS69 each showed more than one recombination with TCD. Moreover, these analyses revealed a double crossover between TCD and DXYS1, changing the previously reported very close linkage to a recombination fraction of 0.04 with a lod score of 9.93. Multipoint linkage analysis placed TCD proximal to DXS95-DXYS69 and very close to DXS367-pZ11 with almost identical multipoint lod score maxima either proximal to DXS367 (z max= 23.43) or proximal to pZ11 (z max=23.36). These results provide a refined linkage map around TCD and will also be useful in DNA diagnostics of the disease.  相似文献   

8.
Summary We have localized a single-copy DNA probe, HU16 (locus DXS26), to Xq21.1. The probe was isolated from a human-mouse hybrid X;13 library and mapped with human-mouse hybrids containing different portions of the human X chromosome and DNA from male patients with different X-chromosomal deletions. The following order of loci is proposed: Xcen-(DXS72, DXS169)-(DXS232,DXS26)-DXS121-DXS233-DXS165 TCD-DXS95-DXYSl-Xqter. HU16 will be useful in the study of the putative genes that reside in Xq21 and whose defects lead to deafness and mental retardation.  相似文献   

9.
Short stature is consistently found in individuals with terminal deletions of Xp. In order to refine the localization of a putative locus affecting height, we analyzed two patients with a partial monosomy of the pseudoautosomal region at the molecular level. Eight pseudoautosomal probes were used for the genetic deletion analysis through dose evaluation. Three of them represent new markers (DXS415, DXS419, and DXS406) which were positioned on the pseudoautosomal map by pulsed field gel electrophoresis. Our data suggest that a locus affecting height maps in a region of about 1.5 Mbp, distal to the DXS406 locus and proximal to the DXS415 locus, a region which includes two CpG islands, and rule out an involvement of very distal sequences at the X/Y telomeres.  相似文献   

10.
Summary A DNA deletion in a patient with Becker muscular dystrophy (BMD) has been delineated by restriction endonuclease mapping. The deletion is unusually small, removing six kilobases (kb) of DNA distal to pERT 87-1 (DXS164). This region has previously been shown to contain an exon of a candidate gene which, when defective, causes Duchenne muscular dystrophy (DMD) or Becker muscular dystrophy. Removal of this exon and surrounding DNA is apparently sufficient, in this case, to cause a BMD phenotype. The occurrence of this deletion in DXS164 would appear to confirm that this region is part of the BMD locus. Many DMD patients have deletions in and around this region, adding further evidence for the allelic nature of the two disorders. This fortuitous deletion may identify a functionally important domain of the protein product in terms of the severity of phenotype manifested.  相似文献   

11.
Haplotype and multipoint linkage analysis in Finnish choroideremia families   总被引:1,自引:1,他引:0  
Summary Multipoint linkage analysis of choroideremia (TCD) and seven X chromosomal restriction fragment length polymorphisms (RFLPs) was carried out in 18 Finnish TCD families. The data place TCD distal to PGK and DXS72, very close to DXYS1 and DXYS5 (Zmax = 24 at = 0) and proximal to DXYS4 and DXYS12. This agrees with the data obtained from other linkage studies and from physical mapping. All the TCD males and carrier females studied have the same DXYS1 allele in coupling with TCD. In Northeastern Finland, 66/69 chromosomes carrying TCD had the same haplotype at loci DXS72, DXYS1, DXYS4, and DXYS12. The same haplotype is seen in only 15/99 chromosomes not carrying TCD. Moreover, in 71/104 non-TCD chromosomes, the haplotype at six marker loci is different from those seen in any of the 76 TCD chromosomes. This supports the previously described hypothesis that the large Northern Finnish choroideremia pedigrees, comprising a total of over 80 living patients representing more than a fifth of all TCD patients described worldwide, carry the same mutation. These linkage and haplotype data provide improved opportunities for prenatal diagnosis based on RFLP studies.  相似文献   

12.
Genetic loci for X-linked retinitis pigmentosa (XLRP) have been mapped between Xp11.22 and Xp22.13 (RP2, RP3, RP6, and RP15). The RP3 gene, which is responsible for the predominant form of XLRP in most Caucasian populations, has been localized to Xp21.1 by linkage analysis and the map positions of chromosomal deletions associated with the disease. Previous linkage studies have suggested that RP3 is flanked by the markers DXS1110 (distal) and OTC (proximal). Patient BB was thought to have RP because of a lesion at the RP3 locus, in addition to chronic granulomatous disease, Duchenne muscular dystrophy (DMD), mild mental retardation, and the McLeod phenotype. This patient carried a deletion extending approximately 3 Mb from DMD in Xp21.3 to Xp21.1, with the proximal breakpoint located approximately 40 kb centromeric to DXS1110. The RP3 gene, therefore, is believed to reside between DXS1110 and the proximal breakpoint of the BB deletion. In order to refine the location of RP3 and to ascertain patients with RP3, we have been analyzing several XLRP families for linkage to Xp markers. Linkage analysis in an American family of 27 individuals demonstrates segregation of XLRP with markers in Xp21.1, consistent with the RP3 subtype. One affected mate shows a recombination event proximal to DXS1110. Additional markers within the DXS1110-OTC interval show that the crossover is between two novel polymorphic markers, DXS8349 and M6, both of which are present in BB DNA and lie centromeric to the proximal breakpoint. This recombination places the XLRP mutation in this family outside the BB deletion and redefines the location of RP3.  相似文献   

13.
Choroideremia (McK30310), an X-linked hereditary retinal dystrophy, causes night-blindness, progressive peripheral visual field loss, and, ultimately, central blindness in affected males. The location of choroideremia on the X chromosome is unknown. We have used restriction fragment length polymorphisms from the X chromosome to determine the regional localization of choroideremia by linkage analysis in families with this disease. One such polymorphic locus, DXYS1, located on the long arm (Xq) within bands q13-q21, shows no recombination with choroideremia at lod = 5.78. Therefore, with 90% probability, choroideremia maps within 9 centiMorgans (cM) of DXYS1. Another polymorphic locus, DXS11, located within Xq24-q26, also shows no recombination with choroideremia, although at a smaller lod score of 1.54 (90% probability limit theta less than 30 cM). This linkage with DXS11, a marker that is distal to DXYS1, suggests that the locus for choroideremia is also distal to DXYS1 and lies between these two markers in the region Xq13-q24. These results provide regional mapping for the disease that may be useful for prenatal diagnosis and, perhaps ultimately, for isolating the gene locus for choroideremia.  相似文献   

14.
Summary Twenty-nine deletion breakpoints were mapped in 220 kb of the DXS164 locus relative to potential exons of the Duchenne and Becker muscular dystrophy gene. Four deletion junction fragments were isolated to acquire outlying Xp21 loci on both the terminal and centromere side of the DXS164 locus. The junction loci were used for chromosome walking, searches for DNA polymorphisms, and mapping against deletion and translocation breakpoints. Forty-four unrelated deletions were analyzed using the junction loci as hybridization probes to map the endpoints between cloned Xp21 loci. DNA polymorphisms from the DXS164 and junction loci were used to follow the segregation of a mutation in a family that represents a recombinant. Both the physical and genetic data point to a very large size for this X-linked muscular dystrophy locus.  相似文献   

15.
Linkage relationships of X-linked choroideremia to DXYS1 and DXS3   总被引:2,自引:0,他引:2  
Summary Choroideremia is a distinct blinding condtion with an X-linked pattern of inheritance. We have analyzed two RFLPs, DXS3 and DXYS1, for linkage with the choroideremia locus (TCD) within three kindreds. A maximum LOD score of 3.98 was obtained at . Contrary to previous reports, the present data demonstrate that these two RFLPs are not tightly linked to the choroideremia gene locus.  相似文献   

16.
The inactivation of two alleles at a locus on the short arm of chromosome 11 (band 11p13) has been suggested to be critical steps in the development of Wilms tumor (WT), a childhood kidney tumor. Two similar candidate WT cDNA clones (WT33 and LK15) have recently been identified on the basis of both their expression in fetal kidney and their location within the smallest region of overlap of somatic 11p13 deletions in some tumors. These homozygous deletions, however, are large and potentially affect more than one gene. Using a cDNA probe to the candidate gene, we have analyzed DNA from both normal and tumor tissue from WT patients, in an effort to detect rearrangements at this locus. We report here a patient with bilateral WT who is heterozygous for a small (less than 11 kb) germinal deletion within this candidate gene. DNA from both tumors is homozygous for this intragenic deletion allele, which, by RNA-PRC sequence analysis, is predicted to encode a protein truncated by 180 amino acids. These data support the identification of this locus as an 11p13 WT gene (WT1) and provide direct molecular data supporting the two-hit mutational model for WT.  相似文献   

17.
Bivariate flow karyotyping was used to estimate the deletion sizes for a series of patients with Xp21 contiguous gene syndromes. The deletion estimates were used to develop an approximate scale for the genomic map in Xp21. The bivariate flow karyotype results were compared with clinical and molecular genetic information on the extent of the patients' deletions, and these various types of data were consistent. The resulting map spans > 15 Mb, from the telomeric interval between DXS41 (99-6) and DXS68 (L1-4) to a position centromeric to the ornithine transcarbamylase locus. The deletion sizing was considered to be accurate to +/- 1 Mb. The map provides information on the relative localization of genes and markers within this region. For example, the map suggests that the adrenal hypoplasia congenita and glycerol kinase genes are physically close to each other, are within 1-2 Mb of the telomeric end of the Duchenne muscular dystrophy (DMD) gene, and are nearer to the DMD locus than to the more distal marker DXS28 (C7). Information of this type is useful in developing genomic strategies for positional cloning in Xp21. These investigations demonstrate that the DNA from patients with Xp21 contiguous gene syndromes can be valuable reagents, not only for ordering loci and markers but also for providing an approximate scale to the map of the Xp21 region surrounding DMD.  相似文献   

18.
BACKGROUND: X-linked ichthyosis (XLI) is an inherited disorder due to steroid sulfatase deficiency (STS). Most XLI patients (>90%) have complete deletion of the STS gene and flanking sequences. The presence of low copy number repeats (G1.3 and CRI-S232) on either side of the STS gene seems to play a role in the high frequency of these interstitial deletions. In the present study, we analyzed 80 Mexican patients with XLI and complete deletion of the STS gene. MATERIALS AND METHODS: STS activity was measured in the leukocytes using 7-[(3)H]-dehydroepiandrosterone sulfate as a substrate. Amplification of the regions telomeric-DXS89, DXS996, DXS1139, DXS1130, 5' STS, 3' STS, DXS1131, DXS1133, DXS237, DXS1132, DXF22S1, DXS278, DXS1134-centromeric was performed through PCR. RESULTS: No STS activity was detected in the XLI patients (0.00 pmoles/mg protein/h). We observed 3 different patterns of deletion. The first two groups included 25 and 32 patients, respectively, in which homologous sequences were involved. These subjects showed the 5' STS deletion at the sequence DXS1139, corresponding to the probe CRI-S232A2. The group of 32 patients presented the 3' STS rupture site at the sequence DXF22S1 (probe G1.3) and the remaining 25 patients had the 3' STS breakpoint at the sequence DXS278 (probe CRI-S232B2). The third group included 23 patients with the breakpoints at several regions on either side of the STS gene. No implication of the homologous sequences were observed in this group. CONCLUSION: These data indicate that more complex mechanisms, apart from homologous recombination, are occurring in the genesis of the breakpoints of the STS gene of XLI Mexican patients.  相似文献   

19.
Summary We describe a family in which an X-chromosome deletion is segregating with choroideremia, an X-linked recessive condition. The DNA sequences DXYS1 and DXS3, defined by the probes pDP34 and 19.2 respectively, are absent in the affected male (who is also mentally retarded), and hemizygous in his mother and in his carrier sister, who presented early in pregnancy. Analysis of chorionic villus DNA formed the basis of prenatal exclusion of choroideremia in her male fetus. In three female relatives, studied with late-labelling techniques, the deleted X was preferentially inactivated in 86–100% of cells studied. This family confirms the localisation of the choroideremia locus to within Xq1321, and places the loci for anhidrotic ectodermal dysplasia and the X-linked immunodeficiencies outside this region.  相似文献   

20.
The X-STRs are important tools in forensic application, particularly in complex cases of kinship testing. In deficiency paternity testing when alleged father cannot be typed, investigation of X-STR markers yields the desired information. Blood samples were collected from unrelated individual (118 females and 94 males) and 84 trios families (father, mother and daughter). DNA extraction from whole blood was performed with Phenol chloroform method. Five X-linked STR markers DXS6800, DXS7133, DXS6797, DXS981 and GATA165B12 were selected. The amplicons were analyzed through ABI 3100 Genetic Analyzer. Pentaplex PCR system was developed for multilocus amplification at the same time. For each locus 4–9 alleles were noted. Altogether, 32 alleles were observed from five markers. Eighty-four trios families were analysed to check the mutation rate and no mutation was observed. Stutter peaks were observed maximum at locus DXS6797 (12.44%) while the minimum at locus DXS7133 (4.5%). For sensitivity study, amplification of X chromosomal short tandem repeats loci was successfully performed using 0.15 ng quantity of DNA as template. In conclusion; this pentaplex represents a convenient method to study X chromosome markers. It works with reasonable amounts of DNA and is suitable for paternity cases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号