共查询到20条相似文献,搜索用时 10 毫秒
1.
植物非特异脂质转运蛋白研究现状与展望 总被引:1,自引:0,他引:1
植物非特异脂质转运蛋白(nsLTP)是一类含量丰富的小分子碱性蛋白, 能够在体外与多种疏水分子可逆地结合。目前已从多种植物中分离到9种类型的nsLTP基因。所有nsLTP蛋白质都具有8个半胱氨酸残基模体的保守结构, 它们的三维结构内部有一个具有脂质结合位点的疏水腔。根据基因结构、表达、调控和体外活性等研究, nsLTP被认为可能与蜡质合成与运输、抗逆、抗病以及生殖发育等重要生理过程有关。文章全面介绍nsLTP基因及其蛋白质研究的最新进展, 内容包括基本特征、分类、基因表达、基因克隆与功能研究等, 最后对今后的研究方向进行了讨论和展望。 相似文献
2.
P F Franck J M De Ree B Roelofsen J A Op den Kamp 《Biochimica et biophysica acta》1984,778(3):405-411
The non-specific phospholipid transfer protein purified from bovine liver has been used to modify the phospholipid content and phospholipid composition of the membrane of intact human erythrocytes. Apart from an exchange of phosphatidylcholine between the red cell and PC-containing vesicles, the protein appeared to facilitate net transfer of phosphatidylcholine from the donor vesicles to the erythrocyte and sphingomyelin transfer in the opposite direction. Phosphatidylcholine transfer was accompanied by an equivalent transfer (on a molar basis) of cholesterol. An increase in phosphatidylcholine content in the erythrocyte membrane from 90 to 282 nmol per 100 microliters packed cells was observed. Phospholipase C treatment of modified cells showed that all of the phosphatidylcholine which was transferred to the erythrocyte was incorporated in the lipid bilayer. The nonspecific lipid transfer protein used here appeared to be a suitable tool to modify lipid content and composition of the erythrocyte membrane, and possible applications of this approach are discussed. 相似文献
3.
The non-specific phospholipid transfer protein purified from bovine liver has been used to modify the phospholipid content and phospholipid composition of the membrane of intact human erythrocytes. Apart from an exchange of phosphatidylcholine between the red cell and PC-containing vesicles, the protein appeared to facilitate net transfer of phosphatidylcholine from the donor vesicles to the erythrocyte and sphingomyelin transfer in the opposite direction. Phosphatidylcholine transfer was accompanied by an equivalent transfer (on a molar basis) of cholesterol. An increase in phosphatidylcholine content in the erythrocyte membrane from 90 to 282 nmol per 100 μl packed cells was observed. Phospholipase C treatment of modified cells showed that all of the phosphatidylcholine which was transferred to the erythrocyte was incorporated in the lipid bilayer. The nonspecific lipid transfer protein used here appeared to be a suitable tool to modify lipid content and composition of the erythrocyte membrane, and possible applications of this approach are discussed. 相似文献
4.
5.
Among the proteins that accumulate as plant seeds desiccate are several protein families that are composed principally of a tandemly repeated 11-mer amino acid motif. Proteins containing the same motif accumulate in the desiccating leaves of a desiccation-tolerant plant species. This motif is characterized by apolar residues in positions 1, 2, 5 and 9, and charged or amide residues in positions 3, 6, 7, 8 and 11. An α helical arrangement of the 11-mer repeating unit gives an amphiphilic helix whose hydrophobic stripe twists in a right-handed fashion around the helix. Should these proteins dimerize via binding of their hydrophobic faces, a right-handed coiled coil would be formed. Such a structure has not previously been observed. A conceivable function for these proteins in ion sequestration in the desiccated state is proposed. 相似文献
6.
André de O. Carvalho Carlos Eduardo de S. Teodoro Maura Da Cunha Anna L. Okorokova-Façanha Lev A. Okorokov Kátia V. S. Fernandes Valdirene M. Gomes 《Physiologia plantarum》2004,122(3):328-336
Lipid transfer proteins (LTP) facilitate transfer of lipids between membranes in vitro. Up to now, they have been found to be localized basically in the plant cell wall and in compartments linked to lipid metabolism, such as glyoxysomes. Accordingly, LTP are considered to be involved in the plant defence against pathogen microbes and lipid metabolism. We herein show, by immunoelectron microscopy, that besides the cell wall, LTP are localized in the lumen of organelles which we suggest to be the protein storage vacuoles, as well as in vesicles similar to the lipid-containing ones and in the extracellular space of Vigna unguiculata seeds. To further characterize these organelles, we performed subcellular fractionation of membranes isolated from imbibed seeds on a sucrose-density gradient. The analysis of these fractions revealed that the lightest membrane vesicles, derived probably from PSV, contain LTP, α-TIP and K+ independent PPi ase, but not γ-TIP and K+ stimulated PPi ase. The presence of LTP and vicilins (typical storage protein) in the lumen of these vesicles was confirmed by immunoelectron microscopy. Taken together, the data suggest that the intracellular LTP in the V. unguiculata seeds are localized in protein storage vacuoles and in lipid-containing vesicles. 相似文献
7.
Identification of non-specific lipid transfer protein-1 as a calmodulin-binding protein in Arabidopsis 总被引:4,自引:0,他引:4
Although non-specific lipid transfer proteins (nsLTPs) are widely present in plants, their functions and regulations have not been fully understood. In this report, Arabidopsis nsLTP1 was cloned and expressed to investigate its binding to calmodulin (CaM). Gel overlay assays revealed that recombinant nsLTP1 bound to CaM in a calcium-independent manner. The association of nsLTP1 and CaM was corroborated using CaM-Sepharose beads to specifically isolate recombinant nsLTP1 from crude bacterial lysate. The CaM-binding site was mapped in nsLTP1 to the region of 69-80 amino acids. This region is highly conserved among plant nsLTPs, implicating that nsLTPs are a new family of CaM-binding proteins whose functions may be mediated by CaM signaling. 相似文献
8.
Divergence of genes encoding non-specific lipid transfer proteins in the poaceae family 总被引:1,自引:0,他引:1
The genes encoding non-specific lipid transfer proteins (nsLTPs), members of a small multigene family, show a complex pattern of expressional regulation, suggesting that some diversification may have resulted from changes in their expression after duplication. In this study, the evolution of nsLTP genes within the Poaceae family was characterized via a survey of the pseudogenes and unigenes encoding the nsLTP in rice pseudomolecules and the NCBI unigene database. nsLTP-rich regions were detected in the distal portions of rice chromosomes 11 and 12; these may have resulted from the most recent large segmental duplication in the rice genome. Two independent tandem duplications were shown to occur within the nsLTP-rich regions of rice. The genomic distribution of the nsLTP genes in the rice genome differs from that in wheat. This may be attributed to gene migration, chromosomal rearrangement, and/or differential gene loss. The genomic distribution pattern of nsLTP genes in the Poaceae family points to the existence of some differences among cereal nsLTP genes, all of which diverged from an ancient gene. The unigenes encoding nsLTPs in each cereal species are clustered into five groups. The somewhat different distribution of nsLTP-encoding EST clones between the groups across cereal species imply that independent duplication(s) followed by subfunctionalization (and/or neofunctionalization) of the nsLTP gene family in each species occurred during speciation. 相似文献
9.
In screening for potent antimicrobial proteins from plant seeds, a novel heat-stable antimicrobial protein, designated LJAMP2, was purified from seeds of the motherwort (Leonurus japonicus Houtt), a medicine herb, with a procedure involving cation exchange chromatography on a CM FF column, and reverse phase HPLCs on C8 column and C18 column. LJAMP2 exhibited a molecular mass of 6.2 kDa determined. Automated Edman degradation determined the partial N-terminal sequence of LJAMP2 to be NH2-AIGCNTVASKMAPCLPYVTGKGPLGGCCGGVKGLIDAARTTPDRQAVCNCLKTLAKSYSG, which displays homology with plant non-specific lipid transfer proteins (nsLTPs). In vitro bioassays showed that LJAMP2 inhibits the growth of a variety of microbes, including filamentous fungi, bacteria and yeast. The growth of three phytopathogenic fungi, Alternaria brassicae, Botrytis maydis, and Rhizoctonia cerealis, are inhibited at 7.5 μM of LJAMP2, whereas Bacillus subtilis is about 15 μM. The IC50 of LJAMP2 for Aspergillus niger, B. maydis, Fusarium oxysporum, Penicillium digitatum and Saccharomyces cerevisiae are 5.5, 6.1, 9.3, 40.0, and 76.0 μM, respectively. 相似文献
10.
Based on the N-terminal sequence of a sunflower antifungal protein, a full length cDNA (Ha-LTP5) encoding a putative lipid transfer protein from sunflower seeds was cloned using a RT-PCR based strategy. However, the sequence of the deduced protein is not identical to that of the antifungal protein previously isolated. The nucleotide sequence presents an ORF of 116 amino acids with a putative signal peptide, thus encoding a mature protein of 90 amino acids that is basic and hydrophobic. In contrast to the pattern of expression described for most LTP-like genes from dicots, Northern blot analyses detected constitutive expression of Ha-LTP5 in seeds, but not in aerial parts of sunflower plants. 相似文献
11.
Judith A.K. Harmony Richard L. Jackson Jahei Ihm Jeff L. Ellsworth Rudy A. Demel 《生物化学与生物物理学报:生物膜》1982,690(2)
The interaction of a purified human plasma lipid transfer complex with cholesteryl ester, triacylglycerol and phosphatidylcholine in binary and ternary lipid monolayers was investigated. The lipid transfer complex, designated LTC, catalyzes the removal of cholesteryl oleate and triacylglycerol from phosphatidylcholine monolayers. Preincubation of LTC with p-chloromercuriphenyl sulfonate inhibits LTC-catalyzed removal of triacylglycerol; cholesteryl ester removal is not affected. The rate of LTC-facilitated removal of cholesteryl oleate from a phosphatidylcholine monolayer depends on the amount of LTC added to the subphase up to 100 μg protein. In addition, the rate of the LTC-catalyzed transfer of cholesteryl oleate to the subphase increases linearly as the amount of cholesteryl oleate in the monolayer increases to 6 mol%. LTC also removes cholesterol from phosphatidylcholine-cholesterol monolayers, albeit at a rate which is 15% of that for removal of cholesteryl oleate. The ability of LTC to facilitate triacylglycerol and cholesteryl ester removal depends on the composition of the monolayer. Phosphatidylcholine supports cholesteryl ester transfer whereas sphingomyelin-cholesteryl ester monolayers are almost refractory to LTC. In contrast, LTC removes triacylglycerol from either a phosphatidylcholine or a sphingomyelin monolayer. The results suggest the existence of at least two lipid transfer proteins, one of which catalyzes the removal of cholesteryl ester and the other triacylglycerol. The role of these proteins as they relate to lipoprotein metabolism is discussed. 相似文献
12.
Tomassen MM Barrett DM van der Valk HC Woltering EJ 《Journal of experimental botany》2007,58(5):1151-1160
An important aspect of the ripening process of tomato fruit is softening. Softening is accompanied by hydrolysis of the pectin in the cell wall by pectinases, causing loss of cell adhesion in the middle lamella. One of the most significant pectin-degrading enzymes is polygalacturonase (PG). Previous reports have shown that PG in tomato may exist in different forms (PG1, PG2a, PG2b, and PGx) commonly referred to as PG isoenzymes. The gene product PG2 is differentially glycosylated and is thought to associate with other proteins to form PG1 and PGx. This association is thought to modulate its pectin-degrading activity in planta. An 8 kDa protein that is part of the tomato PG1 multiprotein complex has been isolated, purified, and functionally characterized. This protein, designated 'activator' (ACT), belongs to the class of non-specific lipid transfer proteins (nsLTPs). ACT is capable of 'converting' the gene product PG2 into a more active and heat-stable form, which increases PG-mediated pectin degradation in vitro and stimulates PG-mediated tissue breakdown in planta. This finding suggests a new, not previously identified, function for nsLTPs in the modification of hydrolytic enzyme activity. It is proposed that ACT plays a role in the modulation of PG activity during tomato fruit softening. 相似文献
13.
14.
15.
Cell-specific expression of genes of the lipid transfer protein family from Arabidopsis thaliana 总被引:1,自引:0,他引:1
We have characterized three cDNAs from a gene family encoding lipid transfer proteins, LTP, from Arabidopsis thaliana (Wassilewskija). In addition to the already characterized Ltp1, our analysis includes Ltp2 and Ltp3, two sequences previously known as expressed sequence tags (EST) only. The deduced amino acid sequences of the three cDNAs share 56 to 57% identity and show unique tissue- and cell-specific expression. Genes Ltp1 and LTp2 are located within approximately 1.4 kb of each other in tandem orientation. RNA hydridizations showed that all three LTP are expressed in flowering meristems, flowers and developing seeds. Ltp1 is expressed in leaves in addition. Ltp3, though not Ltp2, is also expressed in a short segment of the stem close to the flowering meristem. In contrast to the epidermis-specific Ltp1, both Ltp2 and Ltp3 are not restricted to the epidermis, but are also expressed in sub-epidermal layers of the organs in which they are found. In the upper stem segment, Ltp3 is predominantly cortical. It appears that the expression of these three cDNAs is sufficient to account for the formation of LTP in all meristematic and expanding cells of the aboveground plant. Evolutionary analysis allows the conclusion that each Ltp belongs to a different sub-family of genes. Additionally, parsimony analysis provides evidence that several copies of Ltp genes already existed in ancestors of the Brassicaceae family. 相似文献
16.
17.
Stress induction and antimicrobial properties of a lipid transfer protein in germinating sunflower seeds 总被引:1,自引:0,他引:1
Nonspecific lipid transfer proteins (nsLTPs) belong to a large family of plant proteins whose function in vivo remains unknown. In this research, we studied a LTP previously isolated from sunflower seeds (Ha-AP10), which displays strong antimicrobial activity against a model fungus. The protein is present during at least the first 5 days of germination, and tissue printing experiments revealed the homogeneous distribution of the protein in the cotyledons. Here we report that Ha-AP10 exerts a weak inhibitory effect on the growth of Alternaria alternata, a fungus that naturally attacks sunflower seeds. These data put into question the contribution of Ha-AP10 as an antimicrobial protein of direct effect on pathogenic fungus, and rather suggest a function related to the mobilization of lipid reserves. We also show that the levels of Ha-AP10 in germinating seeds increase upon salt stress, fungal infection and ABA treatment, indicating that it somehow participates in the adaptative responses of germinating sunflower seeds. 相似文献
18.
J. Gomar M. C. Petit P. Sodano D. Sy D. Marion J. C. Kader F. Vovelle M. Ptak 《Protein science : a publication of the Protein Society》1996,5(4):565-577
The three-dimensional solution structure of a nonspecific lipid transfer protein extracted from maize seeds determined by 1H NMR spectroscopy is described. This cationic protein consists of 93 amino acid residues. Its structure was determined from 1,091 NOE-derived distance restraints, including 929 interresidue connectivities and 197 dihedral restraints (phi, psi, chi 1) derived from NOEs and 3J coupling constants. The global fold involving four helical fragments connected by three loops and a C-terminal tail without regular secondary structures is stabilized by four disulfide bridges. The most striking feature of this structure is the existence of an internal hydrophobic cavity running through the whole molecule. The global fold of this protein, very similar to that of a previously described lipid transfer protein extracted from wheat seeds (Gincel E et al., 1994, Eur J Biochem 226:413-422) constitutes a new architecture for alpha-class proteins. 1H NMR and fluorescence studies show that this protein forms well-defined complexes in aqueous solution with lysophosphatidylcholine. Dissociation constants, Kd, of 1.9 +/- 0.6 x 10(-6) M and > 10(-3) M were obtained with lyso-C16 and -C12, respectively. A structure model for a lipid-protein complex is proposed in which the aliphatic chain of the phospholipid is inserted in the internal cavity and the polar head interacts with the charged side chains located at one end of this cavity. Our model for the lipid-protein complex is qualitatively very similar to the recently published crystal structure (Shin DH et al., 1995, Structure 3:189-199). 相似文献
19.
20.
Cholesterol metabolism and sterol carrier protein-2 (non-specific lipid transfer protein) 总被引:1,自引:0,他引:1
Hepatic sterol carrier protein-2 significantly enhances the microsomal conversion of cholesterol to 7 alpha-hydroxy-cholesterol. In the present work we have attempted to correlate the hepatic content of sterol carrier protein-2 with bile acid formation. We have determined the amount of this protein in a variety of physiological and experimental conditions, in which the rate of bile acid synthesis varies over a wide range, viz. during fetal development, in inbred strains of rats with different rates of bile acid synthesis, and in rats fed diets containing drugs which modify the rate of bile acid synthesis. The outcome of these experiments does not support the idea that sterol carrier protein-2 has any association with bile acid synthesis. From our data we further conclude that hepatic sterol carrier protein-2 is an adaptable protein because its level increases during development from the fetal to the post-weaning stage of the rat and since it can be modulated by oral administration of certain drugs. Furthermore, it is demonstrated that the level of sterol carrier protein-2 varies between six inbred strains of rats. 相似文献