首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
介绍了禾本科植物细胞壁木质化和阿魏酰化的过程及其生理意义,并阐述了木质化和阿魏酰化在细胞壁分子网络形成过程中的作用。  相似文献   

2.
3.
通过盆栽控水试验,分析了8种美国引进禾本科牧草在不同水分胁迫下叶片的叶绿素、脯氨酸、可溶性糖含量和叶绿素荧光参数等的变化.结果表明,叶片叶绿素相对含量总体呈随水分胁迫程度加剧而降低的趋势,并在严重胁迫(HWS)下达到最低;在轻微水分胁迫(SWS)下各牧草脯氨酸含量增加缓慢,随水分胁迫的进一步加剧而急骤升高;可溶性糖含量随水分胁迫的加剧而持续增加;叶绿素荧光参数Fv/Fm、Fv/Fo、ΦPSⅡ均随水分胁迫加剧先升高后降低,在轻度水分胁迫下达到最大,但各草种间变异情况不同.运用隶属函数法所得牧草综合抗旱性强弱顺序为:Ⅳ>Ⅰ、Ⅷ>Ⅱ>Ⅴ>Ⅲ>Ⅵ>Ⅶ,运用萎蔫系数直接评价的抗旱性结果为:Ⅳ>Ⅷ>Ⅰ>Ⅱ>Ⅲ>Ⅴ>Ⅵ>Ⅶ,即猫尾草(Ⅰ)、无芒雀麦(Ⅳ)和新麦草(Ⅷ)抗旱性较强,而细茎披碱草(Ⅵ)、高冰草(Ⅶ)较差.  相似文献   

4.
The distribution of cell wall material between different plantcell types may contribute significantly to the variation indegradability of plant material with a similar overall chemicalcomposition but different anatomy. Assessment of the degradabilityof cell walls in a section suitable for digestion is a three-dimensional(3-D) problem because of the thickness of section required (50–100µm). Optical sectioning of thick sections using confocallaser scanning microscopy (CLSM) provides a method of estimatingthe volume of cell wall material present in tissue sectionsbefore and after digestion, and of visualizing the plant tissueusing 3-D image reconstruction. The use of CLSM enables degradabilitymeasurements to be made on cellsin situand can provide moreimmediate and relevant information than can be obtained by mechanicalfractionation of the tissues. The CLSM method has been usedto visualize thick sections taken from maize and barley internodesbefore and after degradation with cell wall degrading enzymes.Quantitative measurements of cell wall volume and mean cellwall thickness were made on a series of optical sections, andthe potential of the method for quantitation of cell wall degradabilityis assessed. Image analysis; plant anatomy; confocal microscopy; degradation; maize  相似文献   

5.
Neurochemical Research - Alcohol hangover refers to unpleasant symptoms experienced as a direct consequence of a binge drinking episode. The effects observed in this condition are related to the...  相似文献   

6.
During plant sexual reproduction, pollen germination and tube growth require development under tight spatial and temporal control for the proper delivery of the sperm cells to the ovules. Pollen tubes are fast growing tip-polarized cells able to perceive multiple guiding signals emitted by the female organ. Adhesion of pollen tubes via cell wall molecules may be part of the battery of signals. In order to study these processes, we investigated the cell wall characteristics of in vitro-grown Arabidopsis (Arabidopsis thaliana) pollen tubes using a combination of immunocytochemical and biochemical techniques. Results showed a well-defined localization of cell wall epitopes. Low esterified homogalacturonan epitopes were found mostly in the pollen tube wall back from the tip. Xyloglucan and arabinan from rhamnogalacturonan I epitopes were detected along the entire tube within the two wall layers and the outer wall layer, respectively. In contrast, highly esterified homogalacturonan and arabinogalactan protein epitopes were found associated predominantly with the tip region. Chemical analysis of the pollen tube cell wall revealed an important content of arabinosyl residues (43%) originating mostly from (1→5)-α-l-arabinan, the side chains of rhamnogalacturonan I. Finally, matrix-assisted laser desorption ionization time-of-flight mass spectrometry analysis of endo-glucanase-sensitive xyloglucan showed mass spectra with two dominant oligosaccharides (XLXG/XXLG and XXFG), both being mono O-acetylated, and accounting for over 68% of the total ion signals. These findings demonstrate that the Arabidopsis pollen tube wall has its own characteristics compared with other cell types in the Arabidopsis sporophyte. These structural features are discussed in terms of pollen tube cell wall biosynthesis and growth dynamics.Fertilization of flowering plants requires the delivery of the two sperm cells, carried by a fast growing tip-polarized pollen tube, to the egg cell. In plants with dry stigma and solid style such as Arabidopsis (Arabidopsis thaliana), this process begins with the deposition and specific adhesion of the pollen grains on the stigmatic tissue, subsequent hydration of the pollen grains, and germination of pollen tubes (Palanivelu and Preuss, 2000). Pollen tubes invade the papillae cell wall of the stigma, enter the short style, and grow through the apoplast of the specialized transmitting tract (TT) that is filled with a nutrient-rich extracellular matrix (Kandasamy et al., 1994; Lennon et al., 1998). During this invasive growth, pollen tubes are guided to the ovules via signals that need to pass through the cell wall to reach their membrane-associated or intracellular targets (Lord and Russell, 2002; Kim et al., 2003; Boavida et al., 2005; McCormick and Yang, 2005; Johnson and Lord, 2006). In plant species with wet stigma and hollow style such as lily (Lilium longiflorum), adhesion between the pollen tube wall and the TT epidermis extracellular matrix is important for the growth of the pollen tubes toward the ovules (Mollet et al., 2000, 2007; Park et al., 2000; Chae et al., 2007). In addition to being the interface between the tube cells and the surroundings (female sporophyte or culture medium), the pollen tube wall also controls the cell shape, protects the generative cells, and allows resistance against turgor pressure (Geitmann and Steer, 2006; Geitmann, 2010).Most of our knowledge on cell wall polymers of higher plants comes from investigations on vegetative organs in which cells have diffuse growth. The cell wall is mainly composed of polysaccharides (cellulose, hemicellulose, pectin, and occasionally callose, depending on the tissue) and proteoglycans (e.g. extensin and arabinogalactan proteins [AGPs]) forming a complex network with processing enzymes.Pectins are complex wall macromolecules with uncertain supramolecular organization (Vincken et al., 2003) consisting of homogalacturonan (HG) that can be methylesterified and acetylesterified, rhamnogalacturonan I (RG-I), rhamnogalacturonan II (RG-II), and xylogalacturonan (Carpita and McCann, 2000). HG is a polymer of repeated units of (1→4)-α-d-GalUA that can be cross-linked with calcium upon block-wise action of pectin methylesterases (PMEs) on methylesterified HG (Micheli, 2001). RG-II has the same homopolymer backbone as HG but is substituted with four different oligosaccharides composed of unusual sugars, such as apiose, aceric acid, and 3-deoxy-d-manno-2-octulosonic acid, of unknown function (for review, see Caffall and Mohnen, 2009). RG-I consists of the repeating disaccharide (1→4)-α-d-GalUA-(1→2)-α-l-Rha, with a wide variety of side chains attached to the rhamnosyl residues, ranging from monomers to large oligosaccharides such as (1→4)-β-d-galactan, (1→5)-α-l-arabinan, and/or type I arabinogalactan (Caffall and Mohnen, 2009).Xyloglucan (XyG) is the major hemicellulosic polysaccharide of the primary wall of flowering plants. Classic XyG consists of a (1→4)-β-d-glucan backbone substituted with Xyl, Gal-Xyl, or Fuc-Gal-Xyl motifs, which correspond, according to the one-letter code proposed by Fry et al. (1993), to X, L, and F, respectively, G being the unsubstituted glucosyl residue of the glucan backbone. The main XyG fragments released after endo-glucanase treatment of the cell wall from wild-type Arabidopsis vegetative organs are generally XXXG, XXLG/XLXG, XXFG, and XLFG (Zablackis et al., 1995; Lerouxel et al., 2002; Nguema-Ona et al., 2006; Obel et al., 2009). In addition, O-acetylation of XyG can occur, most generally on the galactosyl residues, but its biological function is unknown (Cavalier et al., 2008). In the primary wall, XyG interacts with cellulose microfibrils via hydrogen bonds and participates in the control of cell expansion (Cosgrove, 1999).AGPs and extensin belong to the Hyp-rich glycoproteins superfamily with very high levels of type II arabinogalactan glycosylation (Nothnagel, 1997; Showalter, 2001). These proteoglycans have been implicated in many aspects of plant development, including cell expansion, cell signaling and communication, embryogenesis, wound response, and pollen tube guidance (Wu et al., 1995; Nothnagel, 1997; Seifert and Roberts, 2007; Driouich and Baskin, 2008).Despite the importance of pollen tubes for the delivery of the sperm cells to the egg, little is known about the underlying molecular mechanisms that regulate the mechanical interaction of pollen tubes with female floral tissues. There are very scarce data concerning the different components of the pollen tube cell wall. Past approaches to characterize the pollen tube cell wall are limited to a few plant genera, including Camellia (Nakamura and Suzuki, 1981), Lilium (Jauh and Lord, 1996; Mollet et al., 2002), Nicotiana (Rae et al.,1985; Li et al., 1995; Ferguson et al., 1998; Qin et al., 2007), Pinus (Derksen et al., 1999), and Zea (Rubinstein et al., 1995), and are mostly based on immunocytochemistry. These studies revealed that, depending on the species, the pollen tube cell wall contains epitopes that are found in the polymers described above, including HGs with varying levels of methylesterification, AGPs, extensin-like proteins, and low amounts of cellulose. Unlike most other plant cells, callose, a (1→3)-β-glucan, is predominant and is deposited in the wall back from the tip. Moreover, it is deposited at regular intervals to form callose plugs that maintain the tube cell in the apical expanding region of the tube and separate the viable from the degenerating region of the tube (for review, see Geitmann and Steer, 2006). Only a few reports have investigated the pollen tube of the model plant Arabidopsis. They have focused either on in vivo-grown or on in vitro-grown pollen tubes using monoclonal antibodies (MAbs) directed against a subset of cell wall epitopes present in HG, XyG, and AGPs (Lennon and Lord, 2000; Freshour et al., 2003; Pereira et al., 2006), but quantitative chemical analyses are lacking. This lack of information is most likely due to the fact that substantial amounts of pollen tube material are needed for chemical analysis, and a reproducible and efficient method for liquid culture of Arabidopsis pollen tubes had not been established until recently (Boavida and McCormick, 2007; Bou Daher et al., 2009).Here, we report the composition and localization of different cell wall polymers of in vitro-grown wild-type Arabidopsis pollen tubes based on biochemical analyses coupled to immunocytochemical investigations both at light and transmission electron microscopy (TEM) levels using recently developed MAbs. Our results show distinct patterns of labeling (tip, whole tube, and shank of the tube) depending on the recognized epitope. The most striking observations are (1) the abundance of (1→5)-α-l-arabinan in the tube wall (greater than 40 mol % of Ara), mostly localized, with LM6 and LM13, in the outer wall layer of the tube and (2) an atypical XyG matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF MS) profile with over 68% of the oligosaccharide fragments being O-acetylated.  相似文献   

7.
8.
Changes in the cell walls and their sugar composition duringthe formation of tracheary elements (TE) were analyzed usinga culture of single cells isolated from the mesophyll of Zinniaelegans. By using Calcofluor White the first differentiatingcells were observed 36 to 38 h after the start of culture. Thisis 8 to 10 hours before differentiating cells can be observedwithout staining, and about 14 to 16 hours before the beginningof lignification of differentiating cells. In correlation withthe appearance of differentiating cells, the following changeswere observed: (1) a significant increase in the total carbohydratein the 5% KOH-soluble, the 24% KOH-soluble and insoluble cellulosicfractions; (2) a decrease in the relative amount of uronic acidsin the EDTA-soluble fraction which corresponded to increasesin the KOH-soluble fractions and in the insoluble fraction;(3) an enormous increase in the absolute and relative amountof xylose in the hemicellulosic fractions and to some extentalso in the cellulosic fraction. Methylation analysis indicatedthat the high amount of xylose reflects the synthesis of a xylan-typepolysaccharide which is deposited simultaneously with celluloseprior to the lignification of the wall. (Received August 5, 1987; Accepted December 9, 1987)  相似文献   

9.
Fiber degradation in Bermuda grass and orchard grass was evaluated gravimetrically and by scanning and transmission electron microscopy after incubation with pure cultures of rumen bacteria. Lachnospira multiparus D-32 was unable to degrade plant cell wall components. Butyrivibrio fibrisolvens 49 degraded 6 and 14.9% of the fiber components in Bermuda grass and orchard grass, respectively, and Ruminococcus albus 7 degraded 11.4% orchard grass fiber but none in Bermuda grass. Both B. fibrisolvens and R. albus lacked capsules, did not adhere to fiber, and degraded only portions of the more easily available plant cell walls. R. flavefaciens FD-1 was the most active fiber digester, degrading 8.2 and 55.3% of Bermuda and orchard grass fiber, respectively. The microbe had a distinct capsule and adhered to fiber, especially that which is slowly degraded, but was able to cause erosion and disorganization of the more easily digested cell walls, apparently by extracellular enzymes. Results indicated that more digestible cell walls could be partially degraded by enzymes disassociated from cellulolytic and noncellulolytic bacteria, and data were consistent with the hypothesis that the more slowly degraded plant walls required attachment. Microbial species as well as the cell wall architecture influenced the physical association with and digestion of plant fiber.  相似文献   

10.
11.
12.
The effects of anti-calmodulin (CaM) serum, CaM antagonist W7-agaroseand exogenous pure CaM on cell wall regeneration of protoplastsand cell division for Angelica dahurica and other plants werestudied. Anti-CaM serum inhibited cell wall regeneration ofprotoplasts and the first cell division in dose-dependent manner,while the same amount of preimmune serum had a much less inhibitoryeffect than anti-CaM serum. The first cell division was alsoinhibited by CaM antagonist W7-agarose. The addition of exogenouspure CaM enhanced cell wall regeneration of protoplasts andthe cell division for several species of plants, while the sameamount of bovine serum albumin had no obvious effect. CaM wasdetected in the normal culture medium by means of enzyme-linkedimmunosorbent assay. Its content increased with the culturetime. The results suggest that extracellular CaM plays an importantrole in promoting cell wall regeneration of protoplasts andcell division. The possible mechanisms by which extracellularCaM achieves its effects are discussed. (Received February 24, 1994; Accepted November 14, 1994)  相似文献   

13.
SYNOPSIS. The colorless flagellate, Astasia longa , grows to high cell densities (5–6.6 × 106 cells/ml) with ethanol instead of acetate as carbon source in a chemically defined medium. The generation time was the same on the two substrates. The dry weight of ethanol-grown Astasia was 23% higher than acetate-grown Astasia , largely due to a higher carbohydrate content which offset a reduced lipid content. Protein, RNA, and DNA contents were comparable in the two cases whereas O2 uptake was 17% higher in the ethanol-grown Astasia. The high population densities on ethanol are examined in terms of these biochemical differences as well as changes in the medium during growth.  相似文献   

14.
In past years, the significance of microbial resistance to biocides has increased. Twenty biocide-resistant bacterial strains were isolated from dental-unit water line biofilm. All strains resisted high biocide concentrations (up to 100 mug ml(-)1): sodium dodecyl sulphate, hydrogen peroxide, sodium hypochlorite, phenol, Tween 20, ethylenediaminetetraacetic acid, chlorohexidine gluconate, and povidine iodine. Among bacteria, biocide sensitivity is based on permeability of biocides through the cell wall. Gram-positive bacteria are more permeable and susceptible to biocides, whereas Gram-negative bacteria have a more complex cell wall and are the least sensitive bacteria. The present study was designed to study the effect of biocides on the cell wall of biocide-resistant bacteria. Peptidoglycan (PG), diaminopimelic acid (DAP), and teichoic acid contents of the cell wall were determined in L-broth and L-broth supplemented with biocides at different temperatures (37 degrees C and 45 degrees C) and pH levels (7 and 9). In general and Gram staining-specific comparison, a significant increase (p < 0.05) in the DAP content of biocide-resistant bacteria was observed at pH 7 and at both temperatures. In tubing-specific comparison, a significant increase in the amount of teichoic acid in air water tubing (37 degrees C at pH 9) and DAP in patient tubing (pH 7 at both temperatures) was observed. In main water pipe, a significant decrease (p > 0.05) in PG content was noticed at 45 degrees C and pH 9. Overall, a significant increase in DAP content may be an important constituent in the manifestation of isolate resistance against various biocides.  相似文献   

15.
Glycerol has become a desirable feedstock for the production of fuels and chemicals due to its availability and low price, but many barriers to commercialization remain. Previous investigators have made significant improvements in the yield of ethanol from glycerol. We have developed a fermentation process for the efficient microaerobic conversion of glycerol to ethanol by Escherichia coli that presents solutions to several other barriers to commercialization: rate, titer, specific productivity, use of inducers, use of antibiotics, and safety. To increase the rate, titer, and specific productivity to commercially relevant levels, we constructed a plasmid that overexpressed glycerol uptake genes dhaKLM, gldA, and glpK, as well as the ethanol pathway gene adhE. To eliminate the cost of inducers and antibiotics from the fermentation, we used the adhE and icd promoters from E. coli in our plasmid, and we implemented glycerol addiction to retain the plasmid. To address the safety issue of off-gas flammability, we optimized the fermentation process with reduced-oxygen sparge gas to ensure that the off-gas remained nonflammable. These advances represent significant progress toward the commercialization of an E. coli-based glycerol-to-ethanol process.  相似文献   

16.
17.
Maize (Zea mays L.) stover and cobs are potential feedstock sources for cellulosic ethanol production. Nitrogen (N) fertilization is an important management decision that influences cellulosic biomass and grain production, but its effect on cell wall composition and subsequent cellulosic ethanol production is not known. The objectives of this study were to quantify the responses of maize stover (leaves, stalks, husks, and tassel) and cob cell wall composition and theoretical ethanol yield potential to N fertilization across a range of sites. Field experiments were conducted at rainfed and irrigated sites in Minnesota, USA, over a 2-year period. Stover cell wall polysaccharides, pentose sugar concentration, and theoretical ethanol yield decreased as N fertilization increased. Stover Klason lignin increased with N fertilization at all sites. Cob cell wall composition was less sensitive to N fertilization, as only pentose and Klason lignin decreased with N fertilization at two and one site(s), respectively, and hexose increased with N fertilization at one of eight sites. Cob theoretical ethanol yield was not affected by N fertilization at any site. These results indicate variation in stover cellulosic ethanol production is possible as a result of N management. This study also demonstrated that cell wall composition and subsequent theoretical ethanol yield of maize cobs are generally more stable than those with stover because of overall less sensitivity to N management.  相似文献   

18.
19.
Adaptation of Yeast Cell Membranes to Ethanol   总被引:3,自引:3,他引:0       下载免费PDF全文
A highly ethanol-tolerant Saccharomyces wine strain is able, after growth in the presence of ethanol, to efficiently improve the ethanol tolerance of its membrane. A less-tolerant Saccharomyces laboratory strain, however, is unable to adapt its membrane to ethanol. Furthermore, after growth in the presence of ethanol, the membrane of the latter strain becomes increasingly sensitive, although this is a reversible process. Reversion to a higher tolerance occurs only after the addition of an energy source and does not take place in the presence of cycloheximide.  相似文献   

20.
The various layers of the cell envelope of marine pseudomonad B-16 (ATCC 19855) have been separated from the cells and assayed directly for alkaline phosphatase activity under conditions established previously to be optimum for maintenance of the activity of the enzyme. Under conditions known to lead to the release of the contents of the periplasmic space from the cells, over 90% of the alkaline phosphatase was released into the medium. Neither the loosely bound outer layer nor the outer double-track layer (cell wall membrane) showed significant activity. A small amount of the alkaline phosphatase activity of the cells remained associated with the mureinoplasts when the outer layers of the cell wall were removed. Upon treatment of the mureinoplasts with lysozyme, some alkaline phosphatase was released into the medium and some remained with the protoplasts formed. Cells washed and suspended in 0.5 M NaCl were lysed by treatment with 2% toluene, and 95% of the alkaline phosphatase in the cells was released into the medium. Cells washed and suspended in complete salts solution (0.3 M NaCl, 0.05 M MgSO(4), and 0.01 M KCl) or 0.05 M MgSO(4) appeared intact after treatment with toluene but lost 50 and 10%, respectively, of their alkaline phosphatase. The results suggest that the presence of Mg(2+) in the cell wall is necessary to prevent disruption of the cells by toluene and may also be required to prevent the release of alkaline phosphatase by toluene when disruption of the cells by toluene does not take place.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号