首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Using conditions that produced chronic inflammation in rat liver, we were able to find a correlation between induction of nitric oxide production and inhibition of glyceraldehyde-3-phosphate dehydrogenase (GAPDH; EC 1.2.1.12). This enzyme is a tetramer composed of identical M(r) 37,000 subunits. The tetramer contains 16 thiol groups, four of which are essential for enzymatic activity. Our information indicates that four thiol groups are S-nitrosylated by exposure to authentic nitric oxide (NO) gas. Furthermore, NO decreased GAPDH activity while increasing its auto-ADP-ribosylation. Reduced nicotinamide adenine dinucleotide and dithiothreitol are required for the S-nitrosylation of GAPDH caused by the NO-generating compound sodium nitroprusside. Our results suggests that a new and important action of nitric oxide on cells is the S-nitrosylation and inactivation of GAPDH. S-Nitrosylation of GAPDH may be a key covalent modification of multiple regulatory consequences in chronic liver inflammation.  相似文献   

2.
Sortases anchor surface proteins to the cell wall of Gram-positive pathogens through recognition of specific motif sequences. Loss of sortase leads to large reductions in virulence, which identifies sortase as a target for the development of antibacterials. By screening 135,625 small molecules for inhibition, we report here that aryl (beta-amino)ethyl ketones inhibit sortase enzymes from staphylococci and bacilli. Inhibition of sortases occurs through an irreversible, covalent modification of their active site cysteine. Sortases specifically activate this class of molecules via beta-elimination, generating a reactive olefin intermediate that covalently modifies the cysteine thiol. Analysis of the three-dimensional structure of Bacillus anthracis sortase B with and without inhibitor provides insights into the mechanism of inhibition and reveals binding pockets that can be exploited for drug discovery.  相似文献   

3.
The effects of (-)-epigallocatechin gallate (EGCG) on the contraction of floating collagen gel by fibroblasts were investigated. EGCG inhibited collagen gel contraction dose-dependently. On the basis of the fact that platelet-derived growth factor (PDGF) is one of the serum components with stimulatory activity in collagen gel contraction, we examined the possibility that interaction between EGCG and PDGF may be involved in this inhibition mechanism. We confirmed this by recombinant PDGF-BB in the present system and we found that EGCG inhibited PDGF-stimulated collagen gel contraction. The results of affinity chromatography indicated that PDGF was bound by EGCG immobilized on agarose gel as detected by enzyme-linked immunoassay and Western blotting. These findings suggest that binding of EGCG to PDGF is at least partly involved in the mechanism of inhibition of collagen gel contraction by EGCG.  相似文献   

4.
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) catalyzes the oxidative phosphorylation of glyceraldehyde 3-phosphate to 1,3-diphosphoglycerate, one of the precursors for glycolytic ATP biosynthesis. The enzyme contains an active site cysteine thiolate, which is critical for its catalytic function. As part of a continuing study of the interactions of quinones with biological systems, we have examined the susceptibility of GAPDH to inactivation by 9,10-phenanthrenequinone (9,10-PQ). In a previous study of quinone toxicity, this quinone, whose actions have been exclusively attributed to reactive oxygen species (ROS) generation, caused a reduction in the glycolytic activity of GAPDH under aerobic and anaerobic conditions, indicating indirect and possible direct actions on this enzyme. In this study, the effects of 9,10-PQ on GAPDH were examined in detail under aerobic and anaerobic conditions so that the role of oxygen could be distinguished from the direct effects of the quinone. The results indicate that, in the presence of the reducing agent DTT, GAPDH inhibition by 9,10-PQ under aerobic conditions was mostly indirect and comparable to the direct actions of exogenously-added H2O2 on this enzyme. GAPDH was also inhibited by 9,10-PQ anaerobically, but in a somewhat more complex manner. This quinone, which is not considered an electrophile, inhibited GAPDH in a time-dependent manner, consistent with irreversible modification and comparable to the electrophilic actions of 1,4-benzoquinone (1,4-BQ). Analysis of the anaerobic inactivation kinetics for the two quinones revealed comparable inactivation rate constants (k(inac)), but a much lower inhibitor binding constant (K(i)) for 1,4-BQ. Protection and thiol titration studies suggest that these quinones bind to the NAD+ binding site and modify the catalytic thiol from this site. Thus, 9,10-PQ inhibits GAPDH by two distinct mechanisms: through ROS generation that results in the oxidization of GAPDH thiols, and by an oxygen-independent mechanism that results in the modification of GAPDH catalytic thiols.  相似文献   

5.
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) is covalently modified by NAD in the presence of nitric oxide (NO) and dithiothreitol. Replacement of NAD with NADH in the presence of SIN-1 (3-morpholinosydnonimine) and dithiothreitol increased modification 25-fold. We now demonstrate that in contrast to NO-mediated attachment of NAD, covalent attachment of NADH to GAPDH proceeds in the presence of low molecular weight thiols, independent of NO. Removal of oxygen and transition metal ions inhibited modification, consistent with a role for reactive oxygen species; inhibition by superoxide dismutase, stimulation by xanthine oxidase/hypoxanthine, and the lack of an effect of catalase supported the hypothesis that superoxide, generated from thiol oxidation, was involved. Electrospray mass spectrometry showed covalent linkage of the NADH molecule to GAPDH. Characterization of the product of phosphodiesterase cleavage demonstrated that linkage to GAPDH occurred through the nicotinamide of NADH. Lys-C digestion of GAPDH, followed by peptide isolation by high performance liquid chromatography, matrix-assisted laser desorption ionization time-of-flight analysis, and Edman sequencing, demonstrated that NADH attachment occurred at Cys-149, the active-site thiol. This thiol linkage was stable to HgCl2. Thus, linkage of GAPDH to NADH, in contrast to NAD, occurs in the presence of thiol, is independent of NO, and is mediated by superoxide.  相似文献   

6.
Nitrile-based inhibitors of cathepsin K have been known for some time and mechanism-of-action studies have demonstrated that cysteinyl proteases interact with nitriles in a reversible fashion. Three main classes of nitrile-containing inhibitors have been published in the cathepsin K field: (i) cyanamides, (ii) aromatic nitriles, and (iii) aminoacetonitriles. A computational approach was used to calculate the theoretical reactivities of diverse nitriles and this was found to correlate with their extent of reactivity with free cysteine. Moreover, there is a tentative link between high reactivity with cysteine and the potential to lead to irreversible covalent binding to proteins.  相似文献   

7.
The copper-transporting P-type ATPases (Cu-ATPases), ATP7A and ATP7B, are essential for the regulation of intracellular copper homeostasis. In this report we describe new roles for glutathione (GSH) and glutaredoxin1 (GRX1) in Cu homeostasis through their regulation of Cu-ATPase activity. GRX1 is a thiol oxidoreductase that catalyzes the reversible reduction of GSH-mixed disulfides to their respective sulfhydryls (deglutathionylation). Here, we demonstrated that glutathionylation of the Cu-ATPases and their interaction with GRX1 were affected by alterations in Cu levels. The data support our hypothesis that the Cu-ATPases serve as substrates for Cu-dependent GRX1-mediated deglutathionylation. This in turn liberates the Cu-ATPase cysteinyl thiol groups for Cu binding and transport. GSH depletion experiments led to reversible inhibition of the Cu-ATPases that correlated with effects on intracellular Cu levels and GRX1 activity. Finally, knockdown of GRX1 expression resulted in an increase in intracellular Cu accumulation. Together, these data directly implicate GSH and GRX1 with important new roles in redox regulation of the Cu-ATPases, through modulation of Cu binding by the Cu-ATPase cysteine motifs.  相似文献   

8.
In animal cells, many proteins have been shown to undergo glutathionylation under conditions of oxidative stress. By contrast, very little is known about this post-translational modification in plants. In the present work, we showed, using mass spectrometry, that the recombinant chloroplast A(4)-glyceraldehyde-3-phosphate dehydrogenase (A(4)-GAPDH) from Arabidopsis thaliana is glutathionylated with either oxidized glutathione or reduced glutathione and H(2)O(2). The formation of a mixed disulfide between glutathione and A(4)-GAPDH resulted in the inhibition of enzyme activity. A(4)-GAPDH was also inhibited by oxidants such as H(2)O(2). However, the effect of glutathionylation was reversed by reductants, whereas oxidation resulted in irreversible enzyme inactivation. On the other hand, the major isoform of photosynthetic GAPDH of higher plants (i.e. the A(n)B(n)-GAPDH isozyme in either A(2)B(2) or A(8)B(8) conformation) was sensitive to oxidants but did not seem to undergo glutathionylation significantly. GAPDH catalysis is based on Cys149 forming a covalent intermediate with the substrate 1,3-bisphosphoglycerate. In the presence of 1,3-bisphosphoglycerate, A(4)-GAPDH was fully protected from either oxidation or glutathionylation. Site-directed mutagenesis of Cys153, the only cysteine located in close proximity to the GAPDH active-site Cys149, did not affect enzyme inhibition by glutathionylation or oxidation. Catalytic Cys149 is thus suggested to be the target of both glutathionylation and thiol oxidation. Glutathionylation could be an important mechanism of regulation and protection of chloroplast A(4)-GAPDH from irreversible oxidation under stress.  相似文献   

9.
S-Nitrosylation of protein thiol groups by nitric oxide (NO) is a widely recognized protein modification. In this study we show that nitrosonium tetrafluoroborate (BF4NO), a NO+ donor, modified the thiol groups of glyceraldehyde-3-phosphate dehydrogenase (GAPDH) by S-nitrosylation and caused enzyme inhibition. The resultant protein-S-nitrosothiol was found to be unstable and to decompose spontaneously, thereby restoring enzyme activity. In contrast, the NO-releasing compound S-nitrosoglutathione (GSNO) promoted S-glutathionylation of a thiol group of GAPDH both in vitro and under cellular conditions. The GSH-mixed protein disulfide formed led to a permanent enzyme inhibition, but upon dithiothreitol addition a functional active GAPDH was recovered. This S-glutathionylation is specific for GSNO because GSH itself was unable to produce protein-mixed disulfides. During cellular nitrosative stress, the production of intracellular GSNO might channel signaling responses to form protein-mixed disulfide that can regulate intracellular function.  相似文献   

10.
Nitroxyl (HNO) has received recent and significant interest due to its novel and potentially important pharmacology. However, the chemical/biochemical mechanism(s) responsible for its biological activity remain to be established. Some of the most important biological targets for HNO are thiols and thiol proteins. Consistent with this, it was recently reported that HNO inhibits the glycolytic enzyme glyceraldehyde-3-phosphate dehydrogenase (GAPDH), a protein with a catalytically important cysteine thiol at its active site. Interestingly, it was reported that intracellular GAPDH inhibition occurred without significantly altering the cellular thiol redox status of glutathione. Herein, the nature of this reaction specificity was examined. HNO is found to irreversibly inhibit GAPDH in a manner that can be protected against by one of its substrates, glyceraldehyde-3-phosphate (G-3-P). These results are consistent with the idea that HNO has the ability to react with and oxidize a variety of intracellular thiols and the ease or facility of cellular re-reduction of the thiol targets can determine the target specificity.  相似文献   

11.
S-Methyl methanethiosulfonate (MMTS) is used in experimental biochemistry for alkylating thiol groups of protein cysteines. Its applications include mainly trapping of natural thiol-disulfide states of redox-sensitive proteins and proteins which have undergone S-nitrosylation. The reagent can also be employed as an inhibitor of enzymatic activity, since nucleophilic cysteine thiolates are commonly present at active sites of various enzymes. The advantage of using MMTS for this purpose is the reversibility of the formation of methylthio mixed disulfides, compared to irreversible alkylation using conventional agents. Additional benefits include good accessibility of MMTS to buried protein cysteines due to its small size and the simplicity of the protection and deprotection procedures. In this study we report examples of MMTS application in experiments involving oxidoreductase (glyceraldehyde-3-phosphate dehydrogenase, GAPDH), redox-regulated protein (recoverin) and cysteine protease (triticain-α). We demonstrate that on the one hand MMTS can modify functional cysteines in the thiol enzyme GAPDH, thereby preventing thiol oxidation and reversibly inhibiting the enzyme, while on the other hand it can protect the redox-sensitive thiol group of recoverin from oxidation and such modification produces no impact on the activity of the protein. Furthermore, using the example of the papain-like enzyme triticain-α, we report a novel application of MMTS as a protector of the primary structure of active cysteine protease during long-term purification and refolding procedures. Based on the data, we propose new lines of MMTS employment in research, pharmaceuticals and biotechnology for reversible switching off of undesirable activity and antioxidant protection of proteins with functional thiol groups.  相似文献   

12.
Oxidative stress or signaling is widely implicated in apoptosis, ischemia and mitogenesis. Previously, our group reported that the hydrogen peroxide (H2O2)-dependent activation of phospholipase D2 (PLD2) in PC12 cells is involved in anti-apoptotic effect. However, the precise mechanism of PLD2 activation by H2O2 was not revealed. To find H2O2-dependent PLD2-regulating proteins, we immunoprecipitated PLD2 from PC12 cells and found that glyceraldehyde 3-phosphate dehydrogenase (GAPDH) coimmunoprecipitated with PLD2 upon H2O2 treatment. This interaction was found to be direct by in vitro reconstitution of purified GAPDH and PLD2. In vitro studies also indicated that PLD2-associated GAPDH was modified on its reactive cysteine residues. Koningic acid, an alkylator of GAPDH on catalytic cysteine residue, also increased interaction between the two proteins in vitro and enhanced PLD2 activity in PC12 cells. Blocking H2O2-dependent modification of GAPDH with 3-aminobenzamide resulted in the inhibition of the GAPDH/PLD2 interaction and attenuated H2O2-induced PLD2 activation in PC12 cells. From the results, we suggest that H2O2 modifies GAPDH on its catalytic cysteine residue not only to inactivate the dehydrogenase activity of GAPDH but also to endow GAPDH with the ability to bind PLD2 and the resulting association is involved in the regulation of PLD2 activity by H2O2.  相似文献   

13.
This study, conducted on isolated guinea pig ileum, was designed to establish the mechanism of presynaptic alpha 2-adrenoreceptor blockade by the tetramine disulfides, benextramine and pyrextramine. At 1 microM these drugs irreversibly blocked norepinephrine (NE)-induced inhibition of the twitch response to electrical stimulation. This may be the result of covalent bond formation between the disulfide bridge of the inhibitor and a thiol function at the receptor level through an interchange reaction since the benextramine carbon analogue did not affect NE response under the same conditions. Furthermore, NE (10 microM) failed to protect presynaptic alpha 2-adrenoreceptors from pyrextramine blockade whereas idazoxan (O.T microM) completely abolished the irreversible antagonism of pyrextramine (1 microM). This finding suggests that the tetramine disulfide binding site may coincide with that of idazoxan and is different from the NE binding site.  相似文献   

14.
Lipid transfer proteins (LTPs) are a protein family found in plants with a variety of functions. In addition to lipid binding, LTPs also bind to calmodulin and Ca2+-dependent protein kinase (CDPK), which are calcium signal transducers. For the first time, we identified glyceraldehyde-3- phosphate dehydrogenase (GAPDH) as a novel binding protein of LTP-CaMBP10 in Chinese cabbage. This binding was confirmed using multiple biochemical approaches. The effects of this interaction on GAPDH activity were assessed for both recombinant and endogenous GAPDH proteins. LTP-CaMBP10 does not appear to affect nicotinamide adenine dinucleotide (NAD)-dependent GAPDH activity. In contrast, it significantly suppresses nicotinamide adenine dinucleotide phosphate (NADPH) consumption by GAPDH in a dosage-dependent manner. This result indicated a specific role of GAPDH in regulating LTP functions and implicating crosstalk between LTP-dependent and GAPDH-dependent biological events.  相似文献   

15.
Glutathione peroxidases (Gpxs) are the key anti-oxidant enzymes found in Saccharomyces cerevisiae. Among the three Gpx isoforms, glutathione peroxidase 3 (Gpx3) is ubiquitously expressed and modulates the activities of redox-sensitive thiol proteins involved in various biological reactions. By using a proteomic approach, glyceraldehyde-3-phosphate dehydrogenase 2 (GAPDH2; EC 1.2.1.12) was found as a candidate protein for interaction with Gpx3. GAPDH, a key enzyme in glycolysis, is a multi-functional protein with multiple intracellular localizations and diverse activities. To validate the interaction between Gpx3 and GAPDH2, immunoprecipitation and a pull-down assay were carried out. The results clearly showed that GAPDH2 interacts with Gpx3 through its carboxyl-terminal domain both in vitro and in vivo. Additionally, Gpx3 helps to reduce the S-nitrosylation of GAPDH upon nitric oxide (NO) stress; this subsequently increases cellular viability. On the basis of our findings, we suggest that Gpx3 protects GAPDH from NO stress and thereby contributes to the maintenance of homeostasis during exposure to NO stress.  相似文献   

16.
Diabetic plasma contains elevated levels of glucose and various low-molecular-weight carbonyl compounds derived from the metabolism of glucose and related materials. These compounds react with protein side chains (Arg, Lys, Cys, and His) to give glycated materials and advanced glycation end products. In this study, we have examined the effect of glucose and carbonyl compounds (methylglyoxal, glyoxal, glycolaldehyde, and hydroxyacetone), and glycation products arising from reaction of these materials with model proteins, on the activity of three key cellular enzymes: glyceraldehyde-3-phosphate dehydrogenase (GAPDH), glutathione reductase, and lactate dehydrogenase, both in isolation and in cell lysates. In contrast to glucose (1M, both fresh and aged for 8 weeks), which had no effect, marked inhibition of all three enzymes was observed with methylglyoxal and glyoxal. GAPDH was also inhibited by glycolaldehyde and hydroxyacetone. Incubation of these enzymes with proteins that had been preglycated with methylglyoxal, but not glucose, also resulted in significant time- and concentration-dependent inhibition with both isolated enzymes and cell lysates. This inhibition was not metal ion, oxygen, superoxide dismutase, or catalase dependent, suggesting that inhibition is not radical mediated. These effects are suggested to be due to direct adduction of the free- or protein-bound carbonyls with the target enzyme. Such an interpretation is supported by the detection of the loss of thiol groups on GAPDH and the detection of cross-linked materials on protein gels. Though direct comparison of the extent of inhibition induced by free versus protein-bound carbonyls was not possible, the significantly higher concentrations of the latter materials over the former in diabetic plasma and cells lead us to suggest that alterations in the activity of key cellular enzymes induced by glycated proteins may play a significant role in the development of diabetic complications.  相似文献   

17.
Tea flavonoids bind to variety of enzymes and inhibit their activities. In the present study, binding and inhibition of catalase activity by catechins with respect to their structure-affinity relationship has been elucidated. Fluorimetrically determined binding constants for (−)-epigallocatechin gallate (EGCG) and (−)-epicatechin gallate (ECG) with catalase were observed to be 2.27×106 M−1 and 1.66×106 M−1, respectively. Thermodynamic parameters evidence exothermic and spontaneous interaction between catechins and catalase. Major forces of interaction are suggested to be through hydrogen bonding along with electrostatic contributions and conformational changes. Distinct loss of α-helical structure of catalase by interaction with EGCG was captured in circular dichroism (CD) spectra. Gallated catechins demonstrated higher binding constants and inhibition efficacy than non-gallated catechins. EGCG exhibited maximum inhibition of pure catalase. It also inhibited cellular catalase in K562 cancer cells with significant increase in cellular ROS and suppression of cell viability (IC50 54.5 µM). These results decipher the molecular mechanism by which tea catechins interact with catalase and highlight the potential of gallated catechin like EGCG as an anticancer drug. EGCG may have other non-specific targets in the cell, but its anticancer property is mainly defined by ROS accumulation due to catalase inhibition.  相似文献   

18.
In addition to its classic glycolytic role, glyceraldehyde-3-phosphate dehydrogenase (GAPDH) has been implicated in many activities unrelated to glycolysis, such as membrane fusion, binding to host proteins and signal transduction. GAPDH can be the target of several modifications that allow incorporation to membranes and possible regulation of its activity; among these modifications is mono-ADP-ribosylation. This post-translational modification is important for the regulation of many cellular processes and is the mechanism of action of several bacterial toxins. In a previous study, we observed the extracellular ADP-ribosylation of a 37-kDa ameba protein. We report here that GAPDH and cysteine synthase A are the main ADP-ribosylated proteins in Entamoeba histolytica extracellular medium, GAPDH is secreted from ameba at 37 degrees C in a time-dependent manner, and its enzymatic activity is not inhibited by ADP-ribosylation. Extracellular GAPDH from ameba may play an important role in the survival of this human pathogen or in interaction with host molecules, as occurs in other organisms.  相似文献   

19.
We present a simple, non-radioactive assay for DNA methyltransferase activity and DNA binding. As most proteins are studied as GFP fusions in living cells, we used a GFP binding nanobody coupled to agarose beads (GFP nanotrap) for rapid one-step purification. Immobilized GFP fusion proteins were subsequently incubated with different fluorescently labeled DNA substrates. The absolute amounts and molar ratios of GFP fusion proteins and bound DNA substrates were determined by fluorescence spectroscopy. In addition to specific DNA binding of GFP fusion proteins, the enzymatic activity of DNA methyltransferases can also be determined by using suicide DNA substrates. These substrates contain the mechanism-based inhibitor 5-aza-dC and lead to irreversible covalent complex formation. We obtained covalent complexes with mammalian DNA methyltransferase 1 (Dnmt1), which were resistant to competition with non-labeled canonical DNA substrates, allowing differentiation between methyltransferase activity and DNA binding. By comparison, the Dnmt1C1229W catalytic site mutant showed DNA-binding activity, but no irreversible covalent complex formation. With this assay, we could also confirm the preference of Dnmt1 for hemimethylated CpG sequences. The rapid optical read-out in a multi-well format and the possibility to test several different substrates in direct competition allow rapid characterization of sequence-specific binding and enzymatic activity.  相似文献   

20.
Nitroxyl (HNO) was found to inhibit glycolysis in the yeast Saccharomyces cerevisiae. The toxicity of HNO in yeast positively correlated with the dependence of yeast on glycolysis for cellular energy. HNO was found to potently inhibit the crucial glycolytic enzyme glyceraldehyde 3-phosphate dehydrogenase (GAPDH), an effect which is likely to be responsible for the observed inhibition of glycolysis in whole cell preparations. It is proposed that GAPDH inhibition occurs through reaction of HNO with the active site thiolate residue of GAPDH. Significantly, levels of HNO that inhibit GAPDH do not alter the levels or redox status of intracellular glutathione (GSH), indicating that HNO has thiol selectivity. The ability of HNO to inhibit GAPDH in an intracellular environment that contains relatively large concentrations of GSH is an important aspect of HNO pharmacology and possibly, physiology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号