首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Fire–vegetation feedbacks potentially maintain global savanna and forest distributions. Accordingly, vegetation in savanna and forest ecosystems should have differential responses to fire, but fire response data for herbaceous vegetation have yet to be synthesized across biomes. Here, we examined herbaceous vegetation responses to experimental fire at 30 sites spanning four continents. Across a variety of metrics, herbaceous vegetation increased in abundance where fire was applied, with larger responses to fire in wetter and in cooler and/or less seasonal systems. Compared to forests, savannas were associated with a 4.8 (±0.4) times larger difference in herbaceous vegetation abundance for burned versus unburned plots. In particular, grass cover decreased with fire exclusion in savannas, largely via decreases in C4 grass cover, whereas changes in fire frequency had a relatively weak effect on grass cover in forests. These differential responses underscore the importance of fire for maintaining the vegetation structure of savannas and forests.  相似文献   

2.
Savannas are defined based on vegetation structure, the central concept being a discontinuous tree cover in a continuous grass understorey. However, at the high‐rainfall end of the tropical savanna biome, where heavily wooded mesic savannas begin to structurally resemble forests, or where tropical forests are degraded such that they open out to structurally resemble savannas, vegetation structure alone may be inadequate to distinguish mesic savanna from forest. Additional knowledge of the functional differences between these ecosystems which contrast sharply in their evolutionary and ecological history is required. Specifically, we suggest that tropical mesic savannas are predominantly mixed tree–C4 grass systems defined by fire tolerance and shade intolerance of their species, while forests, from which C4 grasses are largely absent, have species that are mostly fire intolerant and shade tolerant. Using this framework, we identify a suite of morphological, physiological and life‐history traits that are likely to differ between tropical mesic savanna and forest species. We suggest that these traits can be used to distinguish between these ecosystems and thereby aid their appropriate management and conservation. We also suggest that many areas in South Asia classified as tropical dry forests, but characterized by fire‐resistant tree species in a C4 grass‐dominated understorey, would be better classified as mesic savannas requiring fire and light to maintain the unique mix of species that characterize them.  相似文献   

3.

Aims

The effects of fire ensure that large areas of the seasonal tropics are maintained as savannas. The advance of forests into these areas depends on shifts in species composition and the presence of sufficient nutrients. Predicting such transitions, however, is difficult due to a poor understanding of the nutrient stocks required for different combinations of species to resist and suppress fires.

Methods

We compare the amounts of nutrients required by congeneric savanna and forest trees to reach two thresholds of establishment and maintenance: that of fire resistance, after which individual trees are large enough to survive fires, and that of fire suppression, after which the collective tree canopy is dense enough to minimize understory growth, thereby arresting the spread of fire. We further calculate the arboreal and soil nutrient stocks of savannas, to determine if these are sufficient to support the expansion of forests following initial establishment.

Results

Forest species require a larger nutrient supply to resist fires than savanna species, which are better able to reach a fire-resistant size under nutrient limitation. However, forest species require a lower nutrient supply to attain closed canopies and suppress fires; therefore, the ingression of forest trees into savannas facilitates the transition to forest. Savannas have sufficient N, K, and Mg, but require additional P and Ca to build high-biomass forests and allow full forest expansion following establishment.

Conclusions

Tradeoffs between nutrient requirements and adaptations to fire reinforce savanna and forest as alternate stable states, explaining the long-term persistence of vegetation mosaics in the seasonal tropics. Low-fertility limits the advance of forests into savannas, but the ingression of forest species favors the formation of non-flammable states, increasing fertility and promoting forest expansion.  相似文献   

4.
Fire regimes in savannas and forests are changing over much of the world. Anticipating the impact of these changes requires understanding how plants are adapted to fire. In this study, we test whether fire imposes a broad selective force on a key fire‐tolerance trait, bark thickness, across 572 tree species distributed worldwide. We show that investment in thick bark is a pervasive adaptation in frequently burned areas across savannas and forests in both temperate and tropical regions where surface fires occur. Geographic variability in bark thickness is largely explained by annual burned area and precipitation seasonality. Combining environmental and species distribution data allowed us to assess vulnerability to future climate and fire conditions: tropical rainforests are especially vulnerable, whereas seasonal forests and savannas are more robust. The strong link between fire and bark thickness provides an avenue for assessing the vulnerability of tree communities to fire and demands inclusion in global models.  相似文献   

5.
Afforestation and fire exclusion are pervasive threats to tropical savannas. In Brazil, laws limiting prescribed burning hinder the study of fire in the restoration of Cerrado plant communities. We took advantage of a 2017 wildfire to evaluate the potential for tree cutting and fire to promote the passive restoration of savanna herbaceous plant communities after destruction by exotic tree plantations. We sampled a burned pine plantation (Burned Plantation); a former plantation that was harvested and burned (Harvested & Burned); an unburned former plantation that was harvested, planted with native trees, and treated with herbicide to control invasive grasses (Native Tree Planting); and two old-growth savannas which served as reference communities. Our results confirm that herbaceous plant communities on post-afforestation sites are very different from old-growth savannas. Among post-afforestation sites, Harvested & Burned herbaceous communities were modestly more similar in composition to old-growth savannas, had slightly higher richness of savanna plants (3.8 species per 50-m2), and supported the greatest cover of native herbaceous plants (56%). These positive trends in herbaceous community recovery would be missed in assessments of tree cover: whereas canopy cover in the Harvested & Burned site was 6% (less than typical of savannas of the Cerrado), the Burned Plantation and Native Tree Planting supported 34% and 19% cover, respectively. By focusing on savanna herbaceous plants, these results highlight that tree cutting and fire, not simply tree planting and fire exclusion, should receive greater attention in efforts to restore savannas of the Cerrado.  相似文献   

6.
Numerous predictions indicate rising CO2 will accelerate the expansion of forests into savannas. Although encroaching forests can sequester carbon over the short term, increased fires and drought‐fire interactions could offset carbon gains, which may be amplified by the shift toward forest plant communities more susceptible to fire‐driven dieback. We quantify how bark thickness determines the ability of individual tree species to tolerate fire and subsequently determine the fire sensitivity of ecosystem carbon across 180 plots in savannas and forests throughout the 2.2‐million km2 Cerrado region in Brazil. We find that not accounting for variation in bark thickness across tree species underestimated carbon losses in forests by ~50%, totaling 0.22 PgC across the Cerrado region. The lower bark thicknesses of plant species in forests decreased fire tolerance to such an extent that a third of carbon gains during forest encroachment may be at risk of dieback if burned. These results illustrate that consideration of trait‐based differences in fire tolerance is critical for determining the climate‐carbon‐fire feedback in tropical savanna and forest biomes.  相似文献   

7.
Questions: Fire is a strong filter in fire‐prone communities and is expected to assemble closely related species when functional traits are conserved in plant lineages. Do frequent fires assemble savannas with closely related species (phylogenetic clustering)? If so, what are the clades pruned by fire in the phylogenetic trees? Are species of semi‐deciduous seasonal forests, where fires are not frequent, less related than expected by chance (phylogenetic over‐dispersion)? Are life forms conserved in the phylogeny of the species? Location: Central and SE Brazilian savannas (Emas National Park, 18°18′S, 52°54′W; Brasília, 15°56′–15°57′S, 47°53′–47°56′W and Corumbataí‐Itirapina, 22°13′–22°15′S, 47°37′–47°39′W); and close semi‐deciduous seasonal forests (in Pirenópolis, 15°45′S, 49°04′W; Brasília, 15°33′S, 47°51′W; and São Carlos, 21°55′S, 47°48′W). Methods: We recorded woody species in savannas under different fire regimes and in semi‐deciduous seasonal forests. We obtained data from the literature and from field sampling. We compared mean phylogenetic distance of species of savanna and of nearby semi‐deciduous seasonal forest sites. We obtained significance by randomizing the species among the tips of phylogenetic trees. We also assessed whether life forms were evolutionary conserved across phylogeny of the studied plants (phylogenetic signal) with tests based on the variance of phylogenetic independent contrasts. Results: Some sites of savanna under high fire frequency were characterized by phylogenetic over‐dispersion of woody species whereas, in contrast, some sites of semi‐deciduous seasonal forest were characterized by phylogenetic clustering. We found phylogenetic signals in the traits across the phylogeny of the 801 species investigated. Conclusion: Fire may have different roles in assembling plant species in Brazilian savannas than in other fire‐prone communities. We postulate that the absence of phylogenetic clustering in the cerrado is mainly due to the persistence of long‐lived resprouting species from different plant lineages.  相似文献   

8.
The global distribution of ecosystems in a world without fire   总被引:19,自引:0,他引:19  
This paper is the first global study of the extent to which fire determines global vegetation patterns by preventing ecosystems from achieving the potential height, biomass and dominant functional types expected under the ambient climate (climate potential). To determine climate potential, we simulated vegetation without fire using a dynamic global-vegetation model. Model results were tested against fire exclusion studies from different parts of the world. Simulated dominant growth forms and tree cover were compared with satellite-derived land- and tree-cover maps. Simulations were generally consistent with results of fire exclusion studies in southern Africa and elsewhere. Comparison of global 'fire off' simulations with landcover and treecover maps show that vast areas of humid C(4) grasslands and savannas, especially in South America and Africa, have the climate potential to form forests. These are the most frequently burnt ecosystems in the world. Without fire, closed forests would double from 27% to 56% of vegetated grid cells, mostly at the expense of C(4) plants but also of C(3) shrubs and grasses in cooler climates. C(4) grasses began spreading 6-8 Ma, long before human influence on fire regimes. Our results suggest that fire was a major factor in their spread into forested regions, splitting biotas into fire tolerant and intolerant taxa.  相似文献   

9.
We conducted a meta-analysis of the effects of fire on the abundance and alpha diversity of ants based upon data published over the past 70 years. Overall, fire reduced ant diversity by 18 %, but had no effect on ant abundance. However, there was significant variation in the effect of fire on ant diversity amongst different vegetation types. Fire significantly decreased ant diversity in forests—especially in tropical forests—whereas in deserts, grasslands, and savannas it did not. Similarly, fire had a strong negative mean effect on ant diversity in sites where it is uncommon, but did not significantly affect diversity where it is a recurrent phenomenon. There is evidence that, in forests, wildfires have a stronger negative effect on ant diversity than does prescribed burning. In addition, we found marginally significant differences in the effect of fire on the abundance and diversity of forest ants among studies that sampled ants at different times post-fire, or that sampled ants from different soil strata. In contrast, fire did not significantly affect the abundance or diversity of savanna ants, and this was true even after we took into account the geographic location of the study, the ant community sampled, the time since fire, and the fire regime. Overall, the results of our study indicate that habitat type is an important predictor of ant community responses to fire. However, even within a given habitat, reported effects were quite variable among the studies reviewed, evidencing the idiosyncratic nature of fire effects on ants.  相似文献   

10.
We used satellite‐derived estimates of global fire emissions and a chemical transport model to estimate atmospheric nitrogen (N) fluxes from savanna and deforestation fires in tropical ecosystems. N emissions and reactive N deposition led to a net transport of N equatorward, from savannas and areas undergoing deforestation to tropical forests. Deposition of fire‐emitted N in savannas was only 26% of emissions – indicating a net export from this biome. On average, net N loss from fires (the sum of emissions and deposition) was equivalent to approximately 22% of biological N fixation (BNF) in savannas (4.0 kg N ha?1 yr?1) and 38% of BNF in ecosystems at the deforestation frontier (9.3 kg N ha?1 yr?1). Net N gains from fires occurred in interior tropical forests at a rate equivalent to 3% of their BNF (0.8 kg N ha?1 yr?1). This percentage was highest for African tropical forests in the Congo Basin (15%; 3.4 kg N ha?1 yr?1) owing to equatorward transport from frequently burning savannas north and south of the basin. These results provide evidence for cross‐biome atmospheric fluxes of N that may help to sustain productivity in some tropical forest ecosystems on millennial timescales. Anthropogenic fires associated with slash and burn agriculture and deforestation in the southern part of the Amazon Basin and across Southeast Asia have substantially increased N deposition in these regions in recent decades and may contribute to increased rates of carbon accumulation in secondary forests and other N‐limited ecosystems.  相似文献   

11.
A global overview of the conservation status of tropical dry forests   总被引:9,自引:0,他引:9  
Aim To analyse the conservation status of tropical dry forests at the global scale, by combining a newly developed global distribution map with spatial data describing different threats, and to identify the relative exposure of different forest areas to such threats. Location Global assessment. Methods We present a new global distribution map of tropical dry forest derived from the recently developed MODIS Vegetation Continuous Fields (VCF) product, which depicts percentage tree cover at a resolution of 500 m, combined with previously defined maps of biomes. This distribution map was overlaid with spatial data to estimate the exposure of tropical dry forests to a number of different threats: climate change, habitat fragmentation, fire, human population density and conversion to cropland. The extent of tropical dry forest currently protected was estimated by overlaying the forest map with a global data set of the distribution of protected areas. Results It is estimated that 1,048,700 km2 of tropical dry forest remains, distributed throughout the three tropical regions. More than half of the forest area (54.2%) is located within South America, the remaining area being almost equally divided between North and Central America, Africa and Eurasia, with a relatively small proportion (3.8%) occurring within Australasia and Southeast Asia. Overall, c. 97% of the remaining area of tropical dry forest is at risk from one or more of the threats considered, with highest percentages recorded for Eurasia. The relative exposure to different threats differed between regions: while climate change is relatively significant in the Americas, habitat fragmentation and fire affect a higher proportion of African forests, whereas agricultural conversion and human population density are most influential in Eurasia. Evidence suggests that c. 300,000 km2 of tropical dry forest now coincide with some form of protected area, with 71.8% of this total being located within South America. Main conclusions Virtually all of the tropical dry forests that remain are currently exposed to a variety of different threats, largely resulting from human activity. Taking their high biodiversity value into consideration, this indicates that tropical dry forests should be accorded high conservation priority. The results presented here could be used to identify which forest areas should be accorded highest priority for conservation action. In particular, the expansion of the global protected area network, particularly in Mesoamerica, should be given urgent consideration.  相似文献   

12.
Eucalypts (Eucalyptus spp. and Corymbia spp.) dominate many communities across Australia, including frequently burnt tropical savannas and temperate forests, which receive less frequent but more intense fires. Understanding the demographic characteristics that allow related trees to persist in tropical savannas and temperate forest ecosystems can provide insight into how savannas and forests function, including grass–tree coexistence. This study reviews differences in critical stages in the life cycle of savanna and temperate forest eucalypts, especially in relation to fire. It adds to the limited data on tropical eucalypts, by evaluating the effect of fire regimes on the population biology of Corymbia clarksoniana, a tree that dominates some tropical savannas of north‐eastern Australia. Corymbia clarksoniana displays similar demographic characteristics to other tropical savanna species, except that seedling emergence is enhanced when seed falls onto recently burnt ground during a high rainfall period. In contrast to many temperate forest eucalypts, tropical savanna eucalypts lack canopy‐stored seed banks; time annual seed fall to coincide with the onset of predictable wet season rain; have very rare seedling emergence events, including a lack of mass germination after each fire; possess an abundant sapling bank; and every tropical eucalypt species has the ability to maintain canopy structure by epicormically resprouting after all but the most intense fires. The combination of poor seedling recruitment strategies, coupled with characteristics allowing long‐term persistence of established plants, indicate tropical savanna eucalypts function through the persistence niche rather than the regeneration niche. The high rainfall‐promoted seedling emergence of C. clarksoniana and the reduction of seedling survival and sapling growth by fire, support the predictions that grass–tree coexistence in savannas is governed by rainfall limiting tree seedling recruitment and regular fires limiting the growth of juvenile trees to the canopy.  相似文献   

13.
In the Rio Ranchería watershed of the Sierra Nevada de Santa Marta, between 500 and 1500 m, savanna vegetation is interspersed with moist forests. The savannas are composed of native savanna grasses like Aristida adscensionis L., Arundinella sp., Panicum olyroides Kunth, and Schyzachyrium microstachyum (Desv.) Roseng., Arrill & Izag and the African Melinis minutiflora P. Beauv. There is also Curatella americana L. and Byrsonima crassifolia (L.) H.B.K., two typical tree species of the neotropical savannas. Although moist forest patches occur more often on lower slopes and narrow valley bottoms, they can also be found on mid- and upper-slopes and less often on ridges. Thus, these forest patches are not gallery forests as are found throughout the neotropics, but the result of deforestation and fractionation of a continuous forest. A comparison of soil profiles between the savannas and remnant forest patches on the same slope, showed the disappearance of the A and B horizons (approx. 50 cm) under savanna vegetation. The sharp difference between the savanna and forest soils at the Rio Ranchería does not appear to be due to a change in soil water status along a toposequence or differences in the underlying bedrock. We hypothesize that the savannas of the Rio Ranchería watershed, are the result of deforestation and land practices on infertile soils derived from granite. The savannization process was likely initiated by Amerindians by means of the frequent use of fire or clearing lands for the cultivation of maize. The introduction of cattle by Spaniards (c. 1530) and the frequent use of fire to maintain grazing fields, contributed to further degradation of the habitat. While some tropical landscapes recovered their forest cover when human pressure was removed approximately 500 years ago, areas such as the Rio Ranchería watershed have suffered permanent damage. The savannas of this region are likely to remain unless fire is suppressed and soil restoration practices implemented.  相似文献   

14.
In order to investigate how environmental factors other than light availability affect tree architecture, differences in branching architecture and allometry were analysed in populations of Acacia karroo Hein. from three different environments in South Africa: forests, savannas and arid‐shrublands. Factors such as fire and herbivory have a large effect on tree life history in certain environments and are likely to have selected for trees that have different architectures from those of forest trees, whose major limitation is light assimilation. Significant differences were found in stem architecture and branching architecture between trees in each environment. Compared with forest trees, trees in savannas had an elongated growth form with small canopy and leaf areas, and tall, thin, unbranched trunks. Trees in arid areas showed opposite trends with wider canopies, and increased lateral branching. Savanna trees had significantly smaller spines than trees in other environments, and both forest and savanna trees showed delayed reproduction. These differences are probably related to a trade‐off between an architecture geared towards rapid height‐gain and one promoting lateral spread, and can be explained with reference to the different selective pressures in each environment. In forests, vertical and horizontal growth are both important. However, in savannas there is a great pressure for rapid vertical growth to escape fires, while in arid areas a defensive, lateral growth form is selected for. Savanna trees and arid karoo trees have evolved architectures that are more extreme vertically and laterally than the range of architectures displayed in a forest community.  相似文献   

15.
A yearly global fire history is a prerequisite for quantifying the contribution of previous fires to the past and present global carbon budget. Vegetation fires can have both direct (combustion) and long‐term indirect effects on the carbon cycle. Every fire influences the ecosystem carbon budget for many years, as a consequence of internal reorganization, decomposition of dead biomass, and regrowth. We used a two‐step process to estimate these effects. First we synthesized the available data available for the 1980s or 1990s to produce a global fire map. For regions with no data, we developed estimates based on vegetation type and history. Second, we then worked backwards to reconstruct the fire history. This reconstruction was based on published data when available. Where it was not, we extrapolated from land use practices, qualitative reports and local studies, such as tree ring analysis. The resulting product is intended as a first approximation for questions about consequences of historical changes in fire for the global carbon budget. We estimate that an average of 608 Mha yr?1 burned (not including agricultural fires) at the end of the 20th century. 86% of this occurred in tropical savannas. Fires in forests with higher carbon stocks consumed 70.7 Mha yr?1 at the beginning of the century, mostly in the boreal and temperate forests of the Northern Hemisphere. This decreased to 15.2 Mha yr?1 in the 1960s as a consequence of fire suppression policies and the development of efficient fire fighting equipment. Since then, fires in temperate and boreal forests have decreased to 11.2 Mha yr?1. At the same time, burned areas increased exponentially in tropical forests, reaching 54 Mha yr?1 in the 1990s, reflecting the use of fire in deforestation for expansion of agriculture. There is some evidence for an increase in area burned in temperate and boreal forests in the closing years of the 20th century.  相似文献   

16.
Biologically rich savannas and woodlands dominated by Pinus palustris once dominated the southeastern U.S. landscape. With European settlement, fire suppression, and landscape fragmentation, this ecosystem has been reduced in area by 97%. Half of remnant forests are not burned with sufficient frequency, leading to declines in plant and animal species richness. For these fire‐suppressed ecosystems a major regional conservation goal has been ecological restoration, primarily through the reinitiation of historic fire regimes. Unfortunately, fire reintroduction in long‐unburned Longleaf pine stands can have novel, undesirable effects. We review case studies of Longleaf pine ecosystem restoration, highlighting novel fire behavior, patterns of tree mortality, and unintended outcomes resulting from reintroduction of fire. Many of these pineland restoration efforts have resulted in excessive overstory pine mortality (often >50%) and produced substantial quantities of noxious smoke. The most compelling mechanisms of high tree mortality after reintroduction of fire are related to smoldering combustion of surface layers of organic matter (duff) around the bases of old pines. Development of effective methods to reduce fuels and competing vegetation while encouraging native vegetation is a restoration challenge common to fire‐prone ecosystems worldwide that will require understanding of the responses of altered ecosystems to the resumption of historically natural disturbances.  相似文献   

17.
Global warming can potentially influence ecological communities through altered disturbance regimes in addition to increased temperatures. We investigate the response of pine savannas in the southeastern United States to global warming using a simple Lotka‐Volterra competition model together with predicted changes to fire and hurricane disturbance regimes with global climate change. In the southeastern United States, decreased frequency of both fires and hurricanes with global warming will shift pine savannas toward a forested state. A CO2 fertilization effect that increases the growth rate of tree populations will also push southeastern landscapes from open savannas towards closed forests. Transient dynamics associated with climate driven changes in vegetation will last on the order of decades to a century. In our model, the sensitivity of savannas to relative changes in the frequency of fire versus hurricanes is linearly dependent on the growth rate and mortality of trees in fire and hurricane disturbances.  相似文献   

18.
Abstract. The possible use of fire for the management of the Ankarafantsika Reserve in the northwest of Madagascar and of its surrounding area is studied. Within this savanna landscape large parts of the remaining dry forests still exist with a unique biotic diversity, both in terms of total number of species and endemism. Unfortunately, mainly man-induced uncontrolled fires threaten these forests. Actual and former fire regimes of the local communities are analysed. The use of fire is an integrated part of land use and is also governed by socio-cultural traditions. The impact of fire on the dynamics of dry forests and grass savannas is studied considering the specifics of different fire regimes. We propose that a deliberate and controlled use of fire respecting the vegetation stage and the defined objectives could be an appropriate management tool. The strategy of a fire management is elaborated considering both the conservation of biodiversity and improvement of the livelihood of the local population depending upon the Reserve's resources. Obviously, a sustainable management of the natural resources requires a substantial participation of the community.  相似文献   

19.
Savanna ecosystems comprise 22% of the global terrestrial surface and 25% of Australia (almost 1.9 million km2) and provide significant ecosystem services through carbon and water cycles and the maintenance of biodiversity. The current structure, composition and distribution of Australian savannas have coevolved with fire, yet remain driven by the dynamic constraints of their bioclimatic niche. Fire in Australian savannas influences both the biophysical and biogeochemical processes at multiple scales from leaf to landscape. Here, we present the latest emission estimates from Australian savanna biomass burning and their contribution to global greenhouse gas budgets. We then review our understanding of the impacts of fire on ecosystem function and local surface water and heat balances, which in turn influence regional climate. We show how savanna fires are coupled to the global climate through the carbon cycle and fire regimes. We present new research that climate change is likely to alter the structure and function of savannas through shifts in moisture availability and increases in atmospheric carbon dioxide, in turn altering fire regimes with further feedbacks to climate. We explore opportunities to reduce net greenhouse gas emissions from savanna ecosystems through changes in savanna fire management.  相似文献   

20.
Fire is a natural disturbance in savannas, and defines vegetation physiognomy and structure, often influencing species diversity. Fire activity is determined by a wide range of factors, including long and short term climatic conditions, climate seasonality, wind speed and direction, topography, and fuel biomass. In Brazil, fire shapes the structure and composition of cerrado savannas, and the impact of fire on vegetation dynamics is well explored, but the drivers of variation in fire disturbance across landscapes and over time are still poorly understood. We reconstructed 31 years of fire occurrence history in the Serra do Cipó region, a highly-diverse cerrado landscape, located in the southern portion of the Espinhaço mountain range, state of Minas Gerais, Southeastern Brazil. We mapped burn scars using a time series of Landsat satellite images from 1984 to 2014. Our questions were 1) How does fire occurrence vary in time and space across the Serra do Cipó cerrado landscape? 2) Which climatic drivers may explain the spatial and inter-annual variation in fire occurrence on this landscape? 3) Is fire occurrence in this cerrado landscape moisture-limited or fuel-limited? We evaluated the inter-annual variation and distribution of burned areas, and used linear models to explain this variation in terms of rainfall amount (determinant of fuel load production), seasonal rainfall distribution (determinant of dry fuel availability), abnormality of precipitation (Standardized Precipitation Index – SPI), and vegetation type (Enhanced Vegetation Index – EVI). Contrary to our expectations, annual rainfall volume was weakly and negatively correlated with burned area, and the strongest predictor of burned area was drought during the ignition season. The length of the dry season and the distribution of rain along the season determined ignition probability, increasing fire occurrence during the driest periods. We conclude that the mountain cerrado vegetation at Serra do Cipó has a moisture-dependent fire regime, in contrast to the fuel-dependent fire regimes described for African savannas. These findings imply that savannas at different continents may have different recovery and resilience capabilities when subjected to changes in the fire regime, caused by direct anthropogenic activities or indirectly through climatic changes. The possible effects of these changes on cerrado landscapes are still unknown, and future studies should investigate if currently observed fire regimes have positive or negative impacts on vegetation diversity, recovery, resilience and phenology, thus helping managers to include fire management as conservation measure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号