首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 20 毫秒
1.
Maize stover, including stalks, leaves, and cobs, has potential utility as a cellulosic biofeedstock. Understanding how total stover ethanol potential is affected by the proportion and quality of major plant components would facilitate the genetic improvement of stover quality and inform decisions regarding which plant parts should be targeted for harvesting. Our objectives were to determine how the proportion and composition of plant components affected ethanol potential and whether there are early season predictors of stover quality at maturity. Twenty-three hybrids were evaluated including 20 from a factorial mating design between five silage inbred lines and four commercial inbreds and a brown-midrib3, a Leafy1, and a commercial grain hybrid checks. Plants were harvested and dissected into component parts at developmental stages vegetative 3, vegetative 12, reproductive 3, and reproductive 6 (R6). Tissues were evaluated for acid detergent fiber (ADF), neutral detergent fiber (NDF), and NDF digestibility (NDFD). Stalk was the largest fraction of whole plant dry matter (46.2%) and had the lowest NDFD (375.0 g/kg) at R6. No relationship was found between stalk ADF at early developmental stages and whole plant ADF at R6, suggesting that quality at early developmental stages is not indicative of quality at physiological maturity. Differences were observed among hybrids for ADF and NDF for most plant parts evaluated. Hybrid-by-developmental stage and hybrid-by-plant part interactions were statistically significant. This indicates that there is minimal opportunity to identify superior hybrids for biofuel production based on the proportion of total biomass represented by a plant part and its quality at early developmental stages. Maximum conversion efficiency is attained when leaves are harvested compared to other tissue types at physiological maturity.  相似文献   

2.
Death camas (Zigadenus spp.) is a common poisonous plant in North America with plants occurring in a wide variety of habitats with species of toxic concern occurring primarily in meadows, grasslands, shrublands, and mountains. The toxicity of Zigadenus species has been attributed to a series of steroidal alkaloids. The objective of this study was to evaluate zygacine and total steroidal alkaloid concentrations in different plant tissues of Zigadenus paniculatus as a function of plant maturity. Death camas plants were collected at two locations at different developmental growth stages representing vegetative, flower, seed pod, and shattered seed pod stages. Zygacine represented greater than 50% of the total steroidal alkaloids at all developmental stages. In bulbs, total steroidal alkaloid and zygacine concentrations did not change significantly as a function of plant phenology, and concentrations were lower than what were observed in above ground plant parts. Total steroidal alkaloid and zygacine concentrations in above ground parts were highest at early vegetative growth stages and decreased over the growing season. In plant reproductive parts, total steroidal alkaloid and zygacine concentrations increased until maturity and then decreased as the plant senesced. The concentrations of steroidal alkaloids reported here suggest that the toxic risk associated with death camas is greatest in the early vegetative growth stages followed by the flower and pod stages. There is a toxic risk to livestock as long as the plant is present, and caution should be taken when grazing livestock in areas with death camas until the plant senesces.  相似文献   

3.
Goats in north-central Texas raised on rangeland often face winter forage quantity and quality deficits that may be mitigated by feeding hay or stover. Groundnut (Arachis hypogea) stover (8% CP, 35% ADF, 43% NDF and 8% acid detergent lignin (ADL) DM basis) and bermudagrass (Cynodon dactylon) hay (12% CP, 33% ADF, 73% NDF, and 5% ADL DM basis) were tested at Stephenville, Texas as 0.0, 0.5, or 2.0% BW supplement/substitution diets on 18 kg Boer X Spanish doe kids browsing native hardwoods (8 ha−1). Both hay and stover were fed ad libitum in a traditional feedlot, using a complete formulated feed ration as a control. Trials ran for 10 weeks from January to March in 2003 (134 mm rainfall) and in 2004 (182 mm rainfall). Goats receiving 0.5% and 2% BW bermudagrass or 2% BW groundnut stover had greater ADG than those in the control and 0.5% BW groundnut paddocks (P < 0.05). Goats fed complete ration in the drylot had greater (P < 0.05) ADG than those eating either hay or stover ad libitum. Bermudagrass hay rejected by goats in the hardwood trial was 20% lower in CP, 7% greater in NDF, 8% greater in ADF, and 9% greater in ADL than the original fed hay; groundnut stover refusals were 21% lower in CP, 12% greater in NDF, 19% greater in ADF, and 20% greater in ADL concentration than the stover when fed. Supplementing goats on hardwood range with bermudagrass hay or groundnut stover may improve ADG when browse is scarce or of poor quality.  相似文献   

4.
In vitro batch cultures were used to screen four fibrolytic enzyme mixtures at two dosages added to a 60 : 40 silage : concentrate diet containing the C4 tropical grass Andropogon gayanus grass ensiled at two maturities – vegetative stage (VS) and flowering stage (FS). Based on these studies, one enzyme mixture was selected to treat the same diets and evaluate its impact on fermentation using an artificial rumen (Rusitec). In vitro batch cultures were conducted as a completely randomized design with two runs, four replicates per run and 12 treatments in a factorial arrangement (four enzyme mixtures×three doses). Enzyme additives (E1, E2, E3 and E4) were commercial products and contained a range of endoglucanase, exoglucanase and xylanase activities. Enzymes were added to the complete diet 2 h before incubation at 0, 2 and 4 μl/g of dry matter (DM). Gas production (GP) was measured after 3, 6, 12, 24 and 48 h of incubation. Disappearance of DM (DMD), NDF (NDFD) and ADF (ADFD) were determined after 24 and 48 h. For all four enzyme mixtures, a dosage effect (P<0.05) was observed for NDFD and ADFD after 24 h and for DMD, NDFD and ADFD after 48 h of incubation of the VS diet. For the FS diet, a dosage effect was observed for GP and NDFD after 24 h and for GP, DMD, NDFD and ADFD after 48 h of incubation. There was no difference among enzyme mixtures nor was there an enzyme×dose interaction for the studied parameters. Because of the greatest numerical effect on NDF disappearance and the least cost price, enzyme mixture E2 at 4 µl/g of diet DM was selected for the Rusitec experiment. The enzyme did not impact (P>0.05) DM, N, NDF or ADF disappearance after 48 h of incubation nor daily ammonia-N, volatile fatty acids or CH4 production. However, enzyme application increased (P<0.05) microbial N production in feed particle-associated (loosely-associated) and silage feed particle-bound (firmly associated) fractions. With A. gayanus silage diets, degradation may not be limited by microbial colonization, but rather by the ability of fibrolytic enzymes to degrade plant cell walls within this recalcitrant forage.  相似文献   

5.
Selected quality parameters were measured for forage leaf tissuefrom a spaced-plant nursery. The genotypes used were Ky 31 tallfescue and hybrids of Italian ryegrass (Lolium multiflorum Lam.)x tall fescue (Festuca arundinacea Schreb.) and tall fescuex giant fescue [Fescue gigantea (L ) Vill.]. Hybrid ploidy rangedfrom 2n = 28 to 84 chromosomes. Forage quality was characterizedby neutral detergent fibre (NDF), acid detergent fibre (ADF),total soluble carbohydrates (TSC) nutritive value index (NVI),hemicellulose, and in vitro dry matter disappearance (DMD). Quality of tall fescue, as measured by increased DMD, was improvedby hybridization with giant fescue. Improved DMD and NVI correlatedwith lower NDF and ADF in the hybrids. A few hybrids of Italianryegrass x tall fescue (2n = 28) were higher in some qualityparameters than Ky 31. Tall fescue x giant fescue hybrids (2n= 80 to 84), as a group, had significant quality improvementover Ky 31 in higher DMD and NVI and lower NDF and ADF. Whilesome individual hybrids within each group were significantlyhigher in quality, only the 2n = 80 to 84 chromosome group wasconsistently higher than Ky 31. Prediction equations for DMD,NDF, and ADF were established based on solvent extraction withnear-infrared reflectance spectroscopy (NIRS). Linear correlationcoefficients between chemical measurement and NIRS for eachquality parameter were 0–95 or higher. Acid detergent fibre, neutral detergent fibre, dry matter disappearance, hemicellulose, nutritive value index, Festuca arundinacea, Festuca gigantea, Lolium multiflorum  相似文献   

6.
A study was conducted to determine the effects of stage of maturity on ensiling characteristics and ruminal nutrient degradability of oat silage. Oat was field grown and forage was harvested at the boot or soft dough stage and ensiled in mini-silos for 0, 2, 4, 8, 16 and 45 days. Two lactating Holstein cows fitted with ruminal fistulas were used determine ruminal nutrient degradability. Regardless of the stage of maturity, ensiled forages went through a rapid fermentation with a sharp decline in pH during the first 2 days of ensiling. Extensive proteolysis took place between 0 and 2 days as indicated by a reduction in true protein and neutral detergent insoluble protein (NDICP) and an increase in non-protein nitrogen (NPN). Chemical analysis of the 45 days silage showed that stage of maturity had no effect on neutral detergent fibre (NDF) and acid detergent fibre (ADF) of oat silage. However, oat harvested at the boot stage contained more crude protein (CP) and less starch than that harvested at the soft dough stage. Distribution of protein fractions showed that oat harvested at the boot stage contained lower NPN, NDICP and acid detergent insoluble protein than oat harvested at the soft dough stage. Results of the in situ incubation experiment indicated that oat harvested at the soft dough stage had lower ruminal dry matter (60.6 vs. 66.4%), CP (81.3 vs. 88.7%) and NDF (35.4 vs. 42.2%) degradabilities than oat harvested at the boot stage. It was concluded that chemical composition and ruminal nutrient degradability of oat silage are significantly influenced by stage of maturity.  相似文献   

7.
Maize silage is a significant energy source for animal production operations, and the efficiency of the conversion of forage into animal mass is an important consideration when selecting cultivars for use as feed. Fiber and lignin are negatively correlated with digestibility of feed, so the development of forage with reduced levels of these cell-wall components (CWCs) is desirable. While variability for fiber and lignin is present in maize germplasm, traditional selection has focused on the yield of the ear rather than the forage quality of the whole plant, and little information is available concerning the genetics of fiber and lignin. The objectives of this study were to map quantitative trait loci (QTLs) for fiber and lignin in the maize stalk and compare them with QTLs from other populations. Stalk samples were harvested from 191 recombinant inbred lines (RILs) of B73 (an inbred line with low-to-intermediate levels of CWCs) x De811 (an inbred line with high levels of CWCs) at two locations in 1998 and one in 1999 and assayed for neutral detergent fiber (NDF), acid detergent fiber (ADF), and acid detergent lignin (ADL). The QTLs were detected on nine chromosomes, mostly clustered in concordance with the high genetic correlations between NDF and ADF. Adjustment of NDF for ADF and ADF for ADL revealed that most of the variability for CWCs in this population is in ADF. Many of the QTLs detected in this study have also been detected in other populations, and several are linked to candidate genes for cellulose or starch biosynthesis. The genetic information obtained in this study should be useful to breeding efforts aimed at improving the quality of maize silage.  相似文献   

8.
Stage of maturity at the time of harvest is considered as one of the factors influencing the nutritive value of crop residues. Thus this study was carried out to assess the effect of harvesting maize at different stages of grain maturity on yield and quality of maize grain and stover. The maize crop was harvested at grain moisture content of 28–30, 20–23 and 10–12%, which were designated as Stages I, II and III, respectively. Grain yield, standardised to 12.5% moisture content, showed an increasing trend, whereas cob, stover, total crop residue and total biomass dry matter (DM) yield showed a decreasing trend with increasing stage of maturity (p>0.05). The declining trend in stover yield with increased stage of maturity was due mainly to leaf loss. There was a significant decrease (p<0.05) in crop residue–grain ratio and leaf–stem ratio and a significant increase in the harvest index and hectolitre weight of the grain as the grain moisture content decreased from about 30 to 10%. Maize stover harvested at Stage I had significantly higher (p<0.05) ash content than those harvested at Stages II and III. The crude protein (CP) content was significantly lower, whereas the neutral detergent fibre and cellulose contents were higher (p<0.05) in Stage III than in Stages I and II. There was a decreasing trend in in sacco DM degradability with increasing stage of maturity. The washing loss, potential degradability and effective DM degradability at 0.03 h−1 rumen outflow rate were higher (p<0.05) in Stage I than in Stages II and III. The volume of gas produced after 3, 6, 12, 24, 48 and 72 h of incubation was higher (p<0.05) in Stage I than in Stages II and III. The a value (the intercept of the gas production curve) and the gas production potential (a+b) were higher (p<0.05) in Stage I than in Stage III. Reduction in the nutritive value of stover with increasing stage of maturity was characterised by reduction in CP contents and increasing concentration of fibrous constituents. These were reflections of changes in the morphological composition of stover and losses of nutrients within the morphological fractions with increasing stage of maturity.  相似文献   

9.
Soybean (Glycine max [L.] Merr. cv. Essex) was grown in an unshaded greenhouse under three levels of biologically effective ultraviolet-B (UV-BBE) radiation (effective daily dose: 0, 11.5 and 13.6 kJ m–2) for 91 days. Plants were harvested at regular intervals beginning 10 days after germination until reproductive maturity. Mathematical growth analysis revealed that the effects of UV-B radiation varied with plant growth stage. The transition period between vegetative and reproductive growth was the most sensitive to UV-B radiation. Intermediate levels of UV-B had deleterious effects on plant height, leaf area, and total plant dry weight at late vegetative and reproductive stages of development. Specific leaf weight increased during vegetative growth but was unaffected by UV-B during reproductive growth stages. Relative growth, net assimilation, and stem elongation rates were decreased by UV-B radiation during vegetative and early reproductive growth stages. Variation in plant responses may be due in part to changes in microclimate within the plant canopy or to differences in repair or protection mechanisms at differing developmental stages.  相似文献   

10.
This study evaluated the digestibility of whole-crop cereal silage (WCCS) made from oats and six-rowed barley harvested at the heading, early milk and early dough stages, and two-rowed barley harvested at the early milk and early dough stages of maturity. The eight WCCSs were fed to 32 Swedish Red heifers in a changeover design over three periods of 28 days each. The heifers were first fed ad libitum for 17 days and then at 0.95 of ad libitum for 11 days of each period. During the last 5 days all faeces and orts were collected to determine the digestibility of the silages. Only the maturity stage effect was significant for the WCCS organic matter (OM) digestibility and the average OM digestibility was higher at the heading stage (698 g/kg) than at early milk (647 g/kg) and early dough (652 g/kg) stages of maturity. For neutral detergent fibre (NDF) digestibility the crop × maturity stage effect was significant. The NDF digestibility decreased from the heading to the early milk stage for both six-rowed barley (746 to 607 g/kg) and oats (698 to 596 g/kg). There was no further significant decrease in NDF digestibility for six-rowed barley at the early dough stage (577 g/kg), but for two-rowed barley it decreased from the early milk (682 g/kg) to the early dough (573 g/kg) stage, and also for oats the NDF digestibility was lowest at the early dough stage (507 g/kg). The decrease in NDF digestibility during maturation was to a large extent compensated by an increase in starch concentration in the crops. The starch digestibility was lower for six-rowed barley at early dough stage (948 g/kg) than at early milk stage (977 g/kg), and was also lower compared with oats (979 g/kg) at early dough stage. The average crude protein (CP) digestibility was higher at the heading (646 g/kg) and the early milk (642 g/kg) stages than at the early dough stage (599 g/kg), and oats had higher average CP digestibility (650 g/kg) than six-rowed (613 g/kg) and two-rowed (624 g/kg) barley. Delaying the harvest of WCCS from the heading to the early milk and dough stage of maturity will decrease the OM digestibility; as a result there is a decreased NDF digestibility.  相似文献   

11.
Annual (Lolium multiflorum Lam.) and perennial (Lolium perenne L.) ryegrasses are two important forage and turfgrass species. Improving the digestibility of forage by decreasing fiber content is a major goal in forage crop breeding programs. An annual × perennial ryegrass interspecific hybrid population was used to map quantitative trait loci (QTLs) for fiber components, neutral detergent fiber (NDF), acid detergent fiber (ADF), and acid detergent lignin (ADL), and crude protein (CP). Samples were harvested three times in August and September 2003 and August 2004, respectively. Simple interval mapping was used to detect QTLs from both the male and female parental maps previously developed for the population. Fiber components were all correlated positively with each other and were negatively correlated with CP. The largest correlations were between NDF and ADF with r = 0.86, 0.72, and 0.82 for each of the three harvests. All four traits showed intermediate broad-sense heritability values ranging from 0.35 to 0.72. A total of 63 QTLs were detected for the four traits measured over the three harvests from both the female and male maps. Coincident QTLs were detected on linkage groups (LGs) 2, 6, and 7 for NDF, LGs 1, 2, and 7 for ADF, LGs 6 and 7 for ADL, and LG 2 for CP, respectively. Coincident QTLs were also detected on LGs 2, 6, and 7 for NDF and ADF, providing evidence of the genetic basis of the observed high level of phenotypic correlation. The QTLs on LGs 2, 6, and possibly 7 for fiber components were co-located on the same LG as several lignin biosynthetic genes from perennial ryegrass.  相似文献   

12.
利用近红外漫反射光谱法,对50份常用普通玉米自交系和50份高油自交系秸秆的中性洗涤纤维(NDF)、酸性洗涤纤维(ADF)、可溶性糖(WSC)和粗蛋白(CP)4个品质性状进行了鉴定评价和相关性分析。结果表明,各品质性状变异较大,各性状自交系间差异均达极显著水平。不同品质性状变异程度不同,其中WSC含量变异最大,变异系数达34.23%。WSC与NDF、ADF极显著负相关,NDF与ADF含量极显著正相关。高油系表现为高WSC、CP和低NDF、ADF含量,总体上高油系秸秆品质优于普通玉米。  相似文献   

13.
Plant cell walls of forage provide a major source of energy for ruminant animals. Digestion of cell walls is limited by the presence of lignin, therefore the improving the digestibility of forages by reducing lignin content is a major goal in forage crop breeding programs. A recombinant inbred line maize population was used to map quantitative trait loci (QTL) for neutral detergent fiber (NDF), acid detergent fiber (ADF), and acid detergent lignin (ADL) of leaf-sheath and stalk tissues. All traits were positively genetically correlated. The larger genetic correlations were between NDF and ADF in sheaths (r = 0.84), NDF and ADF (r = 0.96), ADF and ADL (r = 0.83), and NDF and ADL (r = 0.76) in stalks. Twelve QTL were detected for NDF and 11 QTL for ADF in leaf-sheaths. Eight QTL detected for both traits were defined by the same or linked marker loci. Eight QTL were associated with leaf-sheath ADL. Eleven QTL were detected for NDF and ADF, and 12 QTL for ADL in stalks. Nine of eleven QTL detected for both NDF and ADF in stalks coincided in their genomic position. A high proportion of QTL detected for these traits had the same parental effects and genomic locations, suggesting that it is only necessary to select on one fiber component (NDF or ADF) to improve digestibility. Favorable correlated responses of unselected fiber components are expected due to coincident genomic locations of QTL and the high genetic correlation between fiber components. Several QTL detected in this study coincided in their positions with putative cellulose synthase genes from maize.  相似文献   

14.
While maize silage is a significant feed component in animal production operations, little information is available on the genetic bases of fiber and lignin concentrations in maize, which are negatively correlated with digestibility. Fiber is composed largely of cellulose, hemicellulose and lignin, which are the primary components of plant cell walls. Variability for these traits in maize germplasm has been reported, but the sources of the variation and the relationships between these traits in different tissues are not well understood. In this study, 191 recombinant inbred lines of B73 (low-intermediate levels of cell wall components, CWCs) × De811 (high levels of CWCs) were analyzed for quantitative trait loci (QTL) associated with CWCs in the leaf sheath. Samples were harvested from plots at two locations in 1998 and one in 1999 and assayed for neutral detergent fiber (NDF), acid detergent fiber (ADF) and acid detergent lignin (ADL). QTL were detected on all ten chromosomes, most in tissue specific clusters in concordance with the high genotypic correlations for CWCs within the same tissue. Adjustment of NDF for its subfraction, ADF, revealed that most of the genetic variation in NDF was probably due to variation in ADF. The low to moderate genotypic correlations for the same CWC across leaf sheath and stalk tissues indicate that some genes for CWCs may only be expressed in certain tissues. Many of the QTL herein were detected in other populations, and some are linked to candidate genes for cell wall carbohydrate biosynthesis.  相似文献   

15.
The nutritive value of whole crop forage maize is influenced by the proportion of ears and stover in the whole crop and by the nutrient composition and digestibility characteristics of the plant parts. An experiment investigating the impact of variety, harvest date and year on the nutritive value of ensiled maize ears was carried out in three consecutive years (2007, 2008 and 2010). Nine different maize varieties were harvested at three different maturity stages (50, 55 and 60% dry matter (DM) content in the ears). After harvest, ears and stover were ensiled separately and afterwards nutrient composition and ruminal nutrient degradability (organic matter (OM), crude protein (CP) and non-fibre carbohydrates (NFC)) were analysed. Variety had a significant influence on content of CP and effective ruminal degradability (ED) of OM at low passage rates, whereas ED of CP and NFC was not affected by variety. In contrast, harvest date and year significantly influenced nutrient composition and ruminal degradability of ensiled maize ears. The content of NFC increased and the content of fibre components as well as ED of OM, CP and NFC declined with processing maturity of the maize plants. At a passage rate of 5% h?1, ED of OM declined from 75.9% to 68.4%, ED of CP from 82.5% to 73.8% and ED of NFC from 88.0% to 82.3% between the early and late harvest date. The results of this study indicate that the nutrient composition and ruminal degradability of ensiled maize ears are affected mainly by maturity stage at harvest and by year, whereas variety has only little influence.  相似文献   

16.
Plant secondary compounds are critical in affecting interactions between plants and their herbivores. The norditerpene alkaloids are secondary compounds in Delphinium (larkspur) species which are divided into two classes: the N-(methylsuccinimido) anthranoyllycoctonine (MSAL-type) and non MSAL-type, and are known to be toxic to herbivorous insects and livestock. Alkaloid concentrations were measured in a whole plant context in vegetative and reproductive tissues in Delphinium nuttallianum at different stages of plant maturity at two locations to explore how plant maturity affected alkaloid concentrations within a growing season. Alkaloid concentrations differed between vegetative and reproductive tissues, with vegetative tissues having significantly lower alkaloid concentrations than reproductive tissues. However, no systematic differences in alkaloid concentrations were observed at different plant maturity stages across the growing season. Based on the data we suggest that alkaloid allocation in different plant parts of D. nuttallianum is influenced by life history of the plant, consistent with plant defense theory. At one location, as pods mature the qualitative alkaloid composition changed through structural diversification of the alkaloids present. The ecological significance of this structural diversification awaits further exploration.  相似文献   

17.
Four Icelandic (ICE) and four Danish Warmblood (DW) horses were used in a crossover study with two treatments to investigate the effect of breed and the effect of stage of maturity of haylage on the apparent total tract digestibility (ATTD) of a diet consisting of sugar beet pulp, black oats and haylage early or late cut. Fibre was analysed as crude fibre (CF), acid detergent fibre (ADF), neutral detergent fibre (NDF) and dietary fibre (DF = non-starch polysaccharides (NSP) plus lignin). In haylage all analysed fibre fractions increased with advancing stage of maturity, with the cell wall components cellulose, non-cellulosic residue, xylose and lignin causing this increase. Crude protein (CP) and sugars decreased with advancing stage of maturity. Feeding early cut haylage resulted in a significantly (p < 0.05) higher ATTD of dry matter (DM), organic matter (OM), energy, NDF, total NSP, DF and CP compared to feeding late cut haylage. There was a significantly (p < 0.05) higher ATTD of CF, DF and starch in ICE than in DW. Diet affected several faecal parameters with a significantly (p < 0.05) lower pH in faeces when horses were fed the early cut haylage. Concentrations of total short-chain fatty acids were significantly (p < 0.05) higher in faeces from horses fed early cut haylage, reflecting the higher fermentability (higher ATTD) of this diet. There was no marked effect of breed on faecal parameters. The DF analysis method gave the most appropriate differentiation of the fibre fractions and their digestibility, compared to the traditional CF, ADF and NDF analyses. A major advantage of the DF analysis is the capacity of recovering soluble fibres. The results suggested that ICE had higher ATTD of DF than DW, and this was caused by a tendency for a higher ATTD of cellulose, but further studies are required to verify that in general.  相似文献   

18.
Two experiments were conducted to evaluate the nutritional quality of cattle manure silage for ruminants. In experiment 1 a silage containing 50% cattle manure, 20% cane molasses (containing 0.4% urea) mixed with water in a 1:1.5 ratio, and 30% corn stover replaced 0, 50, 75 and 100% of corn stover in isonitrogenous diets (1.92% N) containing 70 or 80% corn stover (dry matter (DM) basis) in a 4×2 factorial arrangement. Forty lambs (34.5±3.2 kg body weight (BW)) were used to measure apparent digestibility and nitrogen balance in a completely randomized design with factorial arrangement (4×2) with five lambs per treatment. The cattle manure silage was also evaluated in growing Holstein heifers (212±32 kg BW) replacing 0, 25 or 37.5% of corn stover with cattle manure silage in isonitrogenous diets (2.24% N). Apparent digestibility of DM, organic matter (OM), neutral detergent fibre (NDF) and acid detergent fibre (ADF) were not affected. According to these results, digestibility is not affected by the level of cattle manure silage; however, intake was depressed at the highest levels of silage in lambs. Cattle manure silage may be considered as a potential by-product to be included in heifer's diet up to 37.5%, apparently without affecting performance. Recycling cattle manure through silage for ruminants is a viable alternative. © 1997 Elsevier Science B.V.  相似文献   

19.
We evaluated effects of hybrid and advancing plant maturity on performance, chemical composition, and nutritional characteristics of whole plant forage maize as well as the relative contributions of its plant fractions at high latitudes. Three maize hybrids, Avenir (FAO 180), Isberi (FAO 190) and Burli (FAO 210), were grown in southern Sweden in a field experiment with a replicated complete randomized block design. Plants were harvested four times during maturation, and dry matter (DM) yield and DM as a proportion of fresh weight were recorded. Whole plants were separated into four morphological fractions representing stems, leaves, kernels and cobs and the contribution of each fraction to the DM of the whole plant was estimated. Plant material was subjected to chemical analysis followed by measurement of in vitro gas production (GP) in buffered rumen fluid and finally, by calculation of in vitro true digestibility of organic matter (OM) and neutral detergent fibre (aNDFom). The GP profiles were fitted to a first order kinetic model with a discrete lag. Parameters describing the GP profiles were used in a recently developed mechanistic two compartment rumen degradation model to estimate in vivo OM digestibility (OMD) and first order rate of degradation in the rumen. Hybrids were compared and effects of maturity were assessed by analysis of variance using DM concentration as covariate. There were differences (P<0.05) among the hybrids in DM yield and relative contributions of the plant fractions. Differences (P<0.05) in modelled in vivo digestibility of OM and rates of degradation also occurred among hybrids. Increased maturity caused a reduction in in vitro digestibility of aNDFom in all plant fractions (P<0.05), but increased the rate of rumen degradation of OM in the whole plant as evaluated from GP results. The DM yield had a quadratic relationship with increasing maturity, with maximum yield at a DM concentration of about 370 g/kg. In vitro GP can describe the nutritive characteristics of forage maize in relation to advancing maturity and increased maturity affected agronomic performance and plant composition as well as the nutritive characteristics of hybrids.  相似文献   

20.
A study was conducted to compare the ensiling characteristics, chemical composition, and the ruminal and total tract nutrient degradabilities of leafy (Cargill F227) and brown midrib (Mycogen TMF94) corn silage hybrids. Corn was grown in Saint-Jean-sur-Richelieu, Quebec, Canada, harvested at a target 350 g kg(-1) dry matter (DM) content, and ensiled in mini-silos for 0, 2, 4, 8, 16, and 45 d. Two non-lactating Holstein cows fitted with ruminal and proximal duodenal cannulae were used to determine ruminal and whole tract nutrient degradability. Forage from both hybrids went through a rapid fermentation with a sharp decline in pH during the first 2 d of ensiling, pH in both silage being less than 4.0 after 45 d. Lactic acid concentration was however greater for leafy than brown midrib corn. Chemical analysis of silage after 45 d of ensiling revealed that hybrids differed in their composition. Compared to leafy corn, brown midrib corn had lower neutral detergent fiber (NDF), acid detergent fiber (ADF), acid detergent lignin (ADL), crude protein (CP), and neutral detergent and acid detergent insoluble proteins, but higher starch and net energy of lactation (NEL) values. Results of the in situ incubation experiment indicated that compared to leafy corn brown midrib corn had greater ruminal DM (64 vs. 54%), CP (73 vs. 71%), and NDF (32 vs. 24%) degradabilities. Brown midrib corn silage also had greater DM ruminal (53 vs. 48%) and total tract (67 vs. 61%) digestibilities, as well as greater NDF ruminal (34 vs. 25%), intestinal (10 vs. 8%), and total tract (43 vs. 33%) digestibilities. Type of corn hybrid will thus greatly affect silage chemical composition and nutrient digestibility.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号