首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The gel to liquid crystalline phase transition of the double-chained cationic dioctadecyldimethylammonium chloride and bromide (DODAX, X = Cl- or Br-) in aqueous vesicle dispersions prepared by non-sonication. sonication and extrusion has been investigated using high-sensitivity differential scanning calorimetry (DSC). The transition temperature (Tm) is a function of the preparation method, amphiphile concentration, vesicle curvature and nature of the counterion. DSC thermograms for DODAB and DODAC non-sonicated vesicle dispersions exhibit a single endothermic peak at Tm roughly independent of concentration up to 10 mM. Extrusion broadens the transition peak and shifts Tm downwards. Sonication, however, broadens slightly the transition peak and tends to shift Tm upwards suggesting that extrusion and sonication form vesicles with different characteristics. DODAC always exhibits higher Tm than DODAB irrespective of the preparation method. Tm changes as follows: Tm (sonicated) > or = Tm (non-sonicated) > Tm (extruded). Hysteresis of about 7 degrees C was observed for DODAB vesicle dispersions.  相似文献   

2.
Optically clear dispersions of dioctadecyldimethylammonium bromide and chloride (DODAX, X = Br, Cl) in water can be obtained by simply mixing the amphiphiles at low concentrations (1 mM) and at a temperature safely above the gel to liquid crystalline phase transition temperature (Tm ≈ 45–48 °C) of DODAX in water. Under these conditions, dynamic light scattering shows that, at room temperature, the dispersions contain two well-defined populations of large vesicles with average hydrodynamic radii (RH) of 80 and 337 nm for DODAB and of 69 and 247 nm for DODAC. Cryo-transmission electron microscopy (cryo-TEM) micrographs show that DODAX vesicles are unilamellar and polydisperse with apparent radius up to 800 nm. The vesicles are stable for at least 1 month according to the ageing time-dependence of the turbidity and molar absorption coefficient.  相似文献   

3.
Differential scanning calorimetry (DSC) and dynamic light scattering (DLS) were used to obtain the gel to liquid-crystalline phase transition temperature (Tm) and the apparent hydrodynamic radius (Rh) of spontaneously formed cationic vesicles of dialkyldimethylammonium bromide salts (CnH2n+1)2(CH3)2N+.Br-, with varying chain lengths. The preparation of cationic vesicles from aqueous solution of these surfactants, for n=12, 14, 16 and 18 (DDAB, DTDAB, DHDAB and DODAB, respectively), requires the knowledge of the surfactant gel to liquid-crystalline phase transition temperature, or melting temperature (Tm) since below this temperature these surfactants are poorly or not soluble in water. That series of cationic surfactants has been widely investigated as vesicle-forming surfactants, although C12 and C18, DDAB and DODAB are by far the most investigated from this series. The dependence of Tm of these surfactants on the number n of carbons in the surfactant tails is reported. The Tm obtained by DSC increases non-linearly with n, and the vesicle apparent radius Rh is about the same for DHDAB and DODAB, but much smaller for DDAB.  相似文献   

4.
Melting temperatures, T(m), were systematically studied for a set of 92 DNA duplex oligomers in a variety of sodium ion concentrations ranging from 69 mM to 1.02 M. The relationship between T(m) and ln [Na(+)] was nonlinear over this range of sodium ion concentrations, and the observed melting temperatures were poorly predicted by existing algorithms. A new empirical relationship was derived from UV melting data that employs a quadratic function, which better models the melting temperatures of DNA duplex oligomers as sodium ion concentration is varied. Statistical analysis shows that this improved salt correction is significantly more accurate than previously suggested algorithms and predicts salt-corrected melting temperatures with an average error of only 1.6 degrees C when tested against an independent validation set of T(m) measurements obtained from the literature. Differential scanning calorimetry studies demonstrate that this T(m) salt correction is insensitive to DNA concentration. The T(m) salt correction function was found to be sequence-dependent and varied with the fraction of G.C base pairs, in agreement with previous studies of genomic and polymeric DNAs. The salt correction function is independent of oligomer length, suggesting that end-fraying and other end effects have little influence on the amount of sodium counterions released during duplex melting. The results are discussed in the context of counterion condensation theory.  相似文献   

5.
Liu S  Lu G 《Biophysical chemistry》2007,127(1-2):19-27
The interaction between ribonucleotides (AMP, ADP, and ATP) and cationic vesicles prepared from dioctadecyldimethylammonium bromide (DODAB) were investigated in detail. The physicochemical properties of ribonucleotides/cationic lipid complexes were present. Gel exclusion-UV spectroscopic results showed that all the charge ratios of DODAB/ribonucleotides (AMP, ADP, and ATP) are 2:1 when the maximal ribonucleotides were adsorbed onto DODAB, while the molar ratios were different, e.g., 2:1 for DODAB/AMP, 4:1 for DODAB/ADP and 6:1 for DODAB/ATP. These differences may be attributed to the different anion charges of AMP, ADP and ATP. The results demonstrated that ribonucleotides combined with DODAB vesicles with the electrostatic attraction in the complexation of DODAB and ribonucleotides. Transmission electron microscopic results revealed the different extents of aggregation of cationic vesicles in the complexation process of ribonucleotides with cationic lipid. The variation dependence of zeta-potentials or electrophoretic mobilities on vesicle size was also different. The zeta-potentials and electrophoretic mobilities of the DODAB vesicles (0.01 and 0.02 mM) gradually decreased when the ribonucleotide concentration increased. However, the mean diameters of the DODAB vesicles (0.1 and 0.5 mM) gradually increased when the ribonucleotide concentration increased.  相似文献   

6.
Dioctadecyldimethylammonium bromide (DODAB) dispersions obtained by simply mixing the amphiphile in water, and by bath-sonication, were investigated by electron spin resonance (ESR) of stearic acids and their methyl ester derivatives, labeled at the 5th and 16th carbons of the acyl chain. The ESR spectra indicate that the non-sonicated dispersions are formed mainly by one population of DODAB vesicles, either in the gel (TT(m)) state. Around T(m) there is a co-existence of the two phases, with a thermal hysteresis of about 3.2 degrees C. In sonicated DODAB dispersions, spin labels indicate two different environments even for temperatures far below T(m): one similar to that obtained with non-sonicated samples, a gel phase, and another one in the liquid-crystalline state. The fluid phase domain present below T(m) could correspond to either the periphery of bilayer fragments, reported to be present in sonicated DODAB dispersions, or to high curvature vesicles.  相似文献   

7.
The bactericidal effect of dioctadecyldimethylammonium bromide (DODAB), a liposome forming synthetic amphiphile, is further evaluated for Escherichia coli, Salmonella typhimurium, Pseudomonas aeruginosa, and Staphylococcus aureus in order to establish susceptibilities of different bacteria species towards DODAB at a fixed viable bacteria concentration (2.5 x 10(7) viable bacteria/mL). For the four species, susceptibility towards DODAB increases from E. coli to S. aureus in the order above. Typically, cell viability decreases to 5% over 1 h of interaction time at DODAB concentrations equal to 50 and 5 microm for E. coli and S. aureus, respectively. At charge neutralization of the bacterial cell, bacteria flocculation by DODAB vesicles is shown to be a diffusion-controlled process. Bacteria flocculation does not yield underestimated counts of colony forming units possibly because dilution procedures done before plating cause deflocculation. The effect of vesicle size on cell viability demonstrates that large vesicles, due to their higher affinity constant for the bacteria (45.20 m(-)) relative to the small vesicles (0.14 m(-)), kill E. coli at smaller DODAB concentrations. For E. coli and S. aureus, simultaneous determination of cell viability and electrophoretic mobility as a function of DODAB concentration yields a very good correlation between cell surface charge and cell viability. Negatively charged cells are 100% viable whereas positively charged cells do not survive. The results show a clear correlation between simple adsorption of entire vesicles generating a positive charge on the cell surfaces and cell death.  相似文献   

8.
Dioctadecyldimethylammonium bromide (DODAB)/dipalmitoylphosphatidylcholine (DPPC) large and cationic vesicles obtained by vortexing a lipid film in aqueous solution and above the mean phase transition temperature (T(m)) are characterized by means of determination of phase behaviour, size distribution, zeta-potential analysis and colloid stability. The effect of increasing % DODAB over the 0-100% range was a nonmonotonic phase behaviour. At 50% DODAB, the mean phase transition temperature and the colloid stability were at maximum. There is an intimate relationship between stability of the bilayer structure and colloid stability. In 1, 50 and 150mM NaCl, the colloid stability for pure DPPC or pure DODAB vesicles was very low as observed by sedimentation or flocculation, respectively. In contrast, at 50% DODAB, remarkable colloid stability was achieved in 1, 50 or 150mM NaCl for the DODAB/DPPC composite vesicles. Vesicle size decreased but the zeta-potential remained constant with % DODAB, due to a decrease of counterion binding with vesicle size. This might be important for several biotechnological applications currently being attempted with cationic bilayer systems.  相似文献   

9.
Fusion of vesicles with the air-water interface and consequent monolayer formation has been studied as a function of temperature. Unilamellar vesicles of DMPC, DPPC, and DODAX (X=Cl(-), Br(-)) were injected into a subphase containing NaCl, and the surface pressure (tension) was recorded on a Langmuir Balance (Tensiometer) using the Wilhelmy plate (Ring) method. For the zwitterionic vesicles, plots of the initial surface pressure increase rate (surface tension decrease rate) as a function of temperature show a peak at the phase transition temperature (T(m)) of the vesicles, whereas for ionic ones they show a sharp rise. At high concentrations of NaCl, ionic DODA(Cl) vesicles seem to behave like zwitterionic ones, and the rate of fusion is higher at the T(m). The influence of size was studied comparing large DODA(Cl) vesicles with small sonicated ones, and no significant changes were found regarding the rate of fusion with the air-water interface.  相似文献   

10.
Dioctadecyldimethylammonium chloride (DODAC) unilamellar liposomes with a mean external diameter of 0.5 μm and sharp gel-to-liquid-crystalline phase transition temperatures (Tc) were obtained by chloroform vaporization and compared with small sonicated DODAC vesicles. Sucrose, impermeant through large DODAC liposomes and sonicated vesicles, was used for internal volume determinations. The internal volumes for large DODAC liposomes and sonicated DODAC vesicles were 9.0 ± 1.3 and 0.13 ± 0.2 l/mol, respectively. Ideal osmometer behaviour, towards KCl (0–50 mM) and sucrose, was observed only for large DODAC liposomes. Sonicated DODAC vesicles were osmotically non-responsive towards sucrose and flocculated upon addition of KCl. At temperatures near the Tc, a steep increase in the initial shrinkage rate and a minimum for the total extent of shrinkage were observed for large DODAC liposomes. Large DODAC liposomes are proposed as an adequate synthetic membrane model.  相似文献   

11.
The conformation of the double-stranded, mixed ribodeoxyribo polynucleotide, poly (rG-dC).poly (rG-dC), has been examined in the presence of tetraalkyl ammonium ions. Tetramethyl ammonium ion stabilizes the "low salt" Z conformation (1) of the polymer from submillimolar to molar concentrations of the counterion. In the presence of tetraethyl and tetrapropyl ammonium ions the polymer exists in the low salt Z form up to 2 mM concentration of the counterions and then flips to the right hand helical A form. With tetrabutyl ammonium counterions the polymer is in an A conformation at low ion concentrations and converts to a B form at concentrations greater than thirty millimolar. These results are interpreted in terms of electrostatic and solvent interactions of the polynucleotide.  相似文献   

12.
Dioctadecyldimethylammonium bromide (DODAB) is a double chain cationic lipid, which assembles as bilayer structures in aqueous solution. The precise structures formed depend on, e.g., lipid concentration and temperature. We here combine differential scanning calorimetry (DSC) and X-ray scattering (SAXS and WAXS) to investigate the thermal and structural behavior of up to 120 mM DODAB in water within the temperature range 1–70°C. Below 1 mM, this system is dominated by unilamellar vesicles (ULVs). Between 1 and 65 mM, ULVs and multilamellar structures (MLSs) co-exist, while above 65 mM, the MLSs are the preferred structure. Depending on temperature, DSC and X-ray data show that the vesicles can be either in the subgel (SG), gel, or liquid crystalline (LC) state, while the MLSs (with lattice distance d  = 36.7 Å) consist of interdigitated lamellae in the SG state, and ULVs in the LC state (no Bragg peak). Critical temperatures related to the thermal transitions of these bilayer structures obtained in the heating and cooling modes are reported, together with the corresponding transition enthalpies.  相似文献   

13.
The properties of sodium fusidate micelles were determined by a spectral shift technique, surface tension measurements, and ultracentrifugal analysis. The critical micellar concentrations, mean molecular areas, and apparent aggregation numbers were estimated as a function of the concentration of counterion (0.001-1.0 m Na(+)) at 20 degrees C. The critical micellar concentrations were studied over a temperature range of 10 degrees C to 40 degrees C at one counterion concentration (0.001 m Na(+)), and from these data the standard thermo-dynamic functions of micellization were calculated. The ability of sodium fusidate solutions to solubilize the insoluble swelling amphiphiles, lecithin and monoolein, was investigated, and the results were compared with the solubilizing properties of sodium taurocholate. The critical micellar concentrations of sodium fusidate approximated those of sodium taurocholate. The values fell in the range of 1.44-4.56 mm, varying with the technique used, counterion concentration, and temperature. The percentage of counterions bound to fusidate micelles in water, calculated from the log critical micellar concentration-log Na(+) curve, was estimated to be negligible, which compares with sodium taurocholate micelles. The critical micellar concentration of sodium fusidate exhibited a minimum at 20 degrees C, a phenomenon observed with other ionic detergents and with bile salts. Micelle formation in sodium fusidate solutions was shown to be primarily entropy-driven at 10 degrees and 20 degrees C, whereas at 30 degrees and 40 degrees C the enthalpy factor predominated. From the surface tension measurements the molecular areas of sodium fusidate and sodium taurocholate were calculated. The mean molecular area of fusidate was 101 A(2), whereas sodium taurocholate possessed a molecular area of 88 A(2). It was demonstrated that the sodium fusidate molecule, like a bile salt molecule, lies with its longitudinal axis horizontal at an air-water interface. The apparent aggregation number of sodium fusidate micelles increased from 5 to 16 as the concentration of counterion increased from 0.01 to 0.60 m Na(+). These values are slightly larger than the corresponding aggregation numbers of sodium taurocholate micelles.  相似文献   

14.
In the system composed of the cationic surfactant TOMAC (10 mM), the nonionic (co)surfactant Rewopal HV5 (2 mM), and octanol (0.1% v/v) in isooctane, reversed micelles are formed upon contact with an aqueous phase containing 50 mM ethylene diamine. alpha-Amylase can be transferred from the aqueous phase into reversed micelles in the pH range 9.5 to 10.5 and re-extracted into a second aqueous phase of different composition. The size of the reversed micelles (as reflected in the water content of the organic phase) can be varied by changes in percentage of octanol, type of counterion in the aqueous phase, or in the number of ethoxylate head groups of the nonionic surfactant. An increase in size results in transfer at lower pH values. Experiments in which the charge density in the reversed micellar interface was changed by incorporation of charged derivatives of the nonionic surfactant, without influencing the water content, revealed that an increased charge density facilitated transfer, resulting in a broader transfer profile. Replacement of TOMAC by other quaternary ammonium surfactants differing in number and length of tails revealed that, of the 14 surfactants tested, only 2 gave appreciable amounts of transfer. The amount of transfer is related to the dynamics of phase separation of the surfactants: those giving a poor phase separation inactivate the enzyme. This inactivation is caused by electrostatic interactions between the charged surfactant head groups and charged groups on the enzyme. Electrostatic interactions are the first step of transfer, and can result in either incorporation in a reversed micelle, or, if reversed micelle formation is slow, in enzyme inactivation. (c) 1995 John Wiley & Sons, Inc.  相似文献   

15.
We study the heat associated with the transformation of vesicles into micelles in mixtures of bilayer-forming phospholipids and micelle-forming surfactants. We subdivide the total heat evolution deltaQ(coex) within the range of coexistence of vesicles and micelles into three contributions related to the transition of dN(D)m-b molecules of surfactant and dN(L)m-b molecules of lipid from micelles to vesicles and to the extraction of dN(D)m-w molecules of surfactant from micelles to the aqueous solution, so that deltaQ(coex) = deltaH(D)m-w x dN(D)m-w + deltaH(D)m-b x dN(D)m-b + deltaH(L)m-b x dN(L)m-b where deltaH(D)m-w, deltaH(L)m-b, and deltaH(D)m-b are the respective molar "transfer" enthalpies. We design a method for the evaluation of all three molar enthalpies, from isothermal calorimetric titrations conducted according to two different protocols of titration of lipid-surfactant mixtures. In the first protocol the mixture is titrated with an aqueous solution of pure lipid vesicles, and in the second the mixture is titrated with an aqueous solution of pure surfactant. Titration of the mixed systems by a buffer solution serves to verify the results obtained under these protocols. In addition to the values of molar enthalpies, our method yields the cmc value of the pure surfactant. We apply our method to investigating the heat evolution in mixtures of egg yolk phosphatidylcholine and the nonionic surfactant octylglucoside in a phosphate-buffered saline solution at 28 degrees C. These studies gave the following values: deltaH(D)m-w = -1732 cal/mol, deltaH(L)m-b = -592 cal/mol, deltaH(D)m-b = 645 cal/mol, and cmc = 23.5 mM. We discuss the possible physical insight of these values and the perspectives of applications of the proposed method.  相似文献   

16.
The thermal unfolding of Amy 34, a recombinant alpha-amylase from Bacillus halodurans, has been investigated using differential scanning calorimetry (DSC). The denaturation of Amy 34 involves irreversible processes with an apparent denaturation temperature (T(m)) of 70.8 degrees C at pH 9.0, with four transitions, as determined using multiple Gaussian curves. The T(m) increased by 5 degrees C in the presence of 100-fold molar excess of CaCl2 while the aggregation of Amy 34 was observed in the presence of 1000-fold molar excess of CaCl2. Increase in the calcium ion concentration from 1- to 5-fold molar excess resulted in an increase in calorimetric enthalpy (DeltaH(cal)), however, at higher concentrations of CaCl2 (up to 100-fold), DeltaH(cal) was found to decrease, accompanied by a decrease in entropy change (DeltaS), while the T(m) steadily increased. The presence of 100-fold excess of metal chelator, EDTA, resulted in a decrease in T(m) by 10.4 degrees C. T(m) was also decreased to 61.1 degrees C and 65.9 degrees C at pH 6.0 and pH 11.0, respectively.  相似文献   

17.
J S Binford  Jr  W H Palm 《Biophysical journal》1994,66(6):2024-2028
Three surfactants (chlorpromazine hydrochloride, thioridazine hydrochloride, and sodium deoxycholate) are found to absorb just as strongly into the protein-containing membranes of erythrocytes as into the phospholipid bilayers of synthetic vesicles. In the concentration region where hemolysis occurs and the Langmuir adsorption isotherm is no longer valid, one may use a phase partition model in which the erythrocyte membrane is one of the phases. The partition coefficients, expressed as the ratio of mole fraction surfactant in the membrane lipid phase to concentration of surfactant in the aqueous phase, have been calculated at the point of saturation in the erythrocyte membrane. These values are Ky = 430 M-1 (chlorpromazine, pH 5.9), 550 M-1 (deoxycholate, pH 7.6), and 640 M-1 (thioridazine, pH 5.9), in isotonic buffer at 27 degrees C. Corresponding values for synthetic vesicles made from dimyristoylphosphatidylcholine are Kx = 230 M-1 (chlorpromazine, 0.12 M buffer/KCl pH 5.9), 440 M-1 (deoxycholate, 0.20 M buffer/NaCl pH 8.0) and 510 M-1 (thioridazine, 0.12 M buffer/KCl pH 5.9), at 27 degrees C. It appears that the surfactants become an integral part of the bilayer in both vesicles and natural membranes and that the absorption is not of a peripheral nature. There is no evidence that the presence of proteins in the natural membrane inhibits the absorption of these surfactants in any way.  相似文献   

18.
Vesicle to micelle transitions of sonicated liposomes of egg yolk phosphatidylcholine (EPC) induced by a homologous series of nonionic surfactants, poly(oxyethylene) cetyl ethers [POE(n) cetyl ether], were investigated by using the method of turbidity titrations. The turbidities of the mixed dispersions of sonicated vesicles and surfactant were systematically measured as a function of the surfactant added for a wide range of lipid concentrations (from 0.51 to 6.35 mM EPC). From the titration curves, two threshold points representing onset and complete solubilization of liposomal membranes were determined as a probe for the effect of the length of ethylene oxide (EO) moiety on the phase behavior of ternary system of POE(n) cetyl ethers-EPC-excess water. Patterns of turbidity curves and the surfactant concentrations at two threshold points as well as widths of region between two transitions, where lamellar sheets and mixed micelles may coexist, mainly depended on the length of EO head group. With changing the lengths, solubilization of liposomes and phase diagram showed optimal behavior. That is, in the middle range of EO numbers, it resulted in narrowest coexistence region between onset and complete solubilization. Assuming the equilibrium partitioning model, critical effective molar ratios of surfactant to lipid, Rsat, free surfactant concentrations, Dw, and the partition coefficient of surfactant between bilayer and aqueous phase, K, in surfactant-saturated liposomes were quantitatively determined as a function of EO number. Effective ratios, Rsol, and free surfactant concentration in mixed micelles were also determined. In addition, the effects of CMC and HLB of surfactants on the solubilization of liposome were discussed.  相似文献   

19.
The interaction of N-dodecyl-N,N-dimethyl-N-benzylammonium halides (DBeAX) with two types of phospholipid vesicles (MLV and SUV) was investigated using DSC and 1H NMR. It was suggested that the benzyl group like the micellisation process (J. Colloid Interface Sci. 218 (1999) 529) changes its position when interacting with phosphatidylcholine bilayers and incorporates into the bilayer. In order to enhance counterion-water interactions, the surfactants were added either to the water phase or directly to the lipid phase (a mixed film was formed). It follows from the obtained results that for both types of liposomes and both manners in which the surfactant was added, the interaction of DBeAX with liposomes and consequent changes in the phospholipid bilayer organisation depend on the kind of counterion. Results are discussed in terms of counterion ability to modify water structure.  相似文献   

20.
The nonpathogenic strain Arthrobacter nicotianae produces two sialidase isoenzymes, NA1 and NA2, with molecular masses of 65 kDa and 54 kDa, respectively, as determined by 10% SDS-polyacrylamide gel electrophoresis. NA1 and NA2 exhibit maximum activities at pH 4 and 5, and both show clear thermal optima at 40 degrees C. They are stable at temperatures up to 50 degrees C. The critical temperatures (T (c) = 50 degrees C and 51 degrees C) for the two isoenzymes were determined by fluorescence spectroscopy and correlate well with the temperatures of melting (T (m) = 49 degrees C and 48 degrees C), determined by CD spectroscopy. The isoenzymes are less stable against denaturation with Gdn.HCl, and the free energy of stabilization in water was calculated to be 7.6 and 8.0 kJ mol(-1), respectively. The specific activity (K (m) value) toward glucomacropeptide as a substrate was calculated to be 0.126 mM for NA1 and 0.083 mM for NA2.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号