首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two closely related stochastic models of parasitic infection are investigated: a non-linear model, where density dependent constraints are included, and a linear model appropriate to the initial behaviour of an epidemic. Host-mortality is included in both models. These models are appropriate to transmission between homogeneously mixing hosts, where the amount of infection which is transferred from one host to another at a single contact depends on the number of parasites in the infecting host. In both models, the basic reproduction ratio R0 can be defined to be the lifetime expected number of offspring of an adult parasite under ideal conditions, but it does not necessarily contain the information needed to separate growth from extinction of infection. In fact we find three regions for a certain parameter where different combinations of parameters determine the behavior of the models. The proofs involve martingale and coupling methods.  相似文献   

2.
We analyse the influence of various stochastic perturbations on prey-predator systems. The prey-predator model is described by stochastic versions of a deterministic Lotka-Volterra system. We study long-time behaviour of both trajectories and distributions of the solutions. We indicate the differences between the deterministic and stochastic models.  相似文献   

3.
Prediction of predator–prey populations modelled by perturbed ODEs   总被引:1,自引:0,他引:1  
In this paper we explore a stochastic model in continuous time for predator-prey interactions, which accounts for the periodical behaviour observed in many animal populations. More precisely, we consider a solution to the classical Lotka-Volterra system of equations, but we view the actual population sizes as random perturbations of the solutions to this ODE system. Namely, we assume that the perturbations follow correlated Ornstein-Uhlenbeck processes; this approach generalizes the one of Froda and Colavita [Aust N Z J Stat 2:235-254, 2005] who considered only i.i.d. errors. This type of perturbed deterministic model allows to perform parameter estimation and to predict population sizes at future times. On the other hand, the present model refines the previous one since it takes into account the variability due to external factors and the time dependence in the random component. Moreover, this more flexible model improves the predictions of population sizes at future times. In order to illustrate this last point, we analyse two data sets.  相似文献   

4.
5.
Backward bifurcation is a relatively recent yet well-studied phenomenon associated with deterministic epidemic models. It allows for the presence of multiple subcritical endemic equilibria, and is generally found only in models possessing a reasonable degree of complexity. One particular aspect of backward bifurcation that appears to have been virtually overlooked in the literature is the potential influence its presence might have on the behaviour of any analogous stochastic model. Indeed, the primary aim of this paper is to investigate this possibility. Our approach is to compare the theoretical probabilities of extinction, calculated via a particular stochastic formulation of a deterministic model exhibiting backward bifurcation, with those obtained from a series of stochastic simulations. We have found some interesting links in the behaviour between the deterministic and stochastic models, and are able to offer plausible explanations for our observations.  相似文献   

6.
The existence and implications of alternative stable states in ecological systems have been investigated extensively within deterministic models. However, it is known that natural systems are undeniably subject to random fluctuations, arising from either environmental variability or internal effects. Thus, in this paper, we study the role of noise on the pattern formation of a spatial predator–prey model with Allee effect. The obtained results show that the spatially extended system exhibits rich dynamic behavior. More specifically, the stationary pattern can be induced to be a stable target wave when the noise intensity is small. As the noise intensity is increased, patchy invasion emerges. These results indicate that the dynamic behavior of predator–prey models may be partly due to stochastic factors instead of deterministic factors, which may also help us to understand the effects arising from the undeniable susceptibility to random fluctuations of real ecosystems.  相似文献   

7.
Harro J 《Amino acids》2006,31(3):215-230
Summary. Short CCK peptides elicit panic attacks in humans and anxiogenic-like effects in some animal models, but CCK receptor antagonists have not been found clinically effective. Yet CCK overactivity appears to be involved in submissive behaviour, and CCKB receptor expression and binding are increased in suicide victims and animal models of anxiety. Preliminary data suggest that involvement of CCK and its receptor subtypes in anxiety can be better described when focusing on distinct endophenotypes, and considering environmental contingencies and confounds originating from interactions with dopamin-, opioid- and glutamatergic neurotransmission. In contrast, NPY is an anti-anxiety peptide with robust effects in various animal models when administrated into several brain regions. Studies with non-peptide antagonists selective for receptor subtypes have revealed the role of endogenous NPY in active coping. At least Y1, Y2 and Y5 receptors in various brain regions are involved, with the strongest evidence for contribution of Y1.  相似文献   

8.
Traditional models of disease evolution are based upon the deterministic competition between strains that confer complete cross-immunity, and predict the selection of strains with higher basic reproductive ratios ( R 0). In contrast, evolution in a stochastic setting is determined by a complex mixture of influences. Here, to isolate the impact of stochasticity, we constrain all competing strains to have an equal basic reproductive ratio – thereby eliminating deterministic selection. The resulting stochastic models predict an evolutionary unstable strategy, which separates a region favouring the evolution of rapid-transmission (acute) strains from one favouring persistent (chronic) strains. We find this to be a generic phenomenon with strain evolution consistently driven towards extremes of epidemiological behaviour. Even in the absence of an equal R 0 constraint, such stochastic selective pressures operate in addition to standard deterministic selection and will therefore influence the evolutionary behaviour of disease in all scenarios.  相似文献   

9.
We formulate and analyse a stochastic epidemic model for the transmission dynamics of a tick-borne disease in a single population using a continuous-time Markov chain approach. The stochastic model is based on an existing deterministic metapopulation tick-borne disease model. We compare the disease dynamics of the deterministic and stochastic models in order to determine the effect of randomness in tick-borne disease dynamics. The probability of disease extinction and that of a major outbreak are computed and approximated using the multitype Galton–Watson branching process and numerical simulations, respectively. Analytical and numerical results show some significant differences in model predictions between the stochastic and deterministic models. In particular, we find that a disease outbreak is more likely if the disease is introduced by infected deer as opposed to infected ticks. These insights demonstrate the importance of host movement in the expansion of tick-borne diseases into new geographic areas.  相似文献   

10.
Cell polarization is an important part of the response of eukaryotic cells to stimuli, and forms a primary step in cell motility, differentiation, and many cellular functions. Among the important biochemical players implicated in the onset of intracellular asymmetries that constitute the early phases of polarization are the Rho GTPases, such as Cdc42, Rac, and Rho, which present high active concentration levels in a spatially localized manner. Rho GTPases exhibit positive feedback-driven interconversion between distinct active and inactive forms, the former residing on the cell membrane, and the latter predominantly in the cytosol. A?deterministic model of the dynamics of a single Rho GTPase described earlier by Mori et al.?exhibits sustained polarization by a wave-pinning mechanism. It remained, however, unclear how such polarization behaves at typically low cellular concentrations, as stochasticity could significantly affect the dynamics. We therefore study the low copy number dynamics of this model, using a stochastic kinetics framework based on the Gillespie algorithm, and propose statistical and analytic techniques which help us analyse the equilibrium behaviour of our stochastic system. We use local perturbation analysis to predict parameter regimes for initiation of polarity and wave-pinning in our deterministic system, and compare these predictions with deterministic and stochastic spatial simulations. Comparing the behaviour of the stochastic with the deterministic system, we determine the threshold number of molecules required for robust polarization in a given effective reaction volume. We show that when the molecule number is lowered wave-pinning behaviour is lost due to an increasingly large transition zone as well as increasing fluctuations in the pinning position, due to which a broadness can be reached that is unsustainable, causing the collapse of the wave, while the variations in the high and low equilibrium levels are much less affected.  相似文献   

11.
Empirical evidence shows that childhood diseases persist in large communities whereas in smaller communities the epidemic goes extinct (and is later reintroduced by immigration). The present paper treats a stochastic model describing the spread of an infectious disease giving life-long immunity, in a community where individuals die and new individuals are born. The time to extinction of the disease starting in quasi-stationarity (conditional on non-extinction) is exponentially distributed. As the population size grows the epidemic process converges to a diffusion process. Properties of the limiting diffusion are used to obtain an approximate expression for τ, the mean-parameter in the exponential distribution of the time to extinction for the finite population. The expression is used to study how τ depends on the community size but also on certain properties of the disease/community: the basic reproduction number and the means and variances of the latency period, infectious period and life-length. Effects of introducing a vaccination program are also discussed as is the notion of the critical community size, defined as the size which distinguishes between the two qualitatively different behaviours. Received: 14 February 2000 / Revised version: 5 June 2000 / Published online: 24 November 2000  相似文献   

12.
Drug treatment of patients with schistosomiasis may select for drug-resistant parasites. In this article, we formulate a deterministic model with multiple strains of schistosomes (helminth parasites with a two-host life cycles) in order to explore the role of drug treatment in the maintenance of a polymorphism of parasite strains that differ in their resistance levels. The basic reproductive numbers for all strains are computed, and are shown to determine the stabilities of equilibria of the model and consequently the distribution of parasite phenotypes with different levels of drug tolerance. Analysis of our model shows that the likelihood that resistant strains will increase in frequency depends on the interplay between their relative fitness, the cost of resistance, and the degree of selection pressure exerted by the drug treatments.  相似文献   

13.
Parametric analysis of the ratio-dependent predator–prey model   总被引:3,自引:0,他引:3  
We present a complete parametric analysis of stability properties and dynamic regimes of an ODE model in which the functional response is a function of the ratio of prey and predator abundances. We show the existence of eight qualitatively different types of system behaviors realized for various parameter values. In particular, there exist areas of coexistence (which may be steady or oscillating), areas in which both populations become extinct, and areas of "conditional coexistence" depending on the initial values. One of the main mathematical features of ratio-dependent models, distinguishing this class from other predator-prey models, is that the Origin is a complicated equilibrium point, whose characteristics crucially determine the main properties of the model. This is the first demonstration of this phenomenon in an ecological model. The model is investigated with methods of the qualitative theory of ODEs and the theory of bifurcations. The biological relevance of the mathematical results is discussed both regarding conservation issues (for which coexistence is desired) and biological control (for which extinction is desired).  相似文献   

14.
We study the effects of random feeding, growing and dying in a closed nutrient-limited producer/consumer system, in which nutrient is fully conserved, not only in the mean, but, most importantly, also across random events. More specifically, we relate these random effects to the closest deterministic models, and evaluate the importance of the various times scales that are involved. These stochastic models differ from deterministic ones not only in stochasticity, but they also have more details that involve shorter times scales. We tried to separate the effects of more detail from that of stochasticity. The producers have (nutrient) reserve and (body) structure, and so a variable chemical composition. The consumers have only structure, so a constant chemical composition. The conversion efficiency from producer to consumer, therefore, varies. The consumers use reserve and structure of the producers as complementary compounds, following the rules of Dynamic Energy Budget theory. Consumers die at constant specific rate and decompose instantaneously. Stochasticity is incorporated in the behaviour of the consumers, where the switches to handling and searching, as well as dying are Poissonian point events. We show that the stochastic model has one parameter more than the deterministic formulation without time scale separation for conversions between searching and handling consumers, which itself has one parameter more than the deterministic formulation with time scale separation for these conversions. These extra parameters are the contributions of a single individual producer and consumer to their densities, and the ratio of the two, respectively. The tendency to oscillate increases with the number of parameters. The focus bifurcation point has more relevance for the asymptotic behaviour of the stochastic model than the Hopf bifurcation point, since a randomly perturbed damped oscillation exhibits a behaviour similar to that of the stochastic limit cycle particularly near this bifurcation point. For total nutrient values below the focus bifurcation point, the system gradually becomes more confined to the direct neighbourhood of the isocline for which the producers do not change.  相似文献   

15.
 The aim of this study is to derive an asymptotic expression for the probability that an infectious disease will disappear from a population at the end of a major outbreak (‘fade-out’). The study deals with a stochastic SIR-model. Local asymptotic expansions are constructed for the deterministic trajectories of the corresponding deterministic system, in particular for the deterministic trajectory starting in the saddle point. The analytical expression for the probability of extinction is derived by asymptotically solving a boundary value problem based on the Fokker-Planck equation for the stochastic system. The asymptotic results are compared with results obtained by random walk simulations. Received 20 July 1995; received in revised form 6 May 1996  相似文献   

16.
 Several nutrient–phytoplankton–zooplankton models with internal nutrient storage by phytoplankton are derived and analyzed. It is shown that there are thresholds beyond which the system is uniformly persistent. Variable-yield models with self-shading of phytoplankton are also considered. With respect to uniform persistence, our result demonstrates that the global dynamics of the system with shading are the same as those for which the self-shading mechanism is ignored. Received: 16 March 1999  相似文献   

17.
Köhler L  Speck T  Spatz HC 《Planta》2000,210(5):691-700
 The mechanical properties of young stems of Aristolochia macrophylla Lam. and Aristolochia brasiliensis Mart. et Zucc. were studied during elongation growth and primary differentiation. Data for the modulus of elasticity, for the viscoelastic behaviour caused by longitudinal tension and for the shear modulus resulting from torsion around a longitudinal axis were related to the underlying structural changes by quantitative analysis of stem anatomy, tissue distribution, ultrastructure, and cell wall biochemistry. The orientation of cellulose microfibrils was determined by light microscopy and small-angle X-ray diffraction, and the lignin content was determined by thioglycolic acid derivatization and spectroscopic quantification. It was demonstrated that the increase in stability during early development is due to the complementary effects of increase in cell wall material, lignification, and cellulose microfibril alignment. A detailed micromechanical model, considering internal prestresses, is proposed to explain the characteristic biphasic stress-strain behaviour as well as the strain-hardening observed. Received: 22 March 1999 / Accepted 9 September 1999  相似文献   

18.
 We investigate the polymerization kinetics of rod-like polymer filaments interacting with a distribution of monomer in one spatial dimension (e.g. along a narrow tube). We consider a variety of possible cases, including competition by the filament tips for the available monomer, and behaviour analogous to “treadmilling” in which the polymer adds subunits to one end and loses them at the other end so as to maintain a constant length. Applications to biological polymers such as actin filaments and microtubules are discussed. Received: 16 March 1999  相似文献   

19.
Ecological interactions between species that prefer different habitat types but come into contact in edge regions at the interfaces between habitat types are modeled via reaction-diffusion systems. The primary sort of interaction described by the models is competition mediated by pathogen transmission. The models are somewhat novel because the spatial domains for the variables describing the population densities of the interacting species overlap but do not coincide. Conditions implying coexistence of the two species or the extinction of one species are derived. The conditions involve the principal eigenvalues of elliptic operators arising from linearizations of the model system around equilibria with only one species present. The conditions for persistence or extinction are made explicit in terms of the parameters of the system and the geometry of the underlying spatial domains via estimates of the principal eigenvalues. The implications of the models with respect to conservation and refuge design are discussed. Received: 10 June 1999 / Revised version: 7 July 2000 / Published online: 20 December 2000  相似文献   

20.
A power-law relationship between the mean and variance of ecological time series has been shown to hold for a vast number of species. Here we examine the behaviour of single-species stochastic models and concentrate in particular on the mean-variance relationship as the carrying capacity becomes large. Single-species stochastic models can be written as Markov chains, and the long-term distribution of population sizes and hence power-law scaling can be found analytically. The various power-law scalings that arise have very different biological implications for the effects of stochasticity and the departure from the deterministic paradigm. Finally we extend our analysis to consider the complicating factors of spatial heterogeneity, nontrivial deterministic dynamics, and multispecies models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号