首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
BtuF is the periplasmic binding protein (PBP) for the vitamin B12 transporter BtuCD, a member of the ATP-binding cassette (ABC) transporter superfamily of transmembrane pumps. We have determined crystal structures of Escherichia coli BtuF in the apo state at 3.0 A resolution and with vitamin B12 bound at 2.0 A resolution. The structure of BtuF is similar to that of the FhuD and TroA PBPs and is composed of two alpha/beta domains linked by a rigid alpha-helix. B12 is bound in the "base-on" or vitamin conformation in a wide acidic cleft located between these domains. The C-terminal domain shares structural homology to a B12-binding domain found in a variety of enzymes. The same surface of this domain interacts with opposite surfaces of B12 when comparing ligand-bound structures of BtuF and the homologous enzymes, a change that is probably caused by the obstruction of the face that typically interacts with this domain by the base-on conformation of vitamin B12 bound to BtuF. There is no apparent pseudo-symmetry in the surface properties of the BtuF domains flanking its B12 binding site even though the presumed transport site in the previously reported crystal structure of BtuCD is located in an intersubunit interface with 2-fold symmetry. Unwinding of an alpha-helix in the C-terminal domain of BtuF appears to be part of conformational change involving a general increase in the mobility of this domain in the apo structure compared with the B12-bound structure. As this helix is located on the surface likely to interact with BtuC, unwinding of the helix upon binding to BtuC could play a role in triggering release of B12 into the transport cavity. Furthermore, the high mobility of this domain in free BtuF could provide an entropic driving force for the subsequent release of BtuF required to complete the transport cycle.  相似文献   

2.
BtuCD is an ABC transporter catalyzing the uptake of vitamin B12 across the Escherichia coli inner membrane. A previously reported X-ray structure of BtuCD in complex with the periplasmic vitamin B12-binding protein BtuF revealed asymmetry of the transmembrane BtuC subunits. The functional relevance of this asymmetry has remained uncertain. Here we report the X-ray structure of a catalytically impaired BtuCD mutant in complex with BtuF, where the BtuC subunits adopt a distinct asymmetric conformation. The structure suggests that BtuF does not discriminate between, or impose, asymmetric conformations of BtuCD. It also explains the conformational disorder observed in BtuCDF crystals.Structured summary of protein interactionsBtuF, BtuD and BtuC physically interact by X-ray crystallography (View interaction)  相似文献   

3.
Weng J  Ma J  Fan K  Wang W 《Biophysical journal》2008,94(2):612-621
ATP-binding cassette transporter BtuCD mediating vitamin B12 uptake in Escherichia coli couples the energy of ATP hydrolysis to the translocation of vitamin B12 across the membrane into the cell. Elastic normal mode analysis of BtuCD demonstrates that the simultaneous substrate trapping at periplasmic cavity and ATP binding at the ATP-binding cassette (BtuD) dimer proceeds readily along the lowest energy pathway. The transport power stroke is attributed to ATP-hydrolysis-induced opening of the nucleotide-binding domain dimer, which is coupled to conformational rearrangement of transmembrane domain (BtuC) helices leading to the closing at the periplasmic side and opening at the cytoplasmic gate. Simultaneous hydrolysis of two ATP is supported by the fact that antisymmetric movement of BtuD dimer implying alternating hydrolysis cannot induce effective conformational change of the translocation pathway. A plausible mechanism of translocation cycle is proposed in which the possible effect of the association of periplasmic binding protein BtuF to the transporter is also considered.  相似文献   

4.
Structure and mechanism of ABC transporters   总被引:1,自引:0,他引:1  
ATP-binding cassette (ABC) transporters facilitate unidirectional translocation of chemically diverse substrates across cell or organelle membranes. The recently determined crystal structures of the vitamin B(12) importer BtuCD and its cognate binding protein BtuF have revealed critical architectural features that are probably shared by other ABC transporters. For example, the arrangement of the ABC domains and their interface with the membrane-spanning domains are probably conserved, whereas the number of transmembrane helices and their arrangement are not. Two distinct mechanistic schemes for how ABC engines couple ATP hydrolysis to substrate transport have been proposed recently and are being explored.  相似文献   

5.
Putative metal-chelate-type ABC transporter HI1470/1 is homologous with vitamin B12 importer BtuCD but exhibits a distinct inward-facing conformation in contrast to the outward-facing conformation of BtuCD. Normal-mode analysis of HI1470/1 reveals the intrinsic asymmetric conformational flexibility in this transporter and demonstrates that the transition from the inward-facing to the outward-facing conformation is realized through the asymmetric motion of individual subunits of the transporter. This analysis suggests that the asymmetric arrangement of the BtuC dimer in the crystal structure of the BtuCD-F complex represents an intermediate state relating HI1470/1 and BtuCD. Furthermore, a twisting motion between transmembrane domains and nucleotide-binding domains encoded in the lowest-frequency normal mode of this type of importer is found to contribute to the conformational transitions during the whole cycle of substrate transportation. A more complete translocation mechanism of the BtuCD type importer is proposed.  相似文献   

6.
Borths EL  Poolman B  Hvorup RN  Locher KP  Rees DC 《Biochemistry》2005,44(49):16301-16309
BtuCD is an ATP binding cassette (ABC) transporter that facilitates uptake of vitamin B(12) into the cytoplasm of Escherichia coli. The crystal structures of BtuCD and its cognate periplasmic binding protein BtuF have been recently determined. We have now explored BtuCD-F function in vitro, both in proteoliposomes and in various detergents. BtuCD reconstituted into proteoliposomes has a significant basal ATP hydrolysis rate that is stimulated by addition of BtuF and inhibited by sodium ortho-vanadate. When using different detergents to solubilize BtuCD, the basal ATP hydrolysis rate, the ability of BtuF to stimulate hydrolysis, and the extent to which sodium ortho-vanadate inhibits ATP hydrolysis all vary significantly. Reconstituted BtuCD can mediate transport of vitamin B(12) against a concentration gradient when coupled to ATP hydrolysis by BtuD in the liposome lumen and BtuF outside the liposomes. These in vitro studies establish the functional competence of the BtuCD and BtuF preparations used in the crystallographic analyses for both ATPase and transport activities. Furthermore, the tight binding of BtuF to BtuCD under the conditions studied suggests that the binding protein may not dissociate from the transporter during the catalytic cycle, which may be relevant to the mechanisms of other ABC transporter systems.  相似文献   

7.
Kandt C  Xu Z  Tieleman DP 《Biochemistry》2006,45(44):13284-13292
BtuF is the periplasmic binding protein (PBP) in the vitamin B(12) uptake system in Escherichia coli where it is associated with the ABC transporter BtuCD. When the ligand binds, PBPs generally display large conformational changes, commonly termed the Venus flytrap mechanism. BtuF belongs to a group of PBPs that, on the basis of crystal structures, does not appear to display such behavior. Using 480 ns multicopy molecular dynamics simulations of apo and holo forms of the protein, we investigate the dynamics of BtuF. We find BtuF to be more flexible than previously assumed, displaying clear opening and closing motions which are more pronounced in the apo form. The protein behavior is compatible with a PBP functional model that postulates a closed conformation for the ligand-bound state, whereas the empty form fluctuates between open and closed conformations. Elastic network normal-mode analysis suggests that all BtuF-like PBPs are capable of similar opening and closing motions. It also makes the typical Venus flytrap domain motions a likely common means of how PBP-ABC transporter interaction could occur.  相似文献   

8.
Based on the crystal structure of the vitamin B12 transporter protein of Escherichia coli(BtuCD) a system consisting of the BtuCD transmembrane domain(BtuC) and the palmitoyloleoyl phosphatidylcholine(POPC) lipid bilayer was constructed in silica,and a more-than-57-nanosecond molecular dynamics(MD) simulation was performed on it to reveal the intrinsic functional motions of BtuC.The results showed that a stable protein-lipid bilayer was obtained and the POPC lipid bilayer was able to adjust its thickness to...  相似文献   

9.
Ivetac A  Campbell JD  Sansom MS 《Biochemistry》2007,46(10):2767-2778
ABC transporters are integral membrane proteins which couple the energy of ATP hydrolysis to the translocation of solutes across cell membranes. BtuCD is a approximately 1100-residue protein found in the inner membrane of Gram-negative bacteria which transports vitamin B12. Vitamin B12 is bound in the periplasm by BtuF, which delivers the solute to the periplasmic entrance of the transporter protein complex BtuCD. Molecular dynamics simulations of the BtuCD and BtuCDF complexes (in a lipid bilayer) and of the isolated BtuD and BtuF proteins (in water) have been used to explore the conformational dynamics of this complex transport system. Overall, seven simulations have been performed, with and without bound ATP, corresponding to a total simulation time of 0.1 micros. Binding of ATP drives closure of the nucleotide-binding domains (NBDs) in BtuD in a symmetrical fashion, but not in BtuCD. It seems that ATP constrains the flexibility of the NBDs in BtuCD such that their closure may only occur upon binding of BtuF to the complex. Upon introduction of BtuF, and concomitant with NBD association, one ATP-binding site displays a closure, while the opposite site remains relatively unchanged. This asymmetry may reflect an initial step in the "alternating hydrolysis" mechanism and is consistent with measurements of nucleotide-binding stoichiometries. Principal components analysis of the simulation of BtuCD reveals motions that are comparable to those suggested in current transport models.  相似文献   

10.
Liu M  Sun T  Hu J  Chen W  Wang C 《Biophysical chemistry》2008,135(1-3):19-24
BtuF is the periplasmic binding protein (PBP) that binds vitamin B12 and delivers it to the periplasmic surface of the ABC transporter BtuCD. PBPs generally exhibit considerable conformational changes during ligand binding process, however, BtuF belongs to a subclass of PBPs that, doesn't show such behavior on the basis of the crystal structures. Employing steered molecular dynamics on the B12-bound BtuF, we investigated the energetics and mechanism of BtuF. A potential of mean force along the postulated vitamin B12 unbinding pathway was constructed through Jarzynski's equality. The large free energy differences of the postulated B12 unbinding process suggests the B12-bound structure is in a stable closed state and some conformation changes may be necessary to the B12 unbinding. From the result of the principal component analysis, we found the BtuF-B12 complex shows clear opening-closing and twisting motion tendencies which may facilitate the unbinding of B12 from the binding pocket. The intrinsic flexibility of BtuF was also explored, and it's suggested the Trp44-Gln45 pair, which is situated at the mouth of the B12 binding pocket, may act as a gate in the B12 binding and unbinding process.  相似文献   

11.
Studies on membrane protein folding have focused on monomeric α-helical proteins and a major challenge is to extend this work to larger oligomeric membrane proteins. Here, we study the Escherichia coli (E. coli) ATP-binding cassette (ABC) transporter that imports vitamin B(12) (the BtuCD protein) and use it as a model system for investigating the folding and assembly of a tetrameric membrane protein complex. Our work takes advantage of the modular organization of BtuCD, which consists of two transmembrane protein subunits, BtuC, and two cytoplasmically located nucleotide-binding protein subunits, BtuD. We show that the BtuCD transporter can be re-assembled from both prefolded and partly unfolded, urea denatured BtuC and BtuD subunits. The in vitro re-assembly leads to a BtuCD complex with the correct, native, BtuC and BtuD subunit stoichiometry. The highest rates of ATP hydrolysis were achieved for BtuCD re-assembled from partly unfolded subunits. This supports the idea of cooperative folding and assembly of the constituent protein subunits of the BtuCD transporter. BtuCD folding also provides an opportunity to investigate how a protein that contains both membrane-bound and aqueous subunits coordinates the folding requirements of the hydrophobic and hydrophilic subunits.  相似文献   

12.
Weng J  Fan K  Wang W 《PloS one》2012,7(1):e30465
BtuCD is a member of the ATP-binding cassette transporters in Escherichia coli that imports vitamin B(12) into the cell by utilizing the energy of ATP hydrolysis. Crystal structures of BtuCD and its homologous protein HI1470/1 in various conformational states support the "alternating access" mechanism which proposes the conformational transitions of the substrate translocation pathway at transmembrane domain (TMD) between the outward-facing and inward-facing states. The conformational transition at TMD is assumed to couple with the movement of the cytoplasmic nucleotide-binding domains (NBDs) driven by ATP hydrolysis/binding. In this study, we performed targeted molecular dynamics (MD) simulations to explore the atomic details of the conformational transitions of BtuCD importer. The outward-facing to inward-facing (O→I) transition was found to be initiated by the conformational movement of NBDs. The subsequent reorientation of the substrate translocation pathway at TMD began with the closing of the periplasmic gate, followed by the opening of the cytoplamic gate in the last stage of the conformational transition due to the extensive hydrophobic interactions at this region, consistent with the functional requirement of unidirectional transport of the substrates. The reverse inward-facing to outward-facing (I→O) transition was found to exhibit intrinsic diversity of the conformational transition pathways and significant structural asymmetry, suggesting that the asymmetric crystal structure of BtuCD-F is an intermediate state in this process.  相似文献   

13.
Prokaryotic importers from the large family of ABC (ATP-binding cassette) transporters comprise four separate subunits: two membrane-embedded and two cytoplasmic ATP-binding subunits. This modular construction makes them ideal candidates for studies of the intersubunit interactions of membrane protein complexes that contain both hydrophobic and hydrophilic subunits. In the present paper, we focus on the vitamin B12 importer of Escherichia coli, BtuCD, that contains two transmembrane BtuC subunits and two ATP-binding BtuD subunits. We have studied the factors that induce subunit dissociation and unfolding in vitro. The BtuCD complex remains intact in alcohol and mild detergents, but urea or SDS separate the BtuC and BtuD subunits, with 6?M urea causing 80% of BtuD to be removed from BtuCD. ATP is found to stabilize the complex as a result of its binding to the BtuD subunits. In the absence of ATP, low concentrations of urea (0.5-3?M) also induce some unfolding, with approximately 14% reduction in helicity in 3?M urea, whereas, in the presence of ATP, no changes are observed. Disassembly at the BtuD-BtuD dimeric interface in BtuCD can be achieved with smaller concentrations of urea (0.5-3?M) than that required to cause disassembly at the BtuC-BtuD transmission interface (3-8?M), suggesting a stronger interaction of the latter. The results also suggest that unfolding and disassociation of subunits appear to be coupled processes. Our work provides insights into the subunit interactions of an ABC transporter and lays the foundation for studies of the reassembly of BtuCD.  相似文献   

14.
The nucleotide-induced structural rearrangements in ATP binding cassette (ABC) transporters, leading to substrate translocation, are largely unknown. We have modeled nucleotide binding and release in the vitamin B(12) importer BtuCD using perturbed elastic network calculations and biased molecular dynamics simulations. Both models predict that nucleotide release decreases the tilt between the two transmembrane domains and opens the cytoplasmic gate. Nucleotide binding has the opposite effect. The observed coupling may be relevant for all ABC transporters because of the conservation of nucleotide binding domains and the shared role of ATP in ABC transporters. The rearrangements in the cytoplasmic gate region do not provide enough space for B(12) to diffuse from the transporter pore into the cytoplasm, which could suggest that peristaltic forces are needed to exclude B(12) from the transporter pore.  相似文献   

15.
Transduction of adenosine triphosphate (ATP) chemical-bond energy into work to drive large-scale conformational changes is common in proteins. Two specific examples of ATP-utilizing proteins are the nitrogenase iron protein and the ATP binding-cassette transporter protein, BtuCD. Nitrogenase catalyzes biological nitrogen fixation whereas BtuCD transports vitamin B(12) across membranes. Both proteins drive their reactions with ATP. To interpret how the mechanical force generated by ATP binding and hydrolysis is propagated in these proteins, a coarse-grained elastic network model is employed. The analysis shows that subunits of the proteins move against each other in a concerted manner. The lowest-frequency modes of the nitrogenase iron protein and of the ATP binding-cassette transporter BtuCD protein are found to link the functionally critical domains, and these modes are suggested to be responsible for (at least the initial stages) large-scale ATP-coupled conformational changes.  相似文献   

16.
Double electron-electron resonance is used here to investigate intermediates of the transport cycle of the Escherichia coli vitamin B12 ATP-binding cassette importer BtuCD-F. Previously, we showed the ATP-induced opening of the cytoplasmic gate I in TM5 helices, later confirmed by the AMP-PNP-bound BtuCD-F crystal structure. Here, other key residues are analyzed in TM10 helices (positions 307 and 322) and in the cytoplasmic gate II, i.e. the loop between TM2 and TM3 (positions 82 and 85). Without BtuF, binding of ATP induces detectable changes at positions 307 and 85 in BtuCD in liposomes. Together with BtuF, ATP triggers the closure of the cytoplasmic gate II in liposomes (reported by both positions 82 and 85). This forms a sealed cavity in the translocation channel in agreement with the AMP-PNP·BtuCD-F x-ray structure. When vitamin B12 and AMP-PNP are simultaneously present, the extent of complex formation is reduced, but the short 82–82 interspin distance detected indicates that the substrate does not affect the closed conformation of this gate. The existence of the BtuCD-F complex under these conditions is verified with spectroscopically orthogonal nitroxide and Gd(III)-based labels. The cytoplasmic gate II remains closed also in the vanadate-trapped state, but it reopens in the ADP-bound state of the complex. Therefore, we suggest that the substrate likely trapped in ATP·BtuCD-F can be released after ATP hydrolysis but before the occluded ADP-bound conformation is reached.  相似文献   

17.
ATP-binding cassette transporters use the free energy of ATP hydrolysis to transport structurally diverse molecules across prokaryotic and eukaryotic membranes. Computer simulation studies of the "real-time" dynamics of the ATP binding process in BtuCD, the vitamin B12 importer from Escherichia coli, demonstrate that the docking of ATP to the catalytic pockets progressively draws the two cytoplasmic nucleotide-binding cassettes toward each other. Movement of the cassettes into closer opposition in turn induces conformational rearrangement of alpha-helices in the transmembrane domain. The shape of the translocation pathway consequently changes in a manner that could aid the vectorial movement of vitamin B12. These results suggest that ATP binding may indeed represent the power stroke in the catalytic mechanism. Moreover, occlusion of ATP at one catalytic site is mechanically coupled to opening of the nucleotide-binding pocket at the second site. We propose that this asymmetry in nucleotide binding behavior at the two catalytic pockets may form the structural basis by which the transporter is able to alternate ATP hydrolysis from one site to the other.  相似文献   

18.
Cells of Escherichia coli take up vitamin B(12) (cyano-cobalamin [CN-Cbl]) and iron chelates by use of sequential active transport processes. Transport of CN-Cbl across the outer membrane and its accumulation in the periplasm is mediated by the TonB-dependent transporter BtuB. Transport across the cytoplasmic membrane (CM) requires the BtuC and BtuD proteins, which are most related in sequence to the transmembrane and ATP-binding cassette proteins of periplasmic permeases for iron-siderophore transport. Unlike the genetic organization of most periplasmic permeases, a candidate gene for a periplasmic Cbl-binding protein is not linked to the btuCED operon. The open reading frame termed yadT in the E. coli genomic sequence is related in sequence to the periplasmic binding proteins for iron-siderophore complexes and was previously implicated in CN-Cbl uptake in SALMONELLA: The E. coli yadT product, renamed BtuF, is shown here to participate in CN-Cbl uptake. BtuF protein, expressed with a C-terminal His(6) tag, was shown to be translocated to the periplasm concomitant with removal of a signal sequence. CN-Cbl-binding assays using radiolabeled substrate or isothermal titration calorimetry showed that purified BtuF binds CN-Cbl with a binding constant of around 15 nM. A null mutation in btuF, but not in the flanking genes pfs and yadS, strongly decreased CN-Cbl utilization and transport into the cytoplasm. The growth response to CN-Cbl of the btuF mutant was much stronger than the slight impairment previously described for btuC, btuD, or btuF mutants. Hence, null mutations in btuC and btuD were constructed and revealed that the btuC mutant had a strong impairment similar to that of the btuF mutant, whereas the btuD defect was less pronounced. All mutants with defective transport across the CM gave rise to frequent suppressor variants which were able to respond at lower levels of CN-Cbl but were still defective in transport across the CM. These results finally establish the identity of the periplasmic binding protein for Cbl uptake, which is one of few cases where the components of a periplasmic permease are genetically separated.  相似文献   

19.
Biosynthesis of vitamin B12, which occurs through salvaging pathway or de novo synthesis, is essential for the survival and growth of bacteria. While the mechanism is known for many bacteria, it is elusive yet for diarrhea causing pathogenic bacteria Vibrio cholerae or the other Vibrio species. Sequence analysis using genome databases delineated that majority of the Vibrio species including V. cholerae contain genes required for salvaging cobalamin/cobinamide in aerobic pathway while lack the genes required for de novo synthesis of B12. Fluorescence quenching study showed that VcBtuF, the PBP of putative ABC transporter BtuF-CD of V. cholerae O395 binds cyanocobalamin and dicyanocobinamide with micromolar dissociation constants (Kd). Productive internalization of these nutrients has been established through growth assay. The crystal structure of cyanocobalamin bound VcBtuF has shown that although interactions between cyanocobalamin and VcBtuF are largely similar to E. coli BtuF, VcBtuF possesses a wider binding pocket. MD simulations indicated that in contrast to EcBtuF that executes ‘open-close’ movement, inter-lobe twisting is prevalent in VcBtuF. Although H70, located at the entrance of the substrate binding cleft of VcBtuF, executes swinging motion, it cannot act as ‘closed gate’ to retain cyanocobalamin or cobinamide in the pocket like corresponding residue W66 of EcBtuF. Rather, VcBtuF shows a distinctive phenomenon of heme binding with comparable affinity to B12. Soret shift of heme upon binding with VcBtuF pointed towards involvement of H70 in heme recognition. This may lead to a restricted B12 or cobinamide binding during abundance of heme in the periplasmic space.  相似文献   

20.
ATP-binding cassette (ABC) transporters are ubiquitous integral membrane proteins that translocate substrates across cell membranes. The alternating access of their transmembrane domains to opposite sides of the membrane powered by the closure and reopening of the nucleotide binding domains is proposed to drive the translocation events. Despite clear structural similarities, evidence for considerable mechanistic diversity starts to accumulate within the importers subfamily. We present here a detailed study of the gating mechanism of a type II ABC importer, the BtuCD-F vitamin B(12) importer from Escherichia coli, elucidated by EPR spectroscopy. Distance changes at key positions in the translocation gates in the nucleotide-free, ATP- and ADP-bound conformations of the transporter were measured in detergent micelles and liposomes. The translocation gates of the BtuCD-F complex undergo conformational changes in line with a "two-state" alternating access model. We provide the first direct evidence that binding of ATP drives the gates to an inward-facing conformation, in contrast to type I importers specific for maltose, molybdate, or methionine. Following ATP hydrolysis, the translocation gates restore to an apo-like conformation. In the presence of ATP, an excess of vitamin B(12) promotes the reopening of the gates toward the periplasm and the dislodgment of BtuF from the transporter. The EPR data allow a productive translocation cycle of the vitamin B(12) transporter to be modeled.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号