首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Irar S  Oliveira E  Pagès M  Goday A 《Proteomics》2006,6(Z1):S175-S185
Late-embryogenesis-abundant (LEA) proteins accumulate as plant seeds desiccate and also in vegetative organs during periods of stress. They are predicted to play a role in plant stress tolerance. In the present study, we have initiated the characterization of phosphorylated LEA proteins present in the Arabidopsis seed, using a strategy that combines the thermostability (solubility upon heating) of many LEA-type proteins with the use of phosphoaffinity chromatography to obtain an enriched subpopulation of phosphoproteins. The specificity and efficiency of the procedure was assessed by alkaline phosphatase treatment and by a specific stain for phosphoproteins, in addition to the immunodetection of AtRab18, a phosphorylated LEA protein present in the mature dry seed. The phosphoproteins were identified by MS either by PMF using MALDI-TOF MS after 2-DE separation, or by peptide sequencing using both capillary LC MS/MS (LC muESI-ITMS/MS) and nanoLC coupled to nanoESI-MS/MS (LC-nanoESI-Q-TOF-MS/MS). Several LEA-type and storage-like proteins were identified as components of the phosphoproteome of the Arabidopsis seed.  相似文献   

2.
Phosphorylation is a reversible posttranslational protein modification which plays a pivotal role in intracellular signaling. Despite extensive efforts, phosphorylation site mapping of proteomes is still incomplete motivating the exploration of alternative methods that complement existing workflows. In this study, we compared tandem mass spectrometry (MS/MS) on matrix assisted laser desorption/ionization time‐of‐flight (MALDI‐TOF) and nano‐electrospray ionization (nESI) Orbitrap instruments with respect to their ability to identify phosphopeptides from complex proteome digests. Phosphopeptides were enriched from tryptic digests of cell lines using Fe‐IMAC column chromatography and subjected to LC‐MS/MS analysis. We found that the two analytical workflows exhibited considerable orthogonality. For instance, MALDI‐TOF MS/MS favored the identification of phosphopeptides encompassing clear motif signatures for acidic residue directed kinases. The extent of orthogonality of the two LC‐MS/MS systems was comparable to that of using alternative proteases such as Asp‐N, Arg‐C, chymotrypsin, Glu‐C and Lys‐C on just one LC‐MS/MS instrument. Notably, MALDI‐TOF MS/MS identified an unexpectedly high number and percentage of phosphotyrosine sites (~20% of all sites), possibly as a direct consequence of more efficient ionization. The data clearly show that LC‐MALDI MS/MS can be a useful complement to LC‐nESI MS/MS for phosphoproteome mapping and particularly so for acidic and phosphotyrosine containing peptides.  相似文献   

3.
The serine (Ser)/threonine (Thr)/tyrosine (Tyr) phosphoproteome of exponentially growing Streptomyces coelicolor A3(2) was analysed using the gel‐free approaches of preparative IEF for protein fractionation, followed by strong cation exchange peptide fractionation and phosphopeptide enrichment by TiO2 metal oxide affinity chromatography. Phosphopeptides were identified using LC‐ESI‐LTQ‐Orbitrap? MS. Forty‐six novel phosphorylation sites were identified on 40 proteins involved in gene regulation or signalling, central metabolism, protein biosynthesis, membrane transport and cell division, as well as several of unknown function. In contrast to other studies, Thr phosphorylation appeared to be preferred, with relative levels of Ser, Thr and Tyr phosphorylation of 34, 52 and 14%, respectively. Genes for most of the 40 phosphorylated proteins reside in the central “housekeeping” region of the linear S. coelicolor chromosome, suggesting that in general Ser, Thr and Tyr phosphorylation play a role in regulating essential aspects of metabolism in streptomycetes. A greater number of regulators and putative regulators were also identified compared with other bacterial phosphoproteome studies, potentially reflecting the complex heterotrophic and developmental life style of S. coelicolor. This study is the first analysis of the phosphoproteome of a member of this morphologically complex and industrially important group of microorganisms.  相似文献   

4.
Two‐dimensional blue native/SDS‐PAGE is widely applied to investigate native protein–protein interactions, particularly those within membrane multi‐protein complexes. MS has enabled the application of this approach at the proteome scale, typically by analysis of picked protein spots. Here, we investigated the potential of using LC‐MS/MS as an alternative for SDS‐PAGE in blue native (BN) analysis of protein complexes. By subjecting equal slices from BN gel lanes to label‐free semi‐quantitative LC‐MS/MS, we determined an abundance profile for each protein across the BN gel, and used these profiles to identify potentially interacting proteins by protein correlation profiling. We demonstrate the feasibility of this approach by considering the oxidative phosphorylation complexes I–V in the native human embryonic kidney 293 mitochondrial fraction, showing that the method is capable of detecting both the fully assembled complexes as well as assembly/turnover intermediates of complex I (NADH:ubiquinone oxidoreductase). Using protein correlation profiling with a profile for subunits NDUFS2, 3, 7 and 8 we identified multiple proteins possibly involved in the biogenesis of complex I, including the recently implicated chaperone C6ORF66 and a novel candidate, C3ORF60.  相似文献   

5.
6.
Reversible phosphorylation of proteins is the most common PTM in cell‐signaling pathways. Despite this, high‐throughput methods for the systematic detection, identification, and quantification of phosphorylated peptides have yet to be developed. In this paper, we describe the establishment of an efficient online titaniuim dioxide (TiO2)‐based 3‐D LC (strong cationic exchange/TiO2/C18)‐MS3‐linear ion trap system, which provides fully automatic and highly efficient identification of phosphorylation sites in complex peptide mixtures. Using this system, low‐abundance phosphopeptides were isolated from cell lines, plasma, and tissue of healthy and hepatocellular carcinoma (HCC) patients. Furthermore, the phosphorylation sites were identified and the differences in phosphorylation levels between healthy and HCC patient specimens were quantified by labeling the phosphopeptides with isotopic analogs of amino acids (stable isotope labeling with amino acids in cell culture for HepG2 cells) or water (HO for tissues and plasma). Two examples of potential HCC phospho‐biomarkers including plectin‐1(phopho‐Ser‐4253) and alpha‐HS‐glycoprotein (phospho‐Ser 138 and 312) were identified by this analysis. Our results suggest that this comprehensive TiO2‐based online‐3‐D LC‐MS3‐linear ion trap system with high‐throughput potential will be useful for the global profiling and quantification of the phosphoproteome and the identification of disease biomarkers.  相似文献   

7.
Shotgun proteomics commonly utilizes database search like Mascot to identify proteins from tandem MS/MS spectra. False discovery rate (FDR) is often used to assess the confidence of peptide identifications. However, a widely accepted FDR of 1% sacrifices the sensitivity of peptide identification while improving the accuracy. This article details a machine learning approach combining retention time based support vector regressor (RT-SVR) with q value based statistical analysis to improve peptide and protein identifications with high sensitivity and accuracy. The use of confident peptide identifications as training examples and careful feature selection ensures high R values (>0.900) for all models. The application of RT-SVR model on Mascot results (p=0.10) increases the sensitivity of peptide identifications. q Value, as a function of deviation between predicted and experimental RTs (ΔRT), is used to assess the significance of peptide identifications. We demonstrate that the peptide and protein identifications increase by up to 89.4% and 83.5%, respectively, for a specified q value of 0.01 when applying the method to proteomic analysis of the natural killer leukemia cell line (NKL). This study establishes an effective methodology and provides a platform for profiling confident proteomes in more relevant species as well as a future investigation of accurate protein quantification.  相似文献   

8.
Temperature sensation initiates from the activation of cellular receptors when the cell is exposed to a decrease in temperature. Here, we applied a phosphoproteome profiling approach to the human lung epithelial cell line BEAS‐2B to elucidate cellular cold‐responsive processes. The primary aim of this study was to determine which intracellular changes of phosphorylation are accompanied by cold sensation. Eighteen protein spots that exhibited differentially phosphorylated changes in cells were identified. Most of the proteins that were phosphorylated after 5 or 10 min were returned to control levels after 30 or 60 min. Identified proteins were mainly RNA‐related (i.e., they were involved in RNA binding and splicing). Temperature (18 and 10°C) stimuli showed homologies that were detected for time course changes in phosphoproteome. The data indicated a time‐shift between two temperatures. The phosphorylation of putative cold responsive markers, such as ribosomal protein large P0 and heterochromatin‐associated proteins 1, were verified by Western blotting in cells transfected with TRPM8 or TRPA1. J. Cell. Biochem. 112: 633–642, 2011. © 2010 Wiley‐Liss, Inc.  相似文献   

9.
Phosphorylation is one of the most important PTMs and is estimated to occur on 30% of the mammalian proteome. Its perturbed regulation has been implicated in many pathologies. The rarity of phosphotyrosine compared with phosphoserine or phosphothreonine is prompting the development of more sensitive approaches because proteomic technologies that are currently used to assess tyrosine phosphorylation in proteins are inadequate, identifying only a fraction of the predicted tyrosine phosphoproteome. Here we describe the development of a reproducible, high‐sensitivity methodology for the detection and mapping of phosphotyrosine residues by MS. The anti‐phosphotyrosine antibody 4G10 was coupled covalently to super para‐magnetic beads or by affinity to super para‐magnetic beads with protein G covalently attached. Using this approach, we successfully enriched phosphotyrosine peptides mixed with non‐phosphorylated peptides at a ratio of up to 1:200, enabling detection at a level representing the highest sensitivity reported for tyrosine phosphorylation. The beads were subsequently used to enrich tyrosine phosphopeptides from a digest of the in vitro‐phosphorylated recombinant β‐intracellular region of the granulocyte‐macrophage colony‐stimulating factor receptor, which was subsequently analysed by MALDI‐TOF/TOF MS. Our results define this methodology as a sensitive approach for tyrosine phosphoproteome analysis.  相似文献   

10.
The quality of MALDI‐TOF mass spectrometric analysis is highly dependent on the matrix and its deposition strategy. Although different matrix‐deposition methods have specific advantages, one major problem in the field of proteomics, particularly with respect to quantitation, is reproducibility between users or laboratories. Compounding this is the varying crystal homogeneity of matrices depending on the deposition strategy used. Here, we describe a novel optimised matrix‐deposition strategy for LC‐MALDI‐TOF/TOF MS using an automated instrument that produces a nebulised matrix “mist” under controlled atmospheric conditions. Comparisons of this with previously reported strategies showed the method to be advantageous for the atypical matrix, 2,5‐DHB, and improved phosphopeptide ionisation when compared with deposition strategies for CHCA. This optimised DHB matrix‐deposition strategy with LC‐MALDI‐TOF/TOF MS, termed EZYprep LC, was subsequently optimised for phosphoproteome analysis and compared to LC‐ESI‐IT‐MS and a previously reported approach for phosphotyrosine identification and characterisation. These methods were used to map phosphorylation on epidermal growth factor‐stimulated epidermal growth factor receptor to gauge the sensitivity of the proposed method. EZYprep DHB LC‐MALDI‐TOF/TOF MS was able to identify more phosphopeptides and characterise more phosphorylation sites than the other two proteomic strategies, thus proving to be a sensitive approach for phosphoproteome analysis.  相似文献   

11.
The functional impact of multisite protein phosphorylation can depend on both the numbers and the positions of phosphorylated sites—the global pattern of phosphorylation or ‘phospho‐form’—giving biological systems profound capabilities for dynamic information processing. A central problem in quantitative systems biology, therefore, is to measure the ‘phospho‐form distribution’: the relative amount of each of the 2n phospho‐forms of a protein with n‐phosphorylation sites. We compared four potential methods—western blots with phospho‐specific antibodies, peptide‐based liquid chromatography (LC) and mass spectrometry (MS; pepMS), protein‐based LC/MS (proMS) and nuclear magnetic resonance spectroscopy (NMR)—on differentially phosphorylated samples of the well‐studied mitogen‐activated protein kinase Erk2, with two phosphorylation sites. The MS methods were quantitatively consistent with each other and with NMR to within 10%, but western blots, while highly sensitive, showed significant discrepancies with MS. NMR also uncovered two additional phosphorylations, for which a combination of pepMS and proMS yielded an estimate of the 16‐member phospho‐form distribution. This combined MS strategy provides an optimal mixture of accuracy and coverage for quantifying distributions, but positional isomers remain a challenging problem.  相似文献   

12.
We are developing a rapid, time‐resolved method using laser‐activated cross‐linking to capture protein‐peptide interactions as a means to interrogate the interaction of serum proteins as delivery systems for peptides and other molecules. A model system was established to investigate the interactions between bovine serum albumin (BSA) and 2 peptides, the tridecapeptide budding‐yeast mating pheromone (α‐factor) and the decapeptide human gonadotropin‐releasing hormone (GnRH). Cross‐linking of α‐factor, using a biotinylated, photoactivatable p‐benzoyl‐L‐phenylalanine (Bpa)–modified analog, was energy‐dependent and achieved within seconds of laser irradiation. Protein blotting with an avidin probe was used to detect biotinylated species in the BSA‐peptide complex. The cross‐linked complex was trypsinized and then interrogated with nano‐LC–MS/MS to identify the peptide cross‐links. Cross‐linking was greatly facilitated by Bpa in the peptide, but some cross‐linking occurred at higher laser powers and high concentrations of a non‐Bpa–modified α‐factor. This was supported by experiments using GnRH, a peptide with sequence homology to α‐factor, which was likewise found to be cross‐linked to BSA by laser irradiation. Analysis of peptides in the mass spectra showed that the binding site for both α‐factor and GnRH was in the BSA pocket defined previously as the site for fatty acid binding. This model system validates the use of laser‐activation to facilitate cross‐linking of Bpa‐containing molecules to proteins. The rapid cross‐linking procedure and high performance of MS/MS to identify cross‐links provides a method to interrogate protein‐peptide interactions in a living cell in a time‐resolved manner.  相似文献   

13.
The in‐depth analysis of complex proteome samples requires fractionation of the sample into subsamples prior to LC‐MS/MS in shotgun proteomics experiments. We have established a 3D workflow for shotgun proteomics that relies on protein separation by 1D PAGE, gel fractionation, trypsin digestion, and peptide separation by in‐gel IEF, prior to RP‐HPLC‐MS/MS. Our results show that applying peptide IEF can significantly increase the number of proteins identified from PAGE subfractionation. This method delivers deeper proteome coverage and provides a large degree of flexibility in experimentally approaching highly complex mixtures by still relying on protein separation according to molecular weight in the first dimension.  相似文献   

14.
The main goal of many proteomics experiments is an accurate and rapid quantification and identification of regulated proteins in complex biological samples. The bottleneck in quantitative proteomics remains the availability of efficient software to evaluate and quantify the tremendous amount of mass spectral data acquired during a proteomics project. A new software suite, ICPLQuant, has been developed to accurately quantify isotope‐coded protein label (ICPL)‐labeled peptides on the MS level during LC‐MALDI and peptide mass fingerprint experiments. The tool is able to generate a list of differentially regulated peptide precursors for subsequent MS/MS experiments, minimizing time‐consuming acquisition and interpretation of MS/MS data. ICPLQuant is based on two independent units. Unit 1 performs ICPL multiplex detection and quantification and proposes peptides to be identified by MS/MS. Unit 2 combines MASCOT MS/MS protein identification with the quantitative data and produces a protein/peptide list with all the relevant information accessible for further data mining. The accuracy of quantification, selection of peptides for MS/MS‐identification and the automated output of a protein list of regulated proteins are demonstrated by the comparative analysis of four different mixtures of three proteins (Ovalbumin, Horseradish Peroxidase and Rabbit Albumin) spiked into the complex protein background of the DGPF Proteome Marker.  相似文献   

15.
The absolute quantitation of the targeted protein using MS provides a promising method to evaluate/verify biomarkers used in clinical diagnostics. In this study, a cardiac biomarker, troponin I (TnI), was used as a model protein for method development. The epitope peptide of TnI was characterized by epitope excision followed with LC/MS/MS method and acted as the surrogate peptide for the targeted protein quantitation. The MRM‐based MS assay using a stable internal standard that improved the selectivity, specificity, and sensitivity of the protein quantitation. Also, plasma albumin depletion and affinity enrichment of TnI by anti‐TnI mAb‐coated microparticles reduced the sample complexity, enhanced the dynamic range, and further improved the detecting sensitivity of the targeted protein in the biological matrix. Therefore, quantitation of TnI, a low abundant protein in human plasma, has demonstrated the applicability of the targeted protein quantitation strategy through its epitope peptide determined by epitope mapping method.  相似文献   

16.
Proteomics profiling of intact proteins based on MALDI‐TOF MS and derived platforms has been used in cancer biomarker discovery studies. This approach suffers from a number of limitations such as low resolution, low sensitivity, and that no knowledge is available on the identity of the respective proteins in the discovery mode. Nevertheless, it remains the most high‐throughput, untargeted mode of clinical proteomics studies to date. Here we compare key protein separation and MS techniques available for protein biomarker identification in this type of studies and define reasons of uncertainty in protein peak identity. As a result of critical data analysis, we consider 3D protein separation and identification workflows as optimal procedures. Subsequently, we present a new protocol based on 3D LC‐MS/MS with top‐down at high resolution that enabled the identification of HNRNP A2/B1 intact peptide as correlating with the estrogen receptor expression in breast cancer tissues. Additional development of this general concept toward next generation, top‐down based protein profiling at high resolution is discussed.  相似文献   

17.
Sui S  Wang J  Yang B  Song L  Zhang J  Chen M  Liu J  Lu Z  Cai Y  Chen S  Bi W  Zhu Y  He F  Qian X 《Proteomics》2008,8(10):2024-2034
The liver is the largest organ in the body, with many complex, essential functions, such as metabolism, deintoxication, and secretion, often regulated via post-translational modifications, especially phosphorylation. Thus, the detection of phosphoproteins and phosphorylation sites is important to comprehensively explore human liver biological function. The human Chang liver cell line is among the first derived from non-malignant tissue, and its phosphoproteome profile has never been globally analyzed. To develop the complete phosphoproteome and probe the roles of protein phosphorylation in normal human liver, we adopted a shotgun strategy based on strong cation exchange chromatograph, titanium dioxide and LC-MS/MS to isolate and identify phosphorylated proteins. Two types of MS approach, Q-TOF and IT, were used and compared to identify phosphosites from complex protein mixtures of these cells. A total of 1035 phosphorylation sites and 686 phosphorylated peptides were identified from 607 phosphoproteins. A search using the public database of PhosphoSite showed that approximately 344 phosphoproteins and 760 phosphorylation sites appeared to be novel. In addition, N-terminal phosphorylated peptides were a greater fraction of all identified phosphopeptides. With GOfact analysis, we found that most of the identified phosphoproteins are involved in regulating metabolism, consistent with the liver's role as a key metabolic organ.  相似文献   

18.
The past decade has been marked by the emergence of selective affinity media and sensitive mass spectrometry instrumentation that facilitated large-scale phosphoproteome analyses and expanded the repertoire of protein phosphorylation. Despite these remarkable advances, the precise location of the phosphorylation site still represents a sizable challenge in view of the labile nature of the phosphoester bond and the presence of neighboring phosphorylatable residues within the same peptide. This difficulty is exacerbated by the combinatorial distribution of phosphorylated residues giving rise to different phosphopeptide isomers. These peptides have similar physicochemical properties, and their separation by LC is often problematic. Few studies have described the frequency and distribution of phosphoisomers in large-scale phosphoproteomics experiments, and no convenient informatics tools currently exist to facilitate their detection. To address this analytical challenge, we developed two algorithms to detect separated and co-eluting phosphopeptide isomers and target their subsequent identification using an inclusion list in LC-MS/MS experiments. Using these algorithms, we determined that the proportion of isomers present in phosphoproteomics studies from mouse, rat, and fly cell extracts represents 3-6% of all identified phosphopeptides. While conventional analysis can identify chromatographically separated phosphopeptides, targeted LC-MS/MS analyses using inclusion lists provided complementary identification and expanded the number of phosphopeptide isomers by at least 52%. Interestingly, these analyses revealed that the occurrence of phosphopeptides isomers can also correlate with the presence of extended phosphorylatable amino acids that can act as a "phosphorylation switch" to bind complementary domains such as those present in SR proteins and ribonucleoprotein complexes.  相似文献   

19.
Although protein phosphorylation is probably the most studied post-translational modification occurring in cells, the number of proteins, which are the target of this modification, is still largely unknown. Increasing the coverage of the phosphoproteome as well as the detection of variation at the phosphorylation level would be very helpful for understanding the mechanisms of cell life and the modifications of the cell state leading to pathological conditions such as neurodegeneration. In order to further investigate variations occurring at the phosphorylation level, we have initiated the creation of a reference map of phosphorylated proteins in rat cortical neurons, employing a combination of phosphatase treatment and 2-DE/differential in gel electrophoresis technology. About 131 spots were recognized as phosphorylated proteins as they showed different migration behaviour after phosphatase treatment. The analysis of 42 selected spots was carried out by LC/MS/MS technology resulting in the identification of two new phosphoproteins.  相似文献   

20.
Candidate protein biomarker discovery by full automatic integration of Orbitrap full MS1 spectral peptide profiling and X!Tandem MS2 peptide sequencing is investigated by analyzing mass spectra from brain tumor samples using Peptrix. Potential protein candidate biomarkers found for angiogenesis are compared with those previously reported in the literature and obtained from previous Fourier transform ion cyclotron resonance (FT-ICR) peptide profiling. Lower mass accuracy of peptide masses measured by Orbitrap compared to those measured by FT-ICR is compensated by the larger number of detected masses separated by liquid chromatography (LC), which can be directly linked to protein identifications. The number of peptide sequences divided by the number of unique sequences is 9248/6911  1.3. Peptide sequences appear 1.3 times redundant per up-regulated protein on average in the peptide profile matrix, and do not seem always up-regulated due to tailing in LC retention time (40%), modifications (40%) and mass determination errors (20%). Significantly up-regulated proteins found by integration of X!Tandem are described in the literature as tumor markers and some are linked to angiogenesis. New potential biomarkers are found, but need to be validated independently. Eventually more proteins could be found by actively involving MS2 sequence information in the creation of the MS1 peptide profile matrix.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号