首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Telomeres are composed of specialized chromatin that includes DNA repair/recombination proteins, telomere DNA‐binding proteins and a number of three dimensional nucleic acid structures including G‐quartets and D‐loops. A number of studies suggest that the BLM and WRN recQ‐like helicases play important roles in recombination‐mediated mechanisms of telomere elongation or A lternative L engthening of T elomeres (ALT), processes that maintain/elongate telomeres in the absence of telomerase. BLM and WRN localize within ALT‐associated nuclear bodies in telomerase‐negative immortalized cell lines and interact with the telomere‐specific proteins POT1, TRF1 and TRF2. Helicase activity is modulated by these interactions. BLM functions in DNA double‐strand break repair processes such as non‐homologous end joining, homologous recombination‐mediated repair, resolution of stalled replication forks and synthesis‐dependent strand annealing, although its precise functions at the telomeres are speculative. WRN also functions in DNA replication, recombination and repair, and in addition to its helicase domain, includes an exonuclease domain not found in other recQ‐like helicases. The biochemical properties of BLM and WRN are, therefore, important in biological processes other than DNA replication, recombination and repair. In this review, we discuss some previous and recent findings of human rec‐Q‐like helicases and their role in telomere elongation during ALT processes. J. Cell. Biochem. 109: 7–15, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

2.
3.
The eukaryotic translation initiation factor 4A (elF4A) is a representative of the DEAD-box RNA helicase protein family. We have solved the crystallographic structure of the amino-terminal domain (residues 1-223) of yeast elF4A. The domain is built around a core scaffold, a parallel alpha-beta motif with five beta strands, that is found in other RNA and DNA helicases, as well as in the RecA protein. The amino acid sequence motifs that are conserved within the helicase family are localized to the beta strand-->alpha helix junctions within the core. The core of the amino terminal domain of elF4A is amplified with additional structural elements that differ from those of other helicases. The phosphate binding loop (the Walker A motif) is in an unusual closed conformation. The crystallographic structure reveals specific interactions between amino acid residues of the phosphate binding loop, the DEAD motif, and the SAT motif, whose alteration is known to impair coupling between the ATPase cycle and the RNA unwinding activity of elF4A.  相似文献   

4.
在RNA代谢过程中,需要许多蛋白和核酸的参与,其中一类蛋白就是RNA解旋酶。RNA解旋酶通过水解ATP获得能量来参与RNA代谢的多个方面,包括核内转录、pre-mRNA的剪切、核糖体发生、核质运输、蛋白质翻译、RNA降解、细胞器内基因的表达。DEAD-box蛋白家族是RNA解旋酶中最大的亚家族,它具有9个保守结构域,因motifyⅡ的保守氨基酸序列Asp-Glu-Ala-Asp(DEAD)而命名。该家族在酵母、拟南芥(Arabidopsis thaliana Heynh.)和人类基因组中都有较多的家庭成员。近年来,研究者对拟南芥DEAD-box蛋白家族的结构和功能进行了一些研究,本文着重总结DEAD-box基因家族对拟南芥生长发育的影响。  相似文献   

5.
The NS3 helicase of the hepatitis C virus (HCV) unwinds double-stranded (ds) nucleic acid (NA) in an NTP-dependent fashion. Mechanistic details of this process are, however, largely unknown for the HCV helicase. We have studied the binding of dsDNA to an engineered version of subdomain 2 of the HCV helicase (d(2Delta)NS3h) by NMR and circular dichroism. Binding of dsDNA to d(2Delta)NS3h induces a local unfolding of helix (alpha(3)), which includes residues of conserved helicase motif VI (Q(460)RxxRxxR(467)), and strands (beta(1) and beta(8)) from the central beta-sheet. This also occurs upon lowering the pH (4.4) and introducing an R461A point mutation, which disrupt salt bridges with Asp 412 and Asp 427 in the protein structure. NMR studies on d(2Delta)NS3h in the partially unfolded state at low pH map the dsDNA binding site to residues previously shown to be involved in single-stranded DNA binding. Sequence alignment and structural comparison suggest that these Arg-Asp interactions are highly conserved in SF2 DEx(D/H) proteins. Thus, modulation of these interactions by dsNA may allow SF2 helicases to switch between conformations required for helicase function.  相似文献   

6.
Three helicase structures have been determined recently: that of the DNA helicase PcrA, that of the hepatitis C virus RNA helicase, and that of the Escherichia coli DNA helicase Rep. PcrA and Rep belong to the same super-family of helicases (SF1) and are structurally very similar. In contrast, the HCV helicase belongs to a different super-family of helicases, SF2, and shows little sequence homology with the PcrA/Rep helicases. Yet, the HCV helicase is structurally similar to Rep/PcrA, suggesting preservation of structural scaffolds and relationships between helicase motifs across these two super-families. The comparison study presented here also reveals the existence of a new helicase motif in the SF1 family of helicases.  相似文献   

7.
Ashish Shelar  Manju Bansal 《Proteins》2014,82(12):3420-3436
α‐helices are amongst the most common secondary structural elements seen in membrane proteins and are packed in the form of helix bundles. These α‐helices encounter varying external environments (hydrophobic, hydrophilic) that may influence the sequence preferences at their N and C‐termini. The role of the external environment in stabilization of the helix termini in membrane proteins is still unknown. Here we analyze α‐helices in a high‐resolution dataset of integral α‐helical membrane proteins and establish that their sequence and conformational preferences differ from those in globular proteins. We specifically examine these preferences at the N and C‐termini in helices initiating/terminating inside the membrane core as well as in linkers connecting these transmembrane helices. We find that the sequence preferences and structural motifs at capping (Ncap and Ccap) and near‐helical (N' and C') positions are influenced by a combination of features including the membrane environment and the innate helix initiation and termination property of residues forming structural motifs. We also find that a large number of helix termini which do not form any particular capping motif are stabilized by formation of hydrogen bonds and hydrophobic interactions contributed from the neighboring helices in the membrane protein. We further validate the sequence preferences obtained from our analysis with data from an ultradeep sequencing study that identifies evolutionarily conserved amino acids in the rat neurotensin receptor. The results from our analysis provide insights for the secondary structure prediction, modeling and design of membrane proteins. Proteins 2014; 82:3420–3436. © 2014 Wiley Periodicals, Inc.  相似文献   

8.
SF1 and SF2 helicases have structurally conserved cores containing seven to eight distinctive motifs and variable amino- and carboxyl-terminal flanking sequences. We have discovered a motif upstream of motif I that is unique to and characteristic of the DEAD box family of RNA helicases. It consists of a 9 amino acid sequence containing an invariant glutamine. A conserved phenylalanine occurs 17 aa further upstream. Sequence alignments, site-specific mutagenesis, and ATPase assays show that this motif and the upstream phenylalanine are highly conserved, that they are essential for viability in the yeast Saccharomyces cerevisiae, and that they control ATP binding and hydrolysis in the yeast translation-initiation factor eIF4A. These results are consistent with computer studies of the solved crystal structures.  相似文献   

9.
Viral RNA represents a pattern molecule that can be recognized by RNA sensors in innate immunity. Humans and mice possess cytoplasmic DNA/RNA sensors for detecting viral replication. There are a number of DEAD (Asp‐Glu‐Ala‐Asp; DExD/H) box‐type helicases in mammals, among which retinoic acid‐inducible gene 1 (RIG‐I) and melanoma differentiation‐associated protein 5 (MDA50) are indispensable for RNA sensing; however, they are functionally supported by a number of sensors that directly bind viral RNA or replicative RNA intermediates to convey signals to RIG‐I and MDA5. Some DEAD box helicase members recognize DNA irrespective of the origin. These sensors transmit IFN‐inducing signals through adaptors, including mitochondrial antiviral signaling. Viral double‐stranded RNAs are reportedly sensed by the helicases DDX1, DDX21, DHX36, DHX9, DDX3, DDX41, LGP2 and DDX60, in addition to RIG‐I and MDA5, and induce type I IFNs, thereby blocking viral replication. Humans and mice have all nucleic acid sensors listed here. In the RNA sensing system in chicken, it was found in the present study that most DEAD box helicases are conserved; however, DHX9 is genetically deficient in addition to reported RIG‐I. Based on the current genome databases, similar DHX9 deficiency was observed in ducks and several other bird species. Because chicken, but not duck, was found to be deficient in RIG‐I, the RNA‐sensing system of chicken lacks RIG‐I and DHX9 and is thus more fragile than that of duck or mammal. DHX9 may generally compensate for the function of RIG‐I and deficiency of DHX9 possibly participates in exacerbations of viral infection such as influenza in chickens.  相似文献   

10.
The spliceosomal protein SF3b49, a component of the splicing factor 3b (SF3b) protein complex in the U2 small nuclear ribonucleoprotein, contains two RNA recognition motif (RRM) domains. In yeast, the first RRM domain (RRM1) of Hsh49 protein (yeast orthologue of human SF3b49) reportedly interacts with another component, Cus1 protein (orthologue of human SF3b145). Here, we solved the solution structure of the RRM1 of human SF3b49 and examined its mode of interaction with a fragment of human SF3b145 using NMR methods. Chemical shift mapping showed that the SF3b145 fragment spanning residues 598–631 interacts with SF3b49 RRM1, which adopts a canonical RRM fold with a topology of β1‐α1‐β2‐β3‐α2‐β4. Furthermore, a docking model based on NOESY measurements suggests that residues 607–616 of the SF3b145 fragment adopt a helical structure that binds to RRM1 predominantly via α1, consequently exhibiting a helix–helix interaction in almost antiparallel. This mode of interaction was confirmed by a mutational analysis using GST pull‐down assays. Comparison with structures of all RRM domains when complexed with a peptide found that this helix–helix interaction is unique to SF3b49 RRM1. Additionally, all amino acid residues involved in the interaction are well conserved among eukaryotes, suggesting evolutionary conservation of this interaction mode between SF3b49 RRM1 and SF3b145.  相似文献   

11.
Maintenance and faithful transmission of genomic information depends on the efficient execution of numerous DNA replication, recombination, and repair pathways. Many of the enzymes that catalyze steps within these pathways require access to sequence information that is buried in the interior of the DNA double helix, which makes DNA unwinding an essential cellular reaction. The unwinding process is mediated by specialized molecular motors called DNA helicases that couple the chemical energy derived from nucleoside triphosphate hydrolysis to the otherwise non‐spontaneous unwinding reaction. An impressive number of high‐resolution helicase structures are now available that, together with equally important mechanistic studies, have begun to define the features that allow this class of enzymes to function as molecular motors. In this review, we explore the structural features within DNA helicases that are used to bind and unwind DNA. We focus in particular on “aromatic‐rich loops” that allow some helicases to couple single‐stranded DNA binding to ATP hydrolysis and “wedge/pin” elements that provide mechanical tools for DNA strand separation when connected to translocating motor domains.  相似文献   

12.
RNA-remodeling proteins, including RNA helicases and chaperones, play vital roles in the remodeling of structured RNAs. During viral replication, viruses require RNA-remodeling proteins to facilitate proper folding and/or re-folding the viral RNA elements. Coxsackieviruses B3 (CVB3) and Coxsackieviruses B5 (CVB5), belonging to the genus Enterovirus in the family Picornaviridae, have been reported to cause various infectious diseases such as hand-foot-and-mouth disease, aseptic meningitis, and viral myocarditis. However, little is known about whether CVB3 and CVB5 encode any RNA remodeling proteins. In this study, we showed that 2C proteins of CVB3 and CVB5 contained the conserved SF3 helicase A, B, and C motifs, and functioned not only as RNA helicase that unwound RNA helix bidirectionally in an NTP-dependent manner, but also as RNA chaperone that remodeled structured RNAs and facilitated RNA strand annealing independently of NTP. In addition, we determined that the NTPase activity and RNA helicase activity of 2C proteins of CVB3 and CVB5 were dependent on the presence of divalent metallic ions. Our findings demonstrate that 2C proteins of CVBs possess RNA-remodeling activity and underline the functional importance of 2C protein in the life cycle of CVBs.  相似文献   

13.
Structural basis for DNA duplex separation by a superfamily-2 helicase   总被引:6,自引:0,他引:6  
To reveal the mechanism of processive strand separation by superfamily-2 (SF2) 3'-->5' helicases, we determined apo and DNA-bound crystal structures of archaeal Hel308, a helicase that unwinds lagging strands and is related to human DNA polymerase theta. Our structure captures the duplex-unwinding reaction, shows that initial strand separation does not require ATP and identifies a prominent beta-hairpin loop as the unwinding element. Similar loops in hepatitis C virus NS3 helicase and RNA-decay factors support the idea that this duplex-unwinding mechanism is applicable to a broad subset of SF2 helicases. Comparison with ATP-bound SF2 enzymes suggests that ATP promotes processive unwinding of 1 base pair by ratchet-like transport of the 3' product strand. Our results provide a first structural framework for strand separation by processive SF2 3'-->5' helicases and reveal important mechanistic differences from SF1 helicases.  相似文献   

14.
RNA secondary structures can be divided into helical regions composed of canonical Watson-Crick and related base pairs, as well as single-stranded regions such as hairpin loops, internal loops, and junctions. These elements function as building blocks in the design of diverse RNA molecules with various fundamental functions in the cell. To better understand the intricate architecture of three-dimensional (3D) RNAs, we analyze existing RNA four-way junctions in terms of base-pair interactions and 3D configurations. Specifically, we identify nine broad junction families according to coaxial stacking patterns and helical configurations. We find that helices within junctions tend to arrange in roughly parallel and perpendicular patterns and stabilize their conformations using common tertiary motifs such as coaxial stacking, loop-helix interaction, and helix packing interaction. Our analysis also reveals a number of highly conserved base-pair interaction patterns and novel tertiary motifs such as A-minor-coaxial stacking combinations and sarcin/ricin motif variants. Such analyses of RNA building blocks can ultimately help in the difficult task of RNA 3D structure prediction.  相似文献   

15.
We have identified a highly conserved phenylalanine in motif IV of the DEAD-box helicases that is important for their enzymatic activities. In vivo analyses of essential proteins in yeast showed that mutants of this residue had severe growth phenotypes. Most of the mutants also were temperature sensitive, which suggested that the mutations altered the conformational stability. Intragenic suppressors of the F405L mutation in yeast Ded1 mapped close to regions of the protein involved in ATP or RNA binding in DEAD-box crystal structures, which implicated a defect at this level. In vitro experiments showed that these mutations affected ATP binding and hydrolysis as well as strand displacement activity. However, the most pronounced effect was the loss of the ATP-dependent cooperative binding of the RNA substrates. Sequence analyses and an examination of the Protein Data Bank showed that the motif IV phenylalanine is conserved among superfamily 2 helicases. The phenylalanine appears to be an anchor that maintains the rigidity of the RecA-like domain. For DEAD-box proteins, the phenylalanine also aligns a highly conserved arginine of motif VI through van der Waals and cation-pi interactions, thereby helping to maintain the network of interactions that exist between the different motifs involved in ATP and RNA binding.  相似文献   

16.
UV-absorption spectrophotometry and molecular modeling have been used to study the influence of the chemical nature of sugars (ribose or deoxyribose) on triple helix stability. For the Pyrimidine.purine* Pyrimidine motif, all eight combinations were tested with each of the three strands composed of either DNA or RNA. The chemical nature of sugars has a dramatic influence on triple helix stability. For each double helix composition, a more stable triple helix was formed when the third strand was RNA rather than DNA. No stable triple helix was detected when the polypurine sequence was made of RNA with a third strand made of DNA. Energy minimization studies using the JUMNA program suggested that interactions between the 2'-hydroxyl group of the third strand and the phosphates of the polypurine strand play an important role in determining the relative stabilities of triple-helical structures in which the polypyrimidine third strand is oriented parallel to the polypurine sequence. These interactions are not allowed when the third strand adopts an antiparallel orientation with respect to the target polypurine sequence, as observed when the third strand contains G and A or G and T/U. We show by footprinting and gel retardation experiments that an oligoribonucleotide containing G and A or G and U fails to bind double helical DNA, while the corresponding DNA oligomers form stable triple-helical complexes.  相似文献   

17.
NPH-II is a prototypical member of the DExH/D subgroup of superfamily II helicases. It exhibits robust RNA helicase activity, and a detailed kinetic framework for unwinding has been established. However, like most SF2 helicases, there is little known about its mode of substrate recognition and its ability to differentiate between RNA and DNA substrates. Here, we employ a series of chimeric RNA–DNA substrates to explore the molecular determinants for NPH-II specificity on RNA and to determine if there are conditions under which DNA is a substrate. We show that efficient RNA helicase activity depends exclusively on ribose moieties in the loading strand and in a specific section of the 3′-overhang. However, we also document the presence of trace activity on DNA polymers, showing that DNA can be unwound under extremely permissive conditions that favor electrostatic binding. Thus, while polymer-specific SF2 helicases control substrate recognition through specific interactions with the loading strand, alternative specificities can arise under appropriate reaction conditions.  相似文献   

18.
DEAH helicases participate in pre‐messenger RNA splicing and ribosome biogenesis. The structure of yeast Prp43p‐ADP reveals the homology of DEAH helicases to DNA helicases and the presence of an oligonucleotide‐binding motif. A β‐hairpin from the second RecA domain is wedged between two carboxy‐terminal domains and blocks access to the occluded RNA binding site formed by the RecA domains and a C‐terminal domain. ATP binding and hydrolysis are likely to induce conformational changes in the hairpin that are important for RNA unwinding or ribonucleoprotein remodelling. The structure of Prp43p provides the framework for functional and genetic analysis of all DEAH helicases.  相似文献   

19.
The temperature dependent transition from duplex to a single strand in E. coli 5S ribosomal RNA is a multistep process, and it involves intermediate states. We have analyzed these structural dynamics by chemical modification of cytidines and by single strand specific nuclease digestions. This combined approach led to the characterization of premelting and melting transitions within individual structural segments of the native macromolecule, which we feel may find general application to the structure of biological polyribonucleotides: 1) G-C base pairs at the termini of helices are relatively unstable and they readily undergo premelting transition. 2) Internal G-U/A-U rich stretches of helices exhibit dynamic premelting properties. 3) Hairpin loops have a relatively stronger destabilizing effect than internal loops. 4) Bulge loops destabilize the neighbouring base pairs. 5) Melting of helical segments occurs starting from the destabilizing structures listed above, preferentially from the helix termini. E. coli 5S rRNA has been shown to adopt different conformations. The presence of urea leads to induction of enhancement in the sensitivity for nuclease S1 at several nucleotide positions. The possibility of structural rearrangements will be discussed.  相似文献   

20.
The hepatitis C virus (HCV) NS3 helicase shares several conserved motifs with other superfamily 2 (SF2) helicases. Besides these sequences, several additional helicase motifs are conserved among the various HCV genotypes and quasispecies. The roles of two such motifs are examined here. The first motif (YRGXDV) forms a loop that connects SF2 helicase motifs 4 and 5, at the tip of which is Arg393. When Arg393 is changed to Ala, the resulting protein (R393A) retains a nucleic acid stimulated ATPase but cannot unwind RNA. R393A also unwinds DNA more slowly than wild type and translocates poorly on single-stranded DNA (ssDNA). DNA and RNA stimulate ATP hydrolysis catalyzed by R393A like the wild type, but the mutant protein binds ssDNA more weakly both in the presence and absence of the non-hydrolyzable ATP analog ADP(BeF3). The second motif (DFSLDPTF) forms a loop that connects two anti-parallel sheets between SF2 motifs 5 and 6. When Phe444 in this Phe-loop is changed to Ala, the resulting protein (F444A) is devoid of all activities. When Phe438 is changed to Ala, the protein (F438A) retains nucleic acid-stimulated ATPase, but does not unwind RNA. F438A unwinds DNA and translocates on ssDNA at about half the rate of the wild type. Equilibrium binding data reveal that this uncoupling of ATP hydrolysis and unwinding is due to the fact that the F438A mutant does not release ssDNA upon ATP binding like the wild type. A model is presented explaining the roles of the Arg-clamp and the Phe-loop in the unwinding reaction.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号