首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
A number of factors including low stoichiometry of phosphorylation, ion suppression, and reduced peptide backbone fragmentation interfere with precise identification of proteins in phosphoproteomic analysis by MS. Therefore, enrichment of phosphopeptides is an important process for subsequent mass spectrometric analysis. Here, we have developed a simple and efficient method for phosphopeptides enrichment, which employs a biphasic phosphate‐binding tag (Phos‐tag)/C18 tip consisting of overlaid Phos‐tag on the C18 resin in a pipet tip. The improvement in selectivity for phosphopeptides was achieved by using a 40% ACN solution under the phosphopeptides binding conditions. We also assessed the adequacy of Phos‐tag/C18 tip for quantitative phosphoproteomic analysis using the iTRAQ technology. After protein digestion and subsequent iTRAQ labeling, interfering substances including excess iTRAQ reagent were directly removed by Phos‐tag/C18 tip in a single step. Applying this method, phosphoproteomic analysis of HeLa cells stimulated with tumor necrosis factor ‐α was rapidly and successfully achieved.  相似文献   

3.
iTRAQ reagents allow the simultaneous multiplex identification and quantification of a large number of proteins. Success depends on effective peptide fragmentation in order to generate both peptide sequence ions (higher mass region, 150–2200 m/z) and reporter ions (low mass region, 113–121 m/z) for protein identification and relative quantification, respectively. After collision‐induced dissociation, the key requirements to achieve a good balance between the high and low m/z ions are effective ion transmission and detection across the MS/MS mass range, since the ion transmission of the higher m/z range competes with that of the low m/z range. This study describes an analytical strategy for the implementation of iTRAQ on maXis UHR‐Qq‐ToF instruments, and discusses the impact of adjusting the MS/MS ion transmission parameters on the quality of the overall data sets. A technical discussion highlights a number of maXis‐specific parameters, their impact of quantification and identification, and their cross‐interactions.  相似文献   

4.
A novel strategy based on carboxy group derivatization is presented for specific characterization of phosphopeptides. By tagging the carboxy group with 1‐(2‐pyrimidyl) piperazine (PP), the ion charge states of phosphopeptides can be largely enhanced, showing great advantages for sequencing phosphorylated peptides with electron‐transfer dissociation MS. Besides, after PP‐derivatization, most non‐specific bindings can be avoided by eliminating the interaction between the carboxy group and TiO2, greatly improving the specificity of TiO2‐based phosphopeptide enrichment strategy. Moreover, being tagged with a hydrophobic group, the retention time of phosphopeptides in RPLC can be prolonged, overcoming the difficulty of separating phosphopeptides in RPLC‐based approach. Together with several other advantages, such as ease of handling, rapid reaction time, broad applicability and good reproducibility, this PP‐derivatization method is promising for high‐throughput phosphoproteome research.  相似文献   

5.
Mark L. Stolowitz 《Proteomics》2012,12(23-24):3438-3450
Over the course of the last decade, a number of investigators have come to appreciate that the surface of a MALDI target, after suitable modification, can be used for selective enrichment of peptides and proteins. More recently, surface‐modified nanoparticles (NPs) that readily co‐crystallize in MALDI matrix, are not ionized by laser desorption/ionization, and do not interfere with MS have attracted interest as alternatives to surface‐modified targets for selective enrichment of peptides and proteins. Surface‐modified targets and NPs facilitate parallel processing of samples, and when used in conjunction with MALDI mass spectrometers with kHz lasers enable development of high‐throughput proteomics platforms. Targets and NPs for reversed phase and ion exchange retention, selective enrichment of glycopeptides, selective enrichment of phosphopeptides, and immunoaffinity MS are described in conjunction with details regarding their preparation and utility. Commercial availability of the reagents and substrates required to prepare surface‐modified targets and NPs is also discussed.  相似文献   

6.
Recent years have seen a constant development of tools for the global assessment of phosphoproteins. Here, we outline a concept for integrating approaches for quantitative proteomics and phosphoproteomics. The strategy was applied to the analysis of changes in signalling and protein synthesis occurring after activation of the T‐cell receptor (TCR) pathway in a T‐cell line (Jurkat cells). For this purpose, peptides were obtained from four biological replicates of activated and control Jurkat T‐cells and phosphopeptides enriched via a TiO2‐based chromatographic step. Both phosphopeptide‐enriched and flow‐through fractions were analyzed by LC–MS. We observed 1314 phosphopeptides in the enriched fraction whereas 19 were detected in the flow‐through, enabling the quantification of 414 and eight phosphoproteins in the respective fractions. Pathway analysis revealed the differential regulation of many metabolic pathways. Among the quantified proteins, 11 kinases with known TCR‐related function were detected. A kinase‐substrate database search for the phosphosites identified also confirmed the activity of a further ten kinases. In total, these two approaches provided evidence of 19 unique TCR‐related kinases. The combination of phosphoproteomics and conventional quantitative shotgun analysis leads to a more comprehensive assessment of the signalling networks needed for the maintenance of the activated status of Jurkat T‐cells.  相似文献   

7.
We present basic workups and quantitative comparisons for two current generation Orbitrap mass spectrometers, the Q Exactive Plus and Orbitrap Fusion Tribrid, which are widely considered two of the highest performing instruments on the market. We assessed the performance of two quantitative methods on both instruments, namely label‐free quantitation and stable isotope labeling using isobaric tags, for studying the heat shock response in Escherichia coli. We investigated the recently reported MS3 method on the Fusion instrument and the potential of MS3‐based reporter ion isolation Synchronous Precursor Selection (SPS) and its impact on quantitative accuracy. We confirm that the label‐free approach offers a more linear response with a wider dynamic range than MS/MS‐based isobaric tag quantitation and that the MS3/SPS approach alleviates but does not eliminate dynamic range compression. We observed, however, that the choice of quantitative approach had little impact on the ability to statistically evaluate the E. coli heat shock response. We conclude that in the experimental conditions tested, MS/MS‐based reporter ion quantitation provides reliable biological insight despite the issue of compressed dynamic range, an observation that significantly impacts the choice of instrument.  相似文献   

8.
In this study, an on‐plate‐selective enrichment method is developed for fast and efficient glycopeptide investigation. Gold nanoparticles were first spotted and sintered on a stainless‐steel plate, then modified with 4‐mercaptophenylboronic acid to provide porous substrate with large specific surface and dual functions. These spots were used to selectively capture glycopeptides from peptide mixtures and the captured target peptides could be analyzed by MALDI‐MS simply by deposition of 2,5‐dihydroxybenzoic acid matrix. Horseradish peroxidase was employed as a standard glycoprotein to investigate the enrichment efficiency. In this way, the enrichment, washing and detection steps can all be fulfilled on a single MALDI target plate. The relatively small sample amount needed, low detection limit and rapid selective enrichment have made this on‐plate strategy promising for online enrichment of glycopeptides, which could be applied in high‐throughput proteome research.  相似文献   

9.
Man Zhao  Chunhui Deng 《Proteomics》2016,16(7):1051-1058
In this work, for the first time, perfluorinated magnetic mesoporous microspheres were designed and synthesized for the highly specific enrichment of fluorous‐derivatized phosphopeptides through the unique fluorine–fluorine interactions. The perfluorinated magnetic mesoporous microspheres were prepared through a surfactant‐mediated one‐pot approach and successfully applied to the selective extraction of fluorous‐derivatized phosphopeptides from β‐casein tryptic digest, protein mixtures, and human serum. Thanks to the hydrophilic silanol groups exposed on the surface, perfluorinated groups modified in the pore channels and the magnetic cores, the flourous‐functionalized magnetic microspheres exhibited excellent dispersibility, specificity toward fluorous‐derivatized phosphopeptides while facilitated separation procedures. The novel composites achieved a high selectivity of 1:1000 toward nonphosphorylated peptides and proved to be practicable in the enrichment of endogenous phosphopeptides in the human serum sample.  相似文献   

10.
Quantitation in plasma‐based proteomics necessitates the reproducible removal of highly abundant proteins to enable the less abundant proteins to be visible to the mass spectrometer. We have evaluated immunodepletion (proteoprep20) and enrichment (Bio‐Rad beads), as the current predominant approaches. Label‐free analysis offers an opportunity to estimate the effectiveness of this approach without incorporating chemical labels. Human plasma samples were used to quantitatively assess the reproducibility of these two methods using nano‐LC‐data‐independent acquisition MS. We have selected 18 candidate proteins and a comparison of both methodologies showed that both of the methods were reproducible and fell below 20% residual SD. With the same candidate proteins, individual inter‐day variability for the samples was also processed, allowing us to monitor instrument reproducibility. Overall, a total of 131 proteins were identified by both methods with 272 proteins identified by enrichment and 200 identified by immunodepletion. Reproducibility of measurements of the amount of protein in the processed sample for individual proteins is within analytically acceptable standards for both methodologies. This enables both methods to be used for biomarker studies. However, when sample is limited, enrichment is not suitable as larger volumes (>1.0 mL) are required. In experiments where sample is not limited then a greater number of proteins can be reliably identified using enrichment.  相似文献   

11.
Various enzyme reactors and online enzyme digestion strategies have been developed in recent years. These reactors greatly enhanced the detection sensitivity and proteome coverage in qualitative proteomics. However, these devices have higher rates of miscleavage in protein digestion. Therefore, we investigated the effect of online enzyme digestion on the quantification accuracy of quantitative proteomics using chemical or metabolic isotope labeling approaches. The incomplete digestion would introduce some unexpected variations in comparative quantification when the samples are digested and then chemically isotope labeled in different aliquots. Even when identical protein aliquots are processed on these devices using post‐digestion chemical isotope labeling and the CVs of the ratios controlled to less than 50% in replicate analyses, about 10% of the quantified proteins have a ratio greater than two‐fold, whereas in theory the ratio is 1:1. Interestingly, the incomplete digestion with enzyme reactor is not a problem when metabolic isotope labeling samples were processed because the proteins are isotopically labeled in vivo prior to their simultaneous digestion within the reactor. Our results also demonstrated that both high quantification accuracy and high proteome coverage can be achieved in comparative proteome quantification using online enzyme digestion even when a limited amount of metabolic isotope labeling samples is used (1683 proteins comparatively quantified from 105 Hela cells).  相似文献   

12.
Microglia are major immune cells in the central nervous system. A characterization of microglia proteome would facilitate on the study of microglial functions in association with various neurodegenerative diseases. To build a reference proteome, we established a BV‐2 microglial proteome to a depth of 5494 unique protein groups using a novel strategy that combined FASP, StageTip‐based high pH fractionation, and high‐resolution MS quickly and cost efficiently. By bioinformatics analysis, the BV‐2 proteome is a valuable resource for studies of microglial function, such as in the immune response, inflammatory response, and phagocytosis. All MS data have been deposited in the ProteomeXchange with identifier PXD000168.  相似文献   

13.
Spermatogenesis is a highly ordered developmental program that produces haploid male germ cells. The study of male germ cell development in the mouse has provided unique perspectives into the molecular mechanisms that control cell development and differentiation in mammals, including tissue‐specific gene regulatory programs. An intrinsic challenge in spermatogenesis research is the heterogeneity of germ and somatic cell types present in the testis. Techniques to separate and isolate distinct mouse spermatogenic cell types have great potential to shed light on molecular mechanisms controlling mammalian cell development, while also providing new insights into cellular events important for human reproductive health. Here, we detail a versatile strategy that combines Cre‐lox technology to fluorescently label germ cells, with flow cytometry to discriminate and isolate germ cells in different stages of development for cellular and molecular analyses.  相似文献   

14.
Pulmonary tuberculosis (TB) caused by Mycobacterium tuberculosis is a chronic disease. Currently, there are no sufficiently validated biomarkers for early diagnosis of TB infection. In this study, a panel of potential serum biomarkers was identified between patients with pulmonary TB and healthy controls by using iTRAQ‐coupled 2D LC‐MS/MS technique. Among 100 differentially expressed proteins screened, 45 proteins were upregulated (>1.25‐fold at p < 0.05) and 55 proteins were downregulated (<0.8‐fold at p < 0.05) in the TB serum. Bioinformatics analysis revealed that the differentially expressed proteins were related to the response to stimulus, the metabolic and immune system processes. The significantly differential expression of apolipoprotein CII (APOCII), CD5 antigen‐like (CD5L), hyaluronan‐binding protein 2 (HABP2), and retinol‐binding protein 4 (RBP4) was further confirmed using immunoblotting and ELISA analysis. By forward stepwise multivariate regression analysis, a panel of serum biomarkers including APOCII, CD5L, and RBP4 was obtained to form the disease diagnostic model. The receiver operation characteristic curve of the diagnostic model was 0.98 (sensitivity = 93.42%, specificity = 92.86%). In conclusion, APOCII, CD5L, HABP2, and RBP4 may be potential protein biomarkers of pulmonary TB. Our research provides useful data for early diagnosis of TB.  相似文献   

15.
Astrocytes are the most abundant cells in the CNS, but their function remains largely unknown. Characterization of the whole‐cell proteome and secretome in astrocytes would facilitate the study of their functions in various neurodegenerative diseases and astrocyte–neuron communication. To build a reference proteome, we established a C8‐D1A astrocyte proteome to a depth of 7265 unique protein groups using a novel strategy that combined two‐step digestion, filter‐aided sample preparation, StageTip‐based high pH fractionation, and high‐resolution MS. Nearly, 6000 unique protein groups were identified from conditioned media of astrocyte cultures, constituting the largest astrocyte secretome that has been reported. High‐confidence whole‐cell proteomes and secretomes are valuable resources in studying astrocyte function by label‐free quantitation and bioinformatics analysis. All MS data have been deposited in the ProteomeXchange with identifier PXD000501 ( http://proteomecentral.proteomexchange.org/dataset/PXD000501 ).  相似文献   

16.
In this work, magnetic graphene double‐sided mesoporous nanocomposites (mag‐graphene@mSiO2) were synthesized by coating a layer of mesoporous silica materials on each side of magnetic grapheme. The surfactant (CTAB) mediated sol‐gel coating was performed using tetraethyl orthosilicate as the silica source. The as‐made magnetic graphene double‐sided mesoporous silica composites were treated with high‐temperature calcination to remove the hydroxyl on the surface. The novel double‐sided materials possess high surface area (167.8 cm2/g) and large pore volume (0.2 cm3/g). The highly open pore structure presents uniform pore size (3.2 nm) and structural stability. The hydrophobic interior pore walls could ensure an efficient adsorption of target molecules through hydrophobic–hydrophobic interaction. At the same time, the magnetic Fe3O4 particles on both sides of the materials could simplify the process of enrichment, which plays an important role in the treatment of complex biological samples. The magnetic graphene double‐sided nanocomposites were successfully applied to size‐selective and specific enrichment of peptides in standard peptide mixtures, protein digest solutions, and human urine samples. Finally, the novel material was applied to selective enrichment of endogenous peptides in mouse brain tissue. The enriched endogenous peptides were then analyzed by LC‐MS/MS, and 409 endogenous peptides were detected and identified. The results demonstrate that the as‐made mag‐graphene@mSiO2 have powerful potential for peptidome research.  相似文献   

17.
The most challenging analytical task facing phosphoproteome determination requires the isolation of phosphorylated peptides from the myriad of unphosphorylated species. In the past, several strategies for phosphopeptide isolation have been proposed in combination with subsequent mass spectrometric investigations. Among these techniques, immobilized metal affinity chromatography and titanium dioxide have been recognized as the most effective. Here, we present an alternative method for the enrichment of phosphopeptides based on hydroxyapatite (HAP) chromatography. By taking advantage of the strong interaction of HAP with phosphate and calcium ions, we developed an efficient method for the selective separation and fractionation of phosphorylated peptides. The effectiveness and efficiency of recovery for this procedure was assayed using tryptic digests of standard phosphorylated protein mixtures. Based on the higher affinity of multi‐phosphorylated peptides for HAP surfaces, the introduction of a phosphate buffer gradient for stepwise peptide elution resulted in the separation of mono‐, di‐, tri‐, and multi‐phosphorylated peptides. Thus, we demonstrated that this technique is highly selective and independent of the degree of peptide phosphorylation.  相似文献   

18.
The G protein α‐subunit (Gna1) in the wheat pathogen Stagonospora nodorum has previously been shown to be a critical controlling element in disease ontogeny. In this study, iTRAQ and 2‐D LC MALDI‐MS/MS have been used to characterise protein expression changes in the S. nodorum gna1 strain versus the SN15 wild‐type. A total of 1336 proteins were identified. The abundance of 49 proteins was significantly altered in the gna1 strain compared with the wild‐type. Gna1 was identified as having a significant regulatory role on primary metabolic pathways, particularly those concerned with NADPH synthesis or consumption. Mannitol dehydrogenase was up‐regulated in the gna1 strain while mannitol 1‐phosphate dehydrogenase was down‐regulated providing direct evidence of Gna1 regulation over this enigmatic pathway. Enzymatic analysis and growth assays confirmed this regulatory role. Several novel hypothetical proteins previously associated with stress and pathogen responses were identified as positively regulated by Gna1. A short‐chain dehydrogenase (Sch3) was also significantly less abundant in the gna1 strains. Sch3 was further characterised by gene disruption in S. nodorum by homologous recombination. Functional characterisation of the sch3 strains revealed their inability to sporulate in planta providing a further link to Gna1 signalling and asexual reproduction. These data add significantly to the identification of the regulatory targets of Gna1 signalling in S. nodorum and have demonstrated the utility of iTRAQ in dissecting signal transduction pathways.  相似文献   

19.
20.
The study of protein–protein interactions is a major theme in biological disciplines. Pull‐down or affinity‐precipitation assays using GST fusion proteins have become one of the most common and valuable approaches to identify novel binding partners for proteins of interest (bait). Non‐specific binding of prey proteins to the beads or to GST itself, however, inevitably complicates and impedes subsequent analysis of pull‐down results. A variety of measures, each with inherent advantages and limitations, can minimise the extent of the background. This technical brief details and tests a modification of established GST pull‐down protocols. By specifically eluting only the bait (minus the GST tag) and the associated non‐specific binding proteins with a simple, single‐step protease cleavage, a cleaner platform for downstream protein identification with MS is established. We present a proof of concept for this method, as evidenced by a GST pull‐down/MS case study of the small guanosine triphosphatase (GTPase) Rab31 in which: (i) sensitivity was enhanced, (ii) a reduced level of background was observed, (iii) distinguishability of non‐specific contaminant proteins from genuine binders was improved and (iv) a putative new protein–protein interaction was discovered. Our protease cleavage step is readily applicable to all further affinity tag pull‐downs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号