首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Deletion of the transmembrane domain (TM-domain) of Archaeoglobus fulgidus LonB protease (Archaeoglobus fulgidus (AfLon)) was shown to result in uncontrollable activation of the enzyme proteolytic site and in vivo autolysis yielding a stable and functionally inactive fragment consisting of both α-helical and proteolytic domains (αP). The ΔTM-AfLon-S509A enzyme form, obtained by site-directed mutagenesis of the catalytic Ser residue, is capable of recombination with the αP fragment. The mixed oligomers were shown to be proteolytically active, which indicates a crucial role of subunit interactions in the activation of the AfLon proteolytic site. The thermophilic nature of AfLon protease was found to be due to the special features of the enzyme activity regulation, the structure of ATPase domain, and the quaternary structure.  相似文献   

2.
Lon proteases are distributed in all kingdoms of life and are required for survival of cells under stress. Lon is a tandem fusion of an AAA+ molecular chaperone and a protease with a serine‐lysine catalytic dyad. We report the 2.0‐Å resolution crystal structure of Thermococcus onnurineus NA1 Lon (TonLon). The structure is a three‐tiered hexagonal cylinder with a large sequestered chamber accessible through an axial channel. Conserved loops extending from the AAA+ domain combine with an insertion domain containing the membrane anchor to form an apical domain that serves as a gate governing substrate access to an internal unfolding and degradation chamber. Alternating AAA+ domains are in tight‐ and weak‐binding nucleotide states with different domain orientations and intersubunit contacts, reflecting intramolecular dynamics during ATP‐driven protein unfolding and translocation. The bowl‐shaped proteolytic chamber is contiguous with the chaperone chamber allowing internalized proteins direct access to the proteolytic sites without further gating restrictions.  相似文献   

3.
The absence of direct correlation between the efficiency of functioning of ATPase and peptide hydrolase sites of Lon protease was revealed. It was shown that Lon protease is an allosteric enzyme, in which the catalytic activity of peptide hydrolase sites is provided by the binding of nucleotides, their magnesium complexes, and free magnesium ions in the enzyme ATPase sites. It was revealed that the ADP–Mg complex, an inhibitor of the native enzyme, is an activator of the Lon-K362Q (the Lon protease mutant in the ATPase site). Variants of functional contacts between different sites of the enzyme are considered. It was established that two ways of signal transduction from the ATPase sites to peptide hydrolase ones exist in the Lon protease oligomer--intra- and intersubunit ways. The enzyme ATPase sites are suggested to be located in the areas of the complementary surfaces of subunits. It is hypothesized that upon degradation of protein substrates by the E. coliLon protease in vivoATP hydrolysis acts as a factor of limitation of the enzyme degrading activity.  相似文献   

4.
Recombinant wild-type protease of human immunodeficiency virus, type [(HIV-1) expressed in E. coli was purified by pepstatin A affinity chromatography. An 88-fold purification was achieved giving a protease preparation with a specific enzymatic activity of approximately 3700 pmol/min/μg. Two proteolytically inactive HIV-1 mutant proteases (Arg-87 → Lys; Asn-88 → Glu) were found to bind to pepstatin A agarose, and they were purified as the wild-type protease. A third mutant protease (Arg-87 → Glu) was apparently unable to bind to pepstatin A under similar conditions. Binding to pepstatin A indicates the binding ability of the substrate binding site and the ability to form dimers. These features may be used to purify and to characterize other mutated HIV-1 proteases.  相似文献   

5.
Conditions of limited proteolysis of the protease Lon from Escherichia coli that provided the formation of fragments approximately corresponding to the enzyme domains were found for studying the domain functioning. A method of isolation of the domains was developed, and their functional characteristics were compared. The isolated proteolytic domain (LonP fragment) of the enzyme was shown to exhibit both peptidase and proteolytic activities; however, it cleaved large protein substrates at a significantly lower rate than the full-size protease Lon. On the other hand, the LonAP fragment, containing both the ATPase and the proteolytic domains, retained almost all of the enzymatic properties of the full-size protein. Both LonP and LonAP predominantly form dimers unlike the native protease Lon functioning as a tetramer. These results suggest that the N-terminal domain of protease Lon may play a considerable role in the process of the enzyme oligomerization.  相似文献   

6.
Degron binding regulates the activities of the AAA+ Lon protease in addition to targeting proteins for degradation. The sul20 degron from the cell‐division inhibitor SulA is shown here to bind to the N domain of Escherichia coli Lon, and the recognition site is identified by cross‐linking and scanning for mutations that prevent sul20‐peptide binding. These N‐domain mutations limit the rates of proteolysis of model sul20‐tagged substrates and ATP hydrolysis by an allosteric mechanism. Lon inactivation of SulA in vivo requires binding to the N domain and robust ATP hydrolysis but does not require degradation or translocation into the proteolytic chamber. Lon‐mediated relief of proteotoxic stress and protein aggregation in vivo can also occur without degradation but is not dependent on robust ATP hydrolysis. In combination, these results demonstrate that Lon can function as a protease or a chaperone and reveal that some of its ATP‐dependent biological activities do not require translocation.  相似文献   

7.
Proteins from the Rep family of DNA replication initiators exist mainly as dimers, but only monomers can initiate DNA replication by interaction with the replication origin (ori). In this study, we investigated both the activation (monomerization) and the degradation of the broad‐host‐range plasmid RK2 replication initiation protein TrfA, which we found to be a member of a class of DNA replication initiators containing winged helix (WH) domains. Our in vivo and in vitro experiments demonstrated that the ClpX‐dependent activation of TrfA leading to replicationally active protein monomers and mutations affecting TrfA dimer formation, result in the inhibition of TrfA protein degradation by the ClpXP proteolytic system. These data revealed that the TrfA monomers and dimers are degraded at substantially different rates. Our data also show that the plasmid replication initiator activity and stability in E. coli cells are affected by ClpXP system only when the protein sustains dimeric form.  相似文献   

8.
Lon protease is evolutionarily conserved in prokaryotes and eukaryotic organelles. The primary function of Lon is to selectively degrade abnormal and certain regulatory proteins to maintain the homeostasis in vivo. Lon mainly consists of three functional domains and the N‐terminal domain is required for the substrate selection and recognition. However, the precise contribution of the N‐terminal domain remains elusive. Here, we determined the crystal structure of the N‐terminal 192‐residue construct of Lon protease from Mycobacterium avium complex at 2.4 å resolution,and measured NMR‐relaxation parameters of backbones. This structure consists of two subdomains, the β‐strand rich N‐terminal subdomain and the five‐helix bundle of C‐terminal subdomain, connected by a flexible linker,and is similar to the overall structure of the N domain of Escherichia coli Lon even though their sequence identity is only 26%. The obtained NMR‐relaxation parameters reveal two stabilized loops involved in the structural packing of the compact N domain and a turn structure formation. The performed homology comparison suggests that structural and sequence variations in the N domain may be closely related to the substrate selectivity of Lon variants. Our results provide the structure and dynamics characterization of a new Lon N domain, and will help to define the precise contribution of the Lon N‐terminal domain to the substrate recognition.  相似文献   

9.
Fibrinolysis is important in cell migration and tightly regulated by specific inhibitors and activators; of the latter, urokinase (uPA) associates with enhancement of cell migration. Active uPA is formed through cleavage of the single‐chain uPA (scuPA). The Salmonella enterica strain 14028R cleaved human scuPA at the peptide bond Lys158‐Ile159, the site cleaved also by the physiological activator human plasmin. The cleavage led to activation of scuPA, while no cleavage or activation were detected with the mutant strain 14028R lacking the omptin protease PgtE. Complementation and expression studies confirmed the role of PgtE in scuPA activation. Similar cleavage and activation of scuPA were detected with recombinant Escherichia coli expressing the omptin genes pla from Yersinia pestis, ompT and ompP from E. coli, sopA from Shigella flexneri, and leo from Legionella pneumophila. For these omptins the activation of scuPA is the only shared function so far detected. Only poor cleavage and activation of scuPA were seen with YcoA of Y. pestis and YcoB of Yersinia pseudotuberculosis that are considered to be proteolytically inactive omptin variants. Point mutations of active site residues in Pla and PgtE had different effects on the proteolysis of plasminogen and of scuPA, indicating versatility in omptin proteolysis.  相似文献   

10.
Applications of microbial transglutaminase (mTGase) produced from Streptomyces mobarensis (S. mobarensis) were recently extended from food to pharmaceutical industry. To use mTGase for clinical applications, like generation of site specific antibody drug conjugates, it would be beneficial to manufacture mTGase in Escherichia coli (E. coli). To date, attempts to express recombinant soluble and active S. mobarensis mTGase have been largely unsuccessful. mTGase from S. mobarensis is naturally expressed as proenzyme and stepwise proteolytically processed into its active mature form outside of the bacterial cell. The pro‐domain is essential for correct folding of mTGase as well as for inhibiting activity of mTGase inside the cell. Here, we report a genetically modified mTGase that has full activity and can be expressed at high yields in the cytoplasm of E. coli. To achieve this we performed an alanine‐scan of the mTGase pro‐domain and identified mutants that maintain its chaperone function but destabilize the cleaved pro‐domain/mTGase interaction in a temperature dependent fashion. This allows proper folding of mTGase and keeps the enzyme inactive during expression at 20°C, but results in full activity when shifted to 37°C due to loosen domain interactions. The insertion of the 3C protease cleavage site together with pro‐domain alanine mutants Tyr14, Ile24, or Asn25 facilitate high yields (30–75 mg/L), and produced an enzyme with activity identical to wild type mTGase from S. mobarensis. Site‐specific antibody drug conjugates made with the E .coli produced mTGase demonstrated identical potency in an in vitro cell assay to those made with mTGase from S. mobarensis.  相似文献   

11.
The twin arginine transport (Tat) system transports folded proteins across the prokaryotic cytoplasmic membrane and the plant thylakoid membrane. In Escherichia coli three membrane proteins, TatA, TatB and TatC, are essential components of the machinery. TatA from Providencia stuartii is homologous to E. coli TatA but is synthesized as an inactive pre‐protein with an N‐terminal extension of eight amino acids. Removal of this extension by the rhomboid protease AarA is required to activate P. stuartii TatA. Here we show that P. stuartii TatA can functionally substitute for E. coli TatA provided that the E. coli homologue of AarA, GlpG, is present. The oligomerization state of the P. stuartii TatA pro‐protein was compared with that of the proteolytically activated protein and with E. coli TatA. The pro‐protein still formed small homo‐oligomers but cannot form large TatBC‐dependent assemblies. In the absence of TatB, E. coli TatA or the processed form of P. stuartii TatA form a complex with TatC. However, this complex is not observed with the pro‐form of P. stuartii TatA. Taken together our results suggest that the P. stuartii TatA pro‐protein is inactive because it is unable to interact with TatC and cannot form the large TatA complexes required for transport.  相似文献   

12.
Lactobacillus casei L ‐lactate dehydrogenase (LCLDH) is activated through the homotropic and heterotropic activation effects of pyruvate and fructose 1,6‐bisphosphate (FBP), respectively, and exhibits unusually high pH‐dependence in the allosteric effects of these ligands. The active (R) and inactive (T) state structures of unliganded LCLDH were determined at 2.5 and 2.6 Å resolution, respectively. In the catalytic site, the structural rearrangements are concerned mostly in switching of the orientation of Arg171 through the flexible intersubunit contact at the Q‐axis subunit interface. The distorted orientation of Arg171 in the T state is stabilized by a unique intra‐helix salt bridge between Arg171 and Glu178, which is in striking contrast to the multiple intersubunit salt bridges in Lactobacillus pentosus nonallosteric L ‐lactate dehydrogenase. In the backbone structure, major structural rearrangements of LCLDH are focused in two mobile regions of the catalytic domain. The two regions form an intersubunit linkage through contact at the P‐axis subunit interface involving Arg185, replacement of which with Gln severely decreases the homotropic and hetertropic activation effects on the enzyme. These two regions form another intersubunit linkage in the Q‐axis related dimer through the rigid NAD‐binding domain, and thus constitute a pivotal frame of the intersubunit linkage for the allosteric motion, which is coupled with the concerted structural change of the four subunits in a tetramer, and of the binding sites for pyruvate and FBP. The unique intersubunit salt bridges, which are observed only in the R state structure, are likely involved in the pH‐dependent allosteric equilibrium. Proteins 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

13.
Su W  Lin C  Wu J  Li K  He G  Qian X  Wei C  Yang J 《Biotechnology letters》2006,28(12):923-927
The ATP-dependent Lon protease is a highly conserved enzyme that is present in archeae, eubacteria, and eukaryotes, and plays an important role in intracellular protein degradation. We have isolated a Lon protease gene, OsLon1, from Oryza sativa. The cDNA contained a 2,655 bp ORF. Comparative analysis showed that OsLon1 shared significant similarity with the previously reported Lon proteases from maize, Arabidopsis, human, and bacteria. Tissue expression pattern analysis revealed that OsLon1 was highly expressed in young leaves, mature leaves, and leaf sheaths but only weakly in young roots, mature roots, and young panicles. The OsLon1 gene was successfully expressed in E. coli and the detected protein size, about 120 kDa, matched the expected molecular mass of the His-tagged OsLon1 protein.  相似文献   

14.
Split proteins are versatile tools for detecting protein–protein interactions and studying protein folding. Here, we report a new, particularly small split enzyme, engineered from a thermostable chorismate mutase (CM). Upon dissecting the helical‐bundle CM from Methanococcus jannaschii into a short N‐terminal helix and a 3‐helix segment and attaching an antiparallel leucine zipper dimerization domain to the individual fragments, we obtained a weakly active heterodimeric mutase. Using combinatorial mutagenesis and in vivo selection, we optimized the short linker sequences connecting the leucine zipper to the enzyme domain. One of the selected CMs was characterized in detail. It spontaneously assembles from the separately inactive fragments and exhibits wild‐type like CM activity. Owing to the availability of a well characterized selection system, the simple 4‐helix bundle topology, and the small size of the N‐terminal helix, the heterodimeric CM could be a valuable scaffold for enzyme engineering efforts and as a split sensor for specifically oriented protein–protein interactions.  相似文献   

15.
Controlling the cellular abundance and proper function of proteins by proteolysis is a universal process in all living organisms. In Escherichia coli, the ATP‐dependent Lon protease is crucial for protein quality control and regulatory processes. To understand how diverse substrates are selected and degraded, unbiased global approaches are needed. We employed a quantitative Super‐SILAC (stable isotope labeling with amino acids in cell culture) mass spectrometry approach and compared the proteomes of a lon mutant and a strain producing the protease to discover Lon‐dependent physiological functions. To identify Lon substrates, we took advantage of a Lon trapping variant, which is able to translocate substrates but unable to degrade them. Lon‐associated proteins were identified by label‐free LC‐MS/MS. The combination of both approaches revealed a total of 14 novel Lon substrates. Besides the identification of known pathways affected by Lon, for example, the superoxide stress response, our cumulative data suggests previously unrecognized fundamental functions of Lon in sulfur assimilation, nucleotide biosynthesis, amino acid and central energy metabolism.  相似文献   

16.
Molybdoenzymes contain a molybdenum cofactor in their active site to catalyze various redox reactions in all domains of life. To decipher crucial steps during their biogenesis, the TorA molybdoenzyme of Escherichia coli had played a major role to understand molybdoenzyme maturation process driven by specific chaperones. TorD, the specific chaperone of TorA, is also involved in TorA protection. Here, we show that immature TorA (apoTorA) is degraded in vivo and in vitro by the Lon protease. Lon interacts with apoTorA but not with holoTorA. Lon and TorD compete for apoTorA binding but TorD binding protects apoTorA against degradation. Lon is the first protease shown to eliminate an immature or misfolded molybdoenzyme probably by targeting its inactive catalytic site.  相似文献   

17.
The atomic-resolution crystal structure of the proteolytic domain (P-domain, residues 415-621) of Archaeoglobus fulgidus B-type Lon protease (wtAfLonB) and the structures of several mutants have revealed significant differences in the conformation of the active-site residues when compared to other known Lon P-domains, despite the conservation of the overall fold. The catalytic Ser509 is facing the solvent and is distant from Lys552, the other member of the catalytic dyad. Instead, the adjacent Asp508 forms an ion pair with the catalytic lysine residue. Glu506, an analog of the putative third catalytic residue from a related Methanococcus jannaschii LonB, also faces the solvent and does not interact with the catalytic dyad. We have established that full-length wtAfLonB is proteolytically active in an ATP-dependent manner. The loss of enzymatic activity of the S509A mutant confirms the functional significance of this residue, while retention of considerable level of activity by the D508A and E506A mutants rules out their critical involvement in catalysis. In contrast to the full-length enzymes, all individually purified P-domains (wild-type and mutants) were inactive, and the mutations had no influence on the active-site structure. These findings raise the possibility that, although isolated proteolytic domains of both AfLonB and E.coli LonA are able to assemble into expected functional hexamers, the presence of the other domains, as well as substrate binding, may be needed to stabilize the productive conformation of their active sites. Thus, the observed conformational variability may reflect the differences in the stability of active-site structures for the proteolytic counterparts of single-chain Lon versus independently folded proteolytic subunits of two-chain AAA+ proteases.  相似文献   

18.
Messenger RNAs that lack in‐frame stop codons promote ribosome stalling and accumulation of aberrant and potentially harmful polypeptides. The SmpB‐tmRNA quality control system has evolved to solve problems associated with non‐stop mRNAs, by rescuing stalled ribosomes and directing the addition of a peptide tag to the C‐termini of the associated proteins, marking them for proteolysis. In Escherichia coli, the ClpXP system is the major contributor to disposal of tmRNA‐tagged proteins. We have shown that the AAA+ Lon protease can also degrade tmRNA‐tagged proteins, but with much lower efficiency. Here, we present a unique case of enhanced recognition and degradation of an extended Mycoplasma pneumoniae (MP) tmRNA tag by the MP‐Lon protease. We demonstrate that MP‐Lon can efficiently and selectively degrade MP‐tmRNA‐tagged proteins. Most significantly, our studies reveal that the larger (27 amino acids long) MP‐tmRNA tag contains multiple discrete signalling motifs for efficient recognition and rapid degradation by Lon. We propose that higher‐affinity multipartite interactions between MP‐Lon and the extended MP‐tmRNA tag have co‐evolved from pre‐existing weaker interactions, as exhibited by Lon in E. coli, to better fulfil the function of MP‐Lon as the sole soluble cytoplasmic protease responsible for the degradation of tmRNA‐tagged proteins.  相似文献   

19.
Patterson-Ward J  Huang J  Lee I 《Biochemistry》2007,46(47):13593-13605
Lon is an ATP dependent serine protease responsible for degrading denatured, oxidatively damaged and certain regulatory proteins in the cell. In this study we exploited the fluorescence properties of a dansylated peptide substrate (S4) and the intrinsic Trp residues in Lon to monitor peptide interacting with the enzyme. We generated two proteolytically inactive Lon mutants, S679A and S679W, where the active site serine is mutated to an Ala and Trp residue, respectively. Stopped-flow fluorescence spectroscopy was used to identify key enzyme intermediates generated along the reaction pathway prior to peptide hydrolysis. A two-step peptide binding event is detected in both mutants, where a conformational change occurs after a rapid equilibrium peptide binding step. The Kd for the initial peptide binding step determined by kinetic and equilibrium binding techniques is approximately 164 micromolar and 38 micromolar, respectively. The rate constants for the conformational change detected in the S679A and S679W Lon mutants are 0.74 +/- 0.10 s(-1) and 0.57 +/- 0.10 s(-1), respectively. These values are comparable to the lag rate constant determined for peptide hydrolysis (klag approximately 1 s(-1)) [Vineyard, D., et al. (2005) Biochemistry 45, 4602-4610]. Replacement of the active site Ser with Trp (S679W) allows for the detection of an ATP-dependent conformational change within the proteolytic site. The rate constant for this conformational change is 7.6 +/- 1.0 s(-1), and is essentially identical to the burst rate constant determined for ATP hydrolysis under comparable reaction conditions. Collectively, these kinetic data support a mechanism by which the binding of ATP to an allosteric site on Lon activates the proteolytic site. In this model, the energy derived from the binding of ATP minimally supports peptide cleavage by allowing peptide substrate access to the proteolytic site. However, the kinetics of peptide cleavage are enhanced by the hydrolysis of ATP.  相似文献   

20.
Type II toxin‐antitoxin (TA) modules, which are important cellular regulators in prokaryotes, usually encode two proteins, a toxin that inhibits cell growth and a nontoxic and labile inhibitor (antitoxin) that binds to and neutralizes the toxin. Here, we demonstrate that the res‐xre locus from Photorhabdus luminescens and other bacterial species function as bona fide TA modules in Escherichia coli. The 2.2 Å crystal structure of the intact Pseudomonas putida RES‐Xre TA complex reveals an unusual 2:4 stoichiometry in which a central RES toxin dimer binds two Xre antitoxin dimers. The antitoxin dimers each expose two helix‐turn‐helix DNA‐binding domains of the Cro repressor type, suggesting the TA complex is capable of binding the upstream promoter sequence on DNA. The toxin core domain shows structural similarity to ADP‐ribosylating enzymes such as diphtheria toxin but has an atypical NAD+‐binding pocket suggesting an alternative function. We show that activation of the toxin in vivo causes a depletion of intracellular NAD+ levels eventually leading to inhibition of cell growth in E. coli and inhibition of global macromolecular biosynthesis. Both structure and activity are unprecedented among bacterial TA systems, suggesting the functional scope of bacterial TA toxins is much wider than previously appreciated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号