首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Deposition of insoluble fibrillar aggregates of β‐amyloid (Aβ) peptides in the brain is a hallmark of Alzheimer's disease. Apart from forming fibrils, these peptides also exist as soluble aggregates. Fibrillar and a variety of nonfibrillar aggregates of Aβ have also been obtained in vitro. Hexafluoroisopropanol (HFIP) has been widely used to dissolve Aβ and other amyloidogenic peptides. In this study, we show that the dissolution of Aβ40, 42, and 43 in HFIP followed by drying results in highly ordered aggregates. Although α‐helical conformation is observed, it is not stable for prolonged periods. Drying after prolonged incubation of Aβ40, 42, and 43 peptides in HFIP leads to structural transition from α‐helical to β‐conformation. The peptides form short fibrous aggregates that further assemble giving rise to highly ordered ring‐like structures. Aβ16–22, a highly amyloidogenic peptide stretch from Aβ, also formed very similar rings when dissolved in HFIP and dried. HFIP could not induce α‐helical conformation in Aβ16–22, and rings were obtained from freshly dissolved peptide. The rings formed by Aβ40, 42, 43, and Aβ16–22 are composed of the peptides in β‐conformation and cause enhancement in thioflavin T fluorescence, suggesting that the molecular architecture of these structures is amyloid‐like. Our results clearly indicate that dissolution of Aβ40, 42 and 43 and the amyloidogenic fragment Aβ16–22 in HFIP results in the formation of annular amyloid‐like structures. Copyright © 2012 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

2.
The properties of the amyloid‐β peptide that lead to aggregation associated with Alzheimer's disease are not fully understood. This study aims at identifying conformational differences among four variants of full‐length Aβ42 that are known to display very different aggregation properties. By extensive all‐atom Monte Carlo simulations, we find that a variety of β‐sheet structures with distinct turns are readily accessible for full‐length Aβ42. In the simulations, wild type (WT) Aβ42 preferentially populates two major classes of conformations, either extended with high β‐sheet content or more compact with lower β‐sheet content. The three mutations studied alter the balance between these classes. Strong mutational effects are observed in a region centered at residues 23–26, where WT Aβ42 tends to form a turn. The aggregation‐accelerating E22G mutation associated with early onset of Alzheimer's disease makes this turn region conformationally more diverse, whereas the aggregation‐decelerating F20E mutation has the reverse effect, and the E22G/I31E mutation reduces the turn population. Comparing results for the four Aβ42 variants, we identify specific conformational properties of residues 23–26 that might play a key role in aggregation. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

3.
As a member of intrinsically unstructured protein family, β‐casein (β‐CN) contains relatively high amount of prolyl residues, adopts noncompact and flexible structure and exhibits chaperone‐like activity in vitro. Like many chaperones, native β‐CN does not contain cysteinyl residues and exhibits strong tendencies for self‐association. The chaperone‐like activities of three recombinant β‐CNs wild type (WT) β‐CN, C4 β‐CN (with cysteinyl residue in position 4) and C208 β‐CN (with cysteinyl residue in position 208), expressed and purified from E. coli, which, consequently, lack the phosphorylated residues, were examined and compared with that of native β‐CN using insulin and alcohol dehydrogenase as target/substrate proteins. The dimers (β‐CND) of C4‐β‐CN and C208 β‐CN were also studied and their chaperone‐like activities were compared with those of their monomeric forms. Lacking phosphorylation, WT β‐CN, C208 β‐CN, C4 β‐CN and C4 β‐CND exhibited significantly lower chaperone‐like activities than native β‐CN. Dimerization of C208 β‐CN with two distal hydrophilic domains considerably improved its chaperone‐like activity in comparison with its monomeric form. The obtained results demonstrate the significant role played by the polar contributions of phosphorylated residues and N‐terminal hydrophilic domain as important functional elements in enhancing the chaperone‐like activity of native β‐CN. © 2009 Wiley Periodicals, Inc. Biopolymers 91: 623–632, 2009. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

4.
Recent mutagenesis studies using the hydrophobic segment of Aβ suggest that aromatic π‐stacking interactions may not be critical for fibril formation. We have tested this conjecture by probing the effect of Leu, Ile, and Ala mutation of the aromatic Phe residues at positions 19 and 20, on the double‐layer hexametric chains of Aβ fragment Aβ16–22 using explicit solvent all‐atom molecular dynamics. As these simulations rely on the accuracy of the utilized force fields, we first evaluated the dynamic and stability dependence on various force fields of small amyloid aggregates. These initial investigations led us to choose AMBER99SB‐ILDN as force field in multiple long molecular dynamics simulations of 100 ns that probe the stability of the wild‐type and mutants oligomers. Single‐point and double‐point mutants confirm that size and hydrophobicity are key for the aggregation and stability of the hydrophobic core region (Aβ16–22). This suggests as a venue for designing Aβ aggregation inhibitors the substitution of residues (especially, Phe 19 and 20) in the hydrophobic region (Aβ16–22) with natural and non‐natural amino acids of similar size and hydrophobicity.  相似文献   

5.
Abnormal aggregation of β‐amyloid (Aβ) peptide plays an important role in the onset and progress of Alzheimer's disease (AD); hence, targeting Aβ aggregation is considered as an effective therapeutic strategy. Here, we studied the aromatic‐interaction‐mediated inhibitory effect of oligomeric polypeptides (K8Y8, K4Y8, K8W8) on Aβ42 fibrillization process. The polypeptides containing lysine as well as representative aromatic amino acids of tryptophan or tyrosine were found to greatly suppress the aggregation as evaluated by thioflavin T assay. Circular dichroism spectra showed that the β‐sheet formation of Aβ42 peptides decreased with the polypeptide additives. Molecular docking studies revealed that the oligomeric polypeptides could preferentially bind to Aβ42 through π–π stacking between aromatic amino acids and Phe19, together with hydrogen bonding. The cell viability assay confirmed that the toxicity of Aβ42 to SH‐SY5Y cells was markedly reduced in the presence of polypeptides. This study could be beneficial for developing peptide‐based inhibitory agents for amyloidoses. Copyright © 2017 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

6.
A novel amphiphilic cyclic peptide composed of two β‐glucosamino acids and one trans‐2‐aminocyclohexylcarboxylic acid was synthesized and investigated on assembly formation. The cyclic tri‐β‐peptide was self‐assembled into rodlike crystals or nanofibers depending on preparative conditions. The rodlike crystals showed a layer spacing of 4.8 Å along the long axis, and columnar spacings of 10.8 and 21.5 Å by electron diffraction analysis along the short axis. The former confirms the columnar structure upon molecular stacking, and the latter indicates triple bundle formation of the columnar assemblies. Fourier transform infrared (FT‐IR) measurement of the fibrous assembly showed formation of homogeneous hydrogen bonds among amide groups, also supporting the molecular stacking of cyclic β‐peptides. Straight nanofibers with uniform diameter were also uniquely obtained. Copyright © 2010 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

7.
The β‐subunit of the human chorionic gonadotropin (hCG) hormone, which is believed to be related to certain types of cancer, contains three hairpin‐like fragments. To investigate the role of β‐hairpin formation in the early stages of the hCGβ folding, a 28‐residue peptide with the sequence RDVRFESIRLPGSPRGVNPVVSYAVALS, corresponding to the H3‐β hairpin fragment (residues 60–87) of the hCGβ subunit, was studied under various conditions using three optical spectroscopic methods: Fourier transform ir spectroscopy, electronic CD, and vibrational CD. Environmental conditions are critical factors for formation of secondary structure in this peptide. TFE : H2O mixed solvents induced helical formation. Formation of β‐structure in this peptide, which may be related to the native β‐hairpin formation in the intact hormone, was found to be induced only under conditions such as high concentration, high temperature, and the presence of nonmicellar sodium dodecyl sulfate concentrations. These findings support a protein folding mechanism for the hCGβ subunit in which an initial hydrophobic collapse, which increases intermolecular interactions in hCGβ, is needed to induce the H3‐β hairpin formation. © 1999 John Wiley & Sons, Inc. Biopoly 50: 413–423, 1999  相似文献   

8.
The conformation of oligomers of β‐amino acids of the general type Ac‐[β‐Xaa]n‐NHMe (β‐Xaa = β‐Ala, β‐Aib, and β‐Abu; n = 1–4) was systematically examined at different levels of ab initio molecular orbital theory (HF/6‐31G*, HF/3‐21G). The solvent influence was considered employing two quantum‐mechanical self‐consistent reaction field models. The results show a wide variety of possibilities for the formation of characteristic elements of secondary structure in β‐peptides. Most of them can be derived from the monomer units of blocked β‐peptides with n = 1. The stability and geometries of the β‐peptide structures are considerably influenced by the side‐chain positions, by the configurations at the Cα‐ and Cβ‐atoms of the β‐amino acid constituents, and especially by environmental effects. Structure peculiarities of β‐peptides, in particular those of various helix alternatives, are discussed in relation to typical elements of secondary structure in α‐peptides. © 1999 John Wiley & Sons, Inc. Biopoly 50: 167–184, 1999  相似文献   

9.
Fibril formation is the hallmark of pathogenesis in Alzheimer's disease and other amyloid disorders caused by conformational alterations leading to the aggregation of soluble monomers. Aβ40 self‐associates to form amyloid fibrils. Its central seven‐residue segment KLVFFAE (Aβ16–22), which is thought to be crucial for fibril formation of the full‐length peptide, forms fibrils even in isolation. Context‐dependent induction of amyloid formation by such sequences in peptides, which otherwise do not have that propensity, is of considerable interest. We have examined the effect of introducing the Aβ16–22 sequence at the N‐terminus of two amphipathic helical 18‐residue peptides Ac‐WYSEMKRNVQRLERAIEE‐am and Ac‐KQLIRFLKRLDRNLWGLA‐am, which have high average hydrophobic moment <μH> values but have net charges of 0 and +4, respectively, at neutral pH. Upon incubation in aqueous buffer, fibril‐like aggregates were discernible by transmission electron microscopy for the peptide with only 0 net charge, which also displayed ThT binding and β‐structure. Although both the sequences have been derived from amphipathic helical segments in globular proteins and possess high average hydrophobic moments, the +4 charge peptide lacks the ability to form fibrils, while the peptide with 0 charge has the tendency to form fibrillar structures. Variation in the net charge and the presence of several glutamic acids in the sequence of the peptide with net charge 0 appear to favor the formation of fibrils when the Aβ16–22 sequence is attached at the N‐terminus. Copyright © 2011 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

10.
11.
The structural properties of a 10‐residue and a 15‐residue peptide in aqueous solution were investigated by molecular dynamics simulation. The two designed peptides, SYINSDGTWT and SESYINSDGTWTVTE, had been studied previously by NMR at 278 K and the resulting model structures were classified as 3:5 β‐hairpins with a type I + G1 β‐bulge turn. In simulations at 278 K, starting from the NMR model structure, the 3:5 β‐hairpin conformers proved to be stable over the time period evaluated (30 ns). Starting from an extended conformation, simulations of the decapeptide at 278 K, 323 K and 353 K were also performed to study folding. Over the relatively short time scales explored (30 ns at 278 K and 323 K, 56 ns at 353 K), folding to the 3:5 β‐hairpin could only be observed at 353 K. At this temperature, the collapse to β‐hairpin‐like conformations is very fast. The conformational space accessible to the peptide is entirely dominated by loop structures with different degrees of β‐hairpin character. The transitions between different types of ordered loops and β‐hairpins occur through two unstructured loop conformations stabilized by a single side‐chain interaction between Tyr2 and Trp9, which facilitates the changes of the hydrogen‐bond register. In agreement with previous experimental results, β‐hairpin formation is initially driven by the bending propensity of the turn segment. Nevertheless, the fine organization of the turn region appears to be a late event in the folding process. Copyright © 2004 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

12.
A 20‐residue peptide, IG(42–61), derived from the C‐terminal β‐hairpin of the B3 domain of the immunoglobulin binding protein G from Streptoccocus was studied using circular dichroism, nuclear magnetic resonance (NMR) spectroscopy at various temperatures and by differential scanning calorimetry (DSC). Unlike other related peptides studied so far, this peptide displays two heat capacity peaks in DSC measurements (at a scanning rate of 1.5 deg/min at a peptide concentration of 0.07 mM), which suggests a three‐state folding/unfolding process. The results from DSC and NMR measurements suggest the formation of a dynamic network of hydrophobic interactions stabilizing the structure, which resembles a β‐hairpin shape over a wide range of temperatures (283–313 K). Our results show that IG (42–61) possesses a well‐organized three‐dimensional structure stabilized by long‐range hydrophobic interactions (Tyr50 ··· Phe57 and Trp48 ··· Val59) at T = 283 K and (Trp48 ··· Val59) at 305 and 313 K. The mechanism of β‐hairpin folding and unfolding, as well as the influence of peptide length on its conformational properties, are also discussed. Proteins 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

13.
The crystal structure of an N‐terminal β‐strand‐swapped consensus‐derived tenascin FN3 alternative scaffold has been determined. A comparison with the unswapped structure reveals that the side chain of residue F88 orients differently and packs more tightly with the hydrophobic core of the domain. Dimer formation also results in the burial of a hydrophobic patch on the surface of the domain. Thus, it appears that tighter packing of F88 in the hydrophobic core and burial of surface hydrophobicity provide the driving forces for the N‐terminal β‐strand swapping, leading to the formation of a stable compact dimer. Proteins 2014; 82:1527–1533. © 2014 Wiley Periodicals, Inc.  相似文献   

14.
β‐Sheets are quite frequent in protein structures and are stabilized by regular main‐chain hydrogen bond patterns. Irregularities in β‐sheets, named β‐bulges, are distorted regions between two consecutive hydrogen bonds. They disrupt the classical alternation of side chain direction and can alter the directionality of β‐strands. They are implicated in protein‐protein interactions and are introduced to avoid β‐strand aggregation. Five different types of β‐bulges are defined. Previous studies on β‐bulges were performed on a limited number of protein structures or one specific family. These studies evoked a potential conservation during evolution. In this work, we analyze the β‐bulge distribution and conservation in terms of local backbone conformations and amino acid composition. Our dataset consists of 66 times more β‐bulges than the last systematic study (Chan et al. Protein Science 1993, 2:1574–1590). Novel amino acid preferences are underlined and local structure conformations are highlighted by the use of a structural alphabet. We observed that β‐bulges are preferably localized at the N‐ and C‐termini of β‐strands, but contrary to the earlier studies, no significant conservation of β‐bulges was observed among structural homologues. Displacement of β‐bulges along the sequence was also investigated by Molecular Dynamics simulations.  相似文献   

15.
Aromatic amino acids have been shown to promote self-assembly of amyloid peptides, although the basis for this amyloid-inducing behavior is not understood. We adopted the amyloid-β 16-22 peptide (Aβ(16-22), Ac-KLVFFAE-NH(2)) as a model to study the role of aromatic amino acids in peptide self-assembly. Aβ(16-22) contains two consecutive Phe residues (19 and 20) in which Phe 19 side chains form interstrand contacts in fibrils while Phe 20 side chains interact with the side chain of Va l18. The kinetic and thermodynamic effect of varying the hydrophobicity and aromaticity at positions 19 and 20 by mutation with Ala, Tyr, cyclohexylalanine (Cha), and pentafluorophenylalanine (F(5)-Phe) (order of hydrophobicity is Ala < Tyr < Phe < F(5)-Phe < Cha) was characterized. Ala and Tyr position 19 variants failed to undergo fibril formation at the peptide concentrations studied, but Cha and F(5)-Phe variants self-assembled at dramatically enhanced rates relative to wild-type. Cha mutation was thermodynamically stabilizing at position 20 (ΔΔG = -0.2 kcal mol(-1) relative to wild-type) and destabilizing at position 19 (ΔΔG = +0.2 kcal mol(-1)). Conversely, F(5)-Phe mutations were strongly stabilizing at both positions (ΔΔG = -1.3 kcal mol(-1) at 19, ΔΔG = -0.9 kcal mol(-1) at 20). The double Cha and F(5)-Phe mutants showed that the thermodynamic effects were additive (ΔΔG = 0 kcal mol(-1) for Cha 19,20 and -2.1 kcal mol(-1) for F(5)-Phe 19,20). These results indicate that sequence hydrophobicity alone does not dictate amyloid potential, but that aromatic, hydrophobic, and steric considerations collectively influence fibril formation.  相似文献   

16.
The mechanism by which a disordered peptide nucleates and forms amyloid is incompletely understood. A central domain of β‐amyloid (Aβ21–30) has been proposed to have intrinsic structural propensities that guide the limited formation of structure in the process of fibrillization. In order to test this hypothesis, we examine several internal fragments of Aβ, and variants of these either cyclized or with an N‐terminal Cys. While Aβ21–30 and variants were always monomeric and unstructured (circular dichroism (CD) and nuclear magnetic resonance spectroscopy (NMRS)), we found that the addition of flanking hydrophobic residues in Aβ16–34 led to formation of typical amyloid fibrils. NMR showed no long‐range nuclear overhauser effect (nOes) in Aβ21–30, Aβ16–34, or their variants, however. Serial 1H‐15N‐heteronuclear single quantum coherence spectroscopy, 1H‐1H nuclear overhauser effect spectroscopy, and 1H‐1H total correlational spectroscopy spectra were used to follow aggregation of Aβ16–34 and Cys‐Aβ16–34 at a site‐specific level. The addition of an N‐terminal Cys residue (in Cys‐Aβ16–34) increased the rate of fibrillization which was attributable to disulfide bond formation. We propose a scheme comparing the aggregation pathways for Aβ16–34 and Cys‐Aβ16–34, according to which Cys‐Aβ16–34 dimerizes, which accelerates fibril formation. In this context, cysteine residues form a focal point that guides fibrillization, a role which, in native peptides, can be assumed by heterogeneous nucleators of aggregation.  相似文献   

17.
The Aβ(16–22) sequence KLVFFAE spans the hydrophobic core of the Aβ peptide and plays an important role in its self-assembly. Apart from forming amyloid fibrils, Aβ(16–22) can self-associate into highly ordered nanotubes and ribbon-like structures depending on the composition of solvent used for dissolution. The Aβ(16–22) sequence which has FF at the 19th and 20th positions would be a good model to investigate peptide self-assembly in the context of aromatic interactions. In this study, self-assembly of Aβ(16–22) and its aromatic analogs obtained by replacement of F19, F20 or both by Y or W was examined after dissolution in fluorinated alcohols and their aqueous mixtures in solvent cluster forming conditions. The results indicate that the presence of aromatic residues Y and W and their position in the sequence plays an important role in self-assembly. We observe the formation of amyloid fibrils and other self-assembled structures such as spheres, rings and beads. Our results indicate that 20% HFIP is more favourable for amyloid fibril formation as compared to 20% TFE, when F is replaced with Y or W. The dissolution of peptides in DMSO followed by evaporation of solvent and dissolution in water appears to greatly influence peptide conformation, morphology and cross-β content of self-assembled structures. Our study shows that positioning of aromatic residues F, Y and W have an important role in directing self-assembly of the peptides.  相似文献   

18.
Replica exchange molecular dynamics simulations (300 ns) were used to study the dimerization of amyloid β(1‐40) (Aβ(1‐40)) polypeptide. Configurational entropy calculations revealed that at physiological temperature (310 K, 37°C) dynamic dimers are formed by randomly docked monomers. Free energy of binding of the two chains to each other was ?93.56 ± 6.341 kJ mol?1. Prevalence of random coil conformations was found for both chains with the exceptions of increased β‐sheet content from residues 16‐21 and 29‐32 of chain A and residues 15‐21 and 30‐33 of chain B with β‐turn/β‐bend conformations in both chains from residues 1‐16, 21‐29 of chain A, 1‐16, and 21‐29 of chain B. There is a mixed β‐turn/β‐sheet region from residues 33‐38 of both chains. Analysis of intra‐ and interchain residue distances shows that, although the individual chains are highly flexible, the dimer system stays in a loosely packed antiparallel β‐sheet configuration with contacts between residues 17‐21 of chain A with residues 17‐21 and 31‐36 of chain B as well as residues 31‐36 of chain A with residues 17‐21 and 31‐36 of chain B. Based on dihedral principal component analysis, the antiparallel β‐sheet‐loop‐β‐sheet conformational motif is favored for many low energy sampled conformations. Our results show that Aβ(1‐40) can form dynamic dimers in aqueous solution that have significant conformational flexibility and are stabilized by collapse of the central and C‐terminal hydrophobic cores with the expected β‐sheet‐loop‐β‐sheet conformational motif. Proteins 2017; 85:1024–1045. © 2017 Wiley Periodicals, Inc.  相似文献   

19.
X-ray diffraction was used to study the structure of assemblies formed by synthetic peptide fragments of the prion protein (PrP) that include the hydrophobic domain implicated in the Gerstmann-Str?ussler-Scheinker (GSS) mutation (P102L). The effects of hydration on polypeptide assembly and of Ala-->Val substitutions in the hydrophobic domain were characterized. Synthetic peptides included: (i) Syrian hamster (SHa) hydrophobic core, SHa106-122 (KTNMKHMAGAAAAGAVV); (ii) SHa104-122(3A-V), with A-->V mutations at 113, 115 and 118 (KPKTNMKHMVGVAAVGAVV); (iii) mouse (Mo) wild-type sequence of the N-terminal hydrophobic domain, Mo89-143WT; and (iv) the same mouse sequence with leucine substitution for proline at residue number 101, Mo89-143(P101L). Samples of SHa106-122 that formed assemblies while drying under ambient conditions showed X-ray patterns indicative of 33 A thick slab-like structures having extensive H-bonding and intersheet stacking. By contrast, lyophilized peptide that was equilibrated against 100 % relative humidity showed assemblies with only a few layers of beta-sheets. The Ala-->Val substitutions in SHa104-122 and Mo89-143(P101L) resulted in the formation of 40 A wide, cross-beta fibrils. Observation of similar size beta-sheet fibrils formed by peptides SHa104-122(3A-V) and the longer Mo89-143(P101L) supports the notion that the hydrophobic sequence forms a template or core that promotes the beta-folding of the longer peptide. The substitution of amino acids in the mutants, e.g. 3A-->V and P101L, enhances the folding of the peptide into compact structural units, significantly enhancing the formation of the extensive beta-sheet fibrils.  相似文献   

20.
Glutamic acid–rich peptides are crucial to a variety of biological processes, including glutamatergic neurotransmission and immunological defense. Glutamic acid sequences often exhibit unusual organization into β2‐type sheets, where bifurcated H bonds formed between glutamic acid side chains and NH in amide bonds on adjacent βstrands play a paramount role for stabilizing the molecular assembly. Herein, we investigate the self‐assembly and supramolecular structure of simplified models consisting of alternating glutamic acid/phenylalanine residues. Small‐angle X‐ray scattering and atomic force microscopy show that the aggregation pathway is characterized by the formation of small oligomers, followed by coalescence into nanofibrils and nanotapes. Amyloidogenic features are further demonstrated through fiber X‐ray diffraction, which reveal molecular packing according to cross‐β patterns, where βstrands appear perpendicularly oriented to the long axis of nanofibrils and nanotapes. Nanoscale infrared spectroscopy from individual nanoparticles on dried samples shows a remarkable decrease of β2‐sheet content, accompanied by growth of standard β‐sheet fractions, indicating a β2‐to‐β1 transition as a consequence of the release of solvent from the interstices of peptide assemblies. Our findings highlight the key role played by water molecules in mediating H‐bond formation in β2‐sheets commonly found in amyloidogenic glutamic acid–rich aggregates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号