首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The tetratricopeptide repeat (TPR) is a 34-amino acid helix-turn-helix motif that occurs in tandem arrays in numerous proteins. Here we compare the backbone dynamics of a natural 3-repeat TPR domain, from the protein UBP, with the behavior of a designed protein CTPR3, which consists of three identical consensus TPR units. Although the three tandem TPR repeats in both CTPR3 and UBP behave as a single unit, with no evidence of independent repeat motions, the data indicate that certain positions in UBP are significantly more flexible than are the corresponding positions in CTPR3. Most of the dynamical changes occur at or adjacent to positions that are involved in intra-repeat packing interactions. These observations lead us to suggest that the three-TPR domain of UBP does not incorporate optimized packing, compared to that seen in the idealized CTPR. The natural TPR domain is not only less stable overall than CTPR3, but also presents increased local flexibility at the positions where the sequences differs from the conserved consensus.  相似文献   

3.
Tetratricopeptide repeat (TPR) domains are ubiquitous protein interaction domains that adopt a modular antiparallel array of α‐helices. The TPR fold typically adopts a monomeric state, and consensus TPRs sequences successfully fold into the expected monomeric topology. The versatility of the TPR fold also supports different quaternary structures, which may function as regulatory switches. One example is yeast mitochondrial fission 1 (Fis1) that appears to interconvert between monomer and dimer states in regulating division of peroxisomes and mitochondria. Whether human Fis1 can also interconvert like the yeast molecule is unknown. A TPR consensus proline residue present in human Fis1 is absent in the yeast molecule and, when added, prevents yeast Fis1 dimerization suggesting that the TPR consensus proline might have persisted to prevent TPR oligomerization. Here, we address this question with human Fis1 and the consensus TPR protein CTPR3. We demonstrate that human Fis1 does not form a noncovalent dimer via its TPR domain, despite conditions that favor dimerization of the yeast protein. We also show that the presence of the consensus proline is not sufficient to forbid TPR dimerization. Lastly, an analysis of all available TPR protein structures (22 nonredundant structures, totaling 64 TPRs—42 with the consensus proline and 22 without) revealed that the consensus proline is not necessary for turn formation, but does favor shorter turns. This work suggests the TPR consensus proline is not to prevent oligomerization, but to favor tight turns between repeats.  相似文献   

4.
Osmosensing transporter ProP protects bacteria from osmotically induced dehydration by mediating the uptake of zwitterionic osmolytes. ProP activity is a sigmoidal function of the osmolality. ProP orthologues share an extended, cytoplasmic C‐terminal domain. Orthologues with and without a C‐terminal, α‐helical coiled‐coil domain respond similarly to the osmolality. ProP concentrates at the poles and septa of Escherichia coli cells in a cardiolipin (CL)‐dependent manner. The roles of phospholipids and the C‐terminal domain in subcellular localization of ProP were explored. Liposome association of peptides representing the C‐terminal domains of ProP orthologues and variants in vitro was compared with subcellular localization of the corresponding orthologues and variants in vivo. In the absence of coiled‐coil formation, the C‐terminal domain bound liposomes and ProP concentrated at the cell poles in a CL‐independent manner. The presence of the coiled‐coil replaced those phenomena with CL‐dependent binding and localization. The effects of amino acid replacements on lipid association of the C‐terminal peptide fully recapitulated their effects on the subcellular localization of ProP. These data suggest that polar localization of ProP results from association of its C‐terminal domain with the anionic lipid‐enriched membrane at the cell poles. The coiled‐coil domain present on only some orthologues renders that phenomenon CL‐dependent.  相似文献   

5.
Coiled coil is a ubiquitous structural motif in proteins, with two to seven alpha helices coiled together like the strands of a rope, and coiled coil folding and assembly is not completely understood. A GCN4 leucine zipper mutant with four mutations of K3A, D7A, Y17W, and H18N has been designed, and the crystal structure has been determined at 1.6 Å resolution. The peptide monomer shows a helix trunk with short curved N‐ and C‐termini. In the crystal, two monomers cross in 35° and form an X‐shaped dimer, and each X‐shaped dimer is welded into the next one through sticky hydrophobic ends, thus forming an extended two‐stranded, parallel, super long coiled coil rather than a discrete, two‐helix coiled coil of the wild‐type GCN4 leucine zipper. Leucine residues appear at every seventh position in the super long coiled coil, suggesting that it is an extended super leucine zipper. Compared to the wild‐type leucine zipper, the N‐terminus of the mutant has a dramatic conformational change and the C‐terminus has one more residue Glu 32 determined. The mutant X‐shaped dimer has a large crossing angle of 35° instead of 18° in the wild‐type dimer. The results show a novel assembly mode and oligomeric state of coiled coil, and demonstrate that mutations may affect folding and assembly of the overall coiled coil. Analysis of the formation mechanism of the super long coiled coil may help understand and design self‐assembling protein fibers.  相似文献   

6.
The innate immune system is the first line of defense against invading pathogens. The retinoic acid‐inducible gene I (RIG‐I) like receptors (RLRs), RIG‐I and melanoma differentiation‐associated protein 5 (MDA5), are critical for host recognition of viral RNAs. These receptors contain a pair of N‐terminal tandem caspase activation and recruitment domains (2CARD), an SF2 helicase core domain, and a C‐terminal regulatory domain. Upon RLR activation, 2CARD associates with the CARD domain of MAVS, leading to the oligomerization of MAVS, downstream signaling and interferon induction. Unanchored K63‐linked polyubiquitin chains (polyUb) interacts with the 2CARD domain, and in the case of RIG‐I, induce tetramer formation. However, the nature of the MDA5 2CARD signaling complex is not known. We have used sedimentation velocity analytical ultracentrifugation to compare MDA5 2CARD and RIG‐I 2CARD binding to polyUb and to characterize the assembly of MDA5 2CARD oligomers in the absence of polyUb. Multi‐signal sedimentation velocity analysis indicates that Ub4 binds to RIG‐I 2CARD with a 3:4 stoichiometry and cooperatively induces formation of an RIG‐I 2CARD tetramer. In contrast, Ub4 and Ub7 interact with MDA5 2CARD weakly and form complexes with 1:1 and 2:1 stoichiometries but do not induce 2CARD oligomerization. In the absence of polyUb, MDA5 2CARD self‐associates to forms large oligomers in a concentration‐dependent manner. Thus, RIG‐I and MDA5 2CARD assembly processes are distinct. MDA5 2CARD concentration‐dependent self‐association, rather than polyUb binding, drives oligomerization and MDA5 2CARD forms oligomers larger than tetramer. We propose a mechanism where MDA5 2CARD oligomers, rather than a stable tetramer, function to nucleate MAVS polymerization.  相似文献   

7.
The structural maintenance of chromosomes (SMC) proteins form the cores of multisubunit complexes that are required for the segregation and global organization of chromosomes in all domains of life. These proteins share a common domain structure in which N‐ and C‐ terminal regions pack against one another to form a globular ATPase domain. This “head” domain is connected to a central, globular, “hinge” or dimerization domain by a long, antiparallel coiled coil. To date, most efforts for structural characterization of SMC proteins have focused on the globular domains. Recently, however, we developed a method to map interstrand interactions in the 50‐nm coiled‐coil domain of MukB, the divergent SMC protein found in γ‐proteobacteria. Here, we apply that technique to map the structure of the Bacillus subtilis SMC (BsSMC) coiled‐coil domain. We find that, in contrast to the relatively complicated coiled‐coil domain of MukB, the BsSMC domain is nearly continuous, with only two detectable coiled‐coil interruptions. Near the middle of the domain is a break in coiled‐coil structure in which there are three more residues on the C‐terminal strand than on the N‐terminal strand. Close to the head domain, there is a second break with a significantly longer insertion on the same strand. These results provide an experience base that allows an informed interpretation of the output of coiled‐coil prediction algorithms for this family of proteins. A comparison of such predictions suggests that these coiled‐coil deviations are highly conserved across SMC types in a wide variety of organisms, including humans. Proteins 2015; 83:1027–1045. © 2015 Wiley Periodicals, Inc.  相似文献   

8.
Dense‐core vesicles (DCVs) are secretory organelles that store and release modulatory neurotransmitters from neurons and endocrine cells. Recently, the conserved coiled‐coil protein CCCP‐1 was identified as a component of the DCV biogenesis pathway in the nematode Caenorhabditis elegans. CCCP‐1 binds the small GTPase RAB‐2 and colocalizes with it at the trans‐Golgi. Here, we report a structure‐function analysis of CCCP‐1 to identify domains of the protein important for its localization, binding to RAB‐2, and function in DCV biogenesis. We find that the CCCP‐1 C‐terminal domain (CC3) has multiple activities. CC3 is necessary and sufficient for CCCP‐1 localization and for binding to RAB‐2, and is required for the function of CCCP‐1 in DCV biogenesis. In addition, CCCP‐1 binds membranes directly through its CC3 domain, indicating that CC3 may comprise a previously uncharacterized lipid‐binding motif. We conclude that CCCP‐1 is a coiled‐coil protein that binds an activated Rab and localizes to the Golgi via its C‐terminus, properties similar to members of the golgin family of proteins. CCCP‐1 also shares biophysical features with golgins; it has an elongated shape and forms oligomers.   相似文献   

9.
10.
11.
The centriole is a conserved microtubule‐based organelle essential for both centrosome formation and cilium biogenesis. Five conserved proteins for centriole duplication have been identified. Two of them, SAS‐5 and SAS‐6, physically interact with each other and are codependent for their targeting to procentrioles. However, it remains unclear how these two proteins interact at the molecular level. Here, we demonstrate that the short SAS‐5 C‐terminal domain (residues 390–404) specifically binds to a narrow central region (residues 275–288) of the SAS‐6 coiled coil. This was supported by the crystal structure of the SAS‐6 coiled‐coil domain (CCD), which, together with mutagenesis studies, indicated that the association is mediated by synergistic hydrophobic and electrostatic interactions. The crystal structure also shows a periodic charge pattern along the SAS‐6 CCD, which gives rise to an anti‐parallel tetramer. Overall, our findings establish the molecular basis of the specific interaction between SAS‐5 and SAS‐6, and suggest that both proteins individually adopt an oligomeric conformation that is disrupted upon the formation of the hetero‐complex to facilitate the correct assembly of the nine‐fold symmetric centriole.  相似文献   

12.
Membrane‐less organelles in cells are large, dynamic protein/protein or protein/RNA assemblies that have been reported in some cases to have liquid droplet properties. However, the molecular interactions underlying the recruitment of components are not well understood. Herein, we study how the ability to form higher‐order assemblies influences the recruitment of the speckle‐type POZ protein (SPOP) to nuclear speckles. SPOP, a cullin‐3‐RING ubiquitin ligase (CRL3) substrate adaptor, self‐associates into higher‐order oligomers; that is, the number of monomers in an oligomer is broadly distributed and can be large. While wild‐type SPOP localizes to liquid nuclear speckles, self‐association‐deficient SPOP mutants have a diffuse distribution in the nucleus. SPOP oligomerizes through its BTB and BACK domains. We show that BTB‐mediated SPOP dimers form linear oligomers via BACK domain dimerization, and we determine the concentration‐dependent populations of the resulting oligomeric species. Higher‐order oligomerization of SPOP stimulates CRL3SPOP ubiquitination efficiency for its physiological substrate Gli3, suggesting that nuclear speckles are hotspots of ubiquitination. Dynamic, higher‐order protein self‐association may be a general mechanism to concentrate functional components in membrane‐less cellular bodies.  相似文献   

13.
In the type III secretion system (T3SS) of Aeromonas hydrophila, AcrH acts as a chaperone for translocators AopB and AopD. AcrH forms a stable 1:1 monomeric complex with AopD, whereas the 1:1 AcrH‐AopB complex exists mainly as a metastable oligomeric form and only in minor amounts as a stable monomeric form. Limited protease digestion shows that these complexes contain highly exposed regions, thus allowing mapping of intact functional chaperone binding regions of AopB and AopD. AopD uses the transmembrane domain (DF1, residues 16–147) and the C‐terminal amphipathic helical domain (DF2, residues 242–296) whereas AopB uses a discrete region containing the transmembrane domain and the putative N‐terminal coiled coil domain (BF1, residues 33–264). Oligomerization of the AcrH‐AopB complex is mainly through the C‐terminal coiled coil domain of AopB, which is dispensable for chaperone binding. The three proteins, AcrH, AopB, and AopD, can be coexpressed to form an oligomeric and metastable complex. These three proteins are also oligomerized mainly through the C‐terminal domain of AopB. Formation of such an oligomeric and metastable complex may be important for the proper formation of translocon of correct topology and stoichiometry on the host membrane.  相似文献   

14.
15.
Pan1 is a multi‐domain scaffold that enables dynamic interactions with both structural and regulatory components of the endocytic pathway. Pan1 is composed of Eps15 Homology (EH) domains which interact with adaptor proteins, a central region that is responsible for its oligomerization and C‐terminal binding sites for Arp2/3, F‐actin, and type‐I myosin motors. In this study, we have characterized the binding sites between Pan1 and its constitutive binding partner End3, another EH domain containing endocytic protein. The C‐terminal End3 Repeats of End3 associate with the N‐terminal part of Pan1's central coiled‐coil region. These repeats appear to act independently of one another as tandem, redundant binding sites for Pan1. The end3‐1 allele was sequenced, and corresponds to a C‐terminal truncation lacking the End3 Repeats. Mutations of the End3 Repeats highlight that those residues which are identical between these repeats serve as contact sites for the interaction with Pan1.   相似文献   

16.
The trans-envelope Tol complex of Gram-negative bacteria is recruited to the septation apparatus during cell division where it is involved in stabilizing the outer membrane. The last gene in the tol operon, ybgF, is highly conserved, yet does not seem to be required for Tol function. We have addressed this anomaly by characterizing YbgF from Escherichia coli and its interaction with TolA, which, based on previous yeast two-hybrid data, is the only known physical link between YbgF and the Tol system. We show that the stable YbgF trimer undergoes a marked change in oligomeric state on binding TolA, forming a one-to-one complex with the Tol protein. Through a combination of pull-down assays, deletion analysis, and isothermal titration calorimetry, we map the TolA-YbgF interface to the C-terminal tetratricopeptide repeat domain of YbgF and 31 residues at the C-terminal end of TolA domain II (TolA280-313). We show that TolB, which binds TolA domain III close to the YbgF binding site, has no impact on the YbgF-TolA association. We also report the crystal structures of the two component domains of YbgF, the N-terminal coiled coil from E. coli YbgF, which forms a stable trimer and controls the oligomeric status of YbgF, and the monomeric tetratricopeptide repeat domain from Xanthomonas campestris YbgF, which is also able to trimerize. Although the coiled coil is not directly involved in TolA binding, we demonstrate that the regular hydrophilic patterning of its otherwise hydrophobic core is a prerequisite for the TolA-induced oligomeric-state transition of YbgF. We postulate that rather than YbgF affecting Tol function, it is the change in YbgF oligomeric status (with an accompanying change in its function) that likely explains the necessity for tight co-regulation of the ybgF and tol genes in Gram-negative bacteria.  相似文献   

17.
The coiled‐coil is one of the most common protein structural motifs. Amino acid sequences of regions that participate in coiled‐coils contain a heptad repeat in which every third then forth residue is occupied by a hydrophobic residue. Here we examine the consequences of a “stutter,” a deviation of the idealized heptad repeat that is found in the central coiled‐coil of influenza hemagluttinin HA2. Characterization of a peptide containing the native stutter‐containing HA2 sequence, as well as several variants in which the stutter was engineered out to restore an idealized heptad repeat pattern, revealed that the stutter is important for allowing coiled‐coil formation in the WT HA2 at both neutral and low pH (7.1 and 4.5). By contrast, all variants that contained idealized heptad repeats exhibited marked pH‐dependent coiled‐coil formation with structures forming much more stably at low pH. A crystal structure of one variant containing an idealized heptad repeat, and comparison to the WT HA2 structure, suggest that the stutter distorts the optimal interhelical core packing arrangement, resulting in unwinding of the coiled‐coil superhelix. Interactions between acidic side chains, in particular E69 and E74 (present in all peptides studied), are suggested to play a role in mediating these pH‐dependent conformational effects. This conclusion is partially supported by studies on HA2 variant peptides in which these positions were altered to aspartic acid. These results provide new insight into the structural role of the heptad repeat stutter in HA2. Proteins 2014; 82:2220–2228. © 2014 Wiley Periodicals, Inc.  相似文献   

18.
Dystrophia myotonica protein kinase (DMPK) is a serine/threonine kinase composed of a kinase domain and a coiled‐coil domain involved in the multimerization. The crystal structure of the kinase domain of DMPK bound to the inhibitor bisindolylmaleimide VIII (BIM‐8) revealed a dimeric enzyme associated by a conserved dimerization domain. The affinity of dimerisation suggested that the kinase domain alone is insufficient for dimerisation in vivo and that the coiled‐coil domains are required for stable dimer formation. The kinase domain is in an active conformation, with a fully‐ordered and correctly positioned αC helix, and catalytic residues in a conformation competent for catalysis. The conserved hydrophobic motif at the C‐terminal extension of the kinase domain is bound to the N‐terminal lobe of the kinase domain, despite being unphosphorylated. Differences in the arrangement of the C‐terminal extension compared to the closely related Rho‐associated kinases include an altered PXXP motif, a different conformation and binding arrangement for the turn motif, and a different location for the conserved NFD motif. The BIM‐8 inhibitor occupies the ATP site and has similar binding mode as observed in PDK1.  相似文献   

19.
TRIM E3 ubiquitin ligases regulate a wide variety of cellular processes and are particularly important during innate immune signalling events. They are characterized by a conserved tripartite motif in their N‐terminal portion which comprises a canonical RING domain, one or two B‐box domains and a coiled‐coil region that mediates ligase dimerization. Self‐association via the coiled‐coil has been suggested to be crucial for catalytic activity of TRIMs; however, the precise molecular mechanism underlying this observation remains elusive. Here, we provide a detailed characterization of the TRIM ligases TRIM25 and TRIM32 and show how their oligomeric state is linked to catalytic activity. The crystal structure of a complex between the TRIM25 RING domain and an ubiquitin‐loaded E2 identifies the structural and mechanistic features that promote a closed E2~Ub conformation to activate the thioester for ubiquitin transfer allowing us to propose a model for the regulation of activity in the full‐length protein. Our data reveal an unexpected diversity in the self‐association mechanism of TRIMs that might be crucial for their biological function.  相似文献   

20.
BepA (formerly YfgC) is an Escherichia coli periplasmic protein consisting of an N‐terminal protease domain and a C‐terminal tetratricopeptide repeat (TPR) domain. We have previously shown that BepA is a dual functional protein with chaperone‐like and proteolytic activities involved in membrane assembly and proteolytic quality control of LptD, a major component of the outer membrane lipopolysaccharide translocon. Intriguingly, BepA can associate with the BAM complex: the β‐barrel assembly machinery (BAM) driving integration of β‐barrel proteins into the outer membrane. However, the molecular mechanism of BepA function and its association with the BAM complex remains unclear. Here, we determined the crystal structure of the BepA TPR domain, which revealed the presence of two subdomains formed by four TPR motifs. Systematic site‐directed in vivo photo‐cross‐linking was used to map the protein–protein interactions mediated by the BepA TPR domain, showing that this domain interacts both with a substrate and with the BAM complex. Mutational analysis indicated that these interactions are important for the BepA functions. These results suggest that the TPR domain plays critical roles in BepA functions through interactions both with substrates and with the BAM complex. Our findings provide insights into the mechanism of biogenesis and quality control of the outer membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号