首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
PTS2 protein import into mammalian peroxisomes   总被引:2,自引:1,他引:2  
Peroxisome targeting signal (PTS)2 directs proteins from their site of synthesis in the cytosol to the lumen of the peroxisome. Unlike PTS1 which is present in the great majority of peroxisomal matrix proteins and whose import mechanics have been dissected in considerable detail, PTS2 is a relatively rare topogenic signal whose import mechanisms are far less well understood. However, as is the case for PTS1 proteins, an inability to import PTS2 proteins leads to human disease. In this report, we describe the biochemical characterization of mammalian PTS2 protein import using a semi-permeabilized cell system. We show that a PTS2-containing reporter molecule is taken up by peroxisomes in a reaction that is time-, temperature-, ATP-, and cytosol-dependent. Furthermore, the import process is specific, saturable, and requires action of the chaperone Hsc70, the cochaperone Hsp40, and the peroxins Pex5p and Pex14p. We also demonstrate peroxisomal translocation of PTS2 reporter/antibody complexes confirming the import competence of higher order structures. Importantly, cultured fibroblasts from patients with the rhizomelic form of chondrodysplasia punctata (RCDP) which are deficient for the PTS2 receptor protein, Pex7p, are unable to import the PTS2 reporter in this assay. The ability to monitor PTS2 import in vitro will permit, for the first time, a detailed comparison of the biochemical properties of PTS1 and PTS2 protein import.  相似文献   

2.
We evaluated the import of Arabidopsis catalase to peroxisomes under homogenous transient expression. The amino acids at ?11 to ?4 from the C-terminus are necessary for catalase import. The results are in agreement with the previous work under stable expression. We first demonstrate that heme-binding sites are important for peroxisomal import, suggesting the importance of catalase folding.

Abbreviations: AtCat: Arabidopsis catalase; PTS: peroxisomal targeting signal; PEX: Peroxin  相似文献   


3.
Peroxisomal matrix protein import is mediated by dynamic import receptors, which cycle between the peroxisomal membrane and the cytosol. Proteins with a type 1 peroxisomal targeting signal (PTS1) are bound by the import receptor Pex5p in the cytosol and guided to the peroxisomal membrane. After cargo translocation into the peroxisomal matrix, the receptor is released from the membrane back to the cytosol in an ATP-dependent manner by the AAA-type ATPases Pex1p and Pex6p. These mechanoenzymes recognize ubiquitinated Pex5p-species as substrates for membrane extraction. The PTS1-receptor is either polyubiquitinated via peptide bonds at two certain lysines and results in proteasomal degradation or monoubiquitinated via a thioester-bond at a conserved cysteine, which enables the recycling of Pex5p and further rounds of matrix protein import. To investigate the physiological relevance of the conserved N-terminal cysteine of Pex5p, the known target amino acids for ubiquitination were substituted by site-directed mutagenesis. In contrast with Pex5pC6A, Pex5pC6K turned out to be functional in PTS1 import and utilization of oleic acid, independent of the lysines at position 18 and 24. In contrast with wild-type Pex5p, Pex5pC6K displays an ubiquitination pattern, similar to the polyubiquitination pattern of Pex4p or Pex22p mutant strains. Moreover, Pex5pC6K displays a significantly reduced steady-state level when the deubiquitinating enzyme Ubp15p is missing. Thus, our results indicate that not the cysteine residue but the position of ubiquitination is important for Pex5p function. The presence of the cysteine prevents polyubiquitination and rapid degradation of Pex5p.  相似文献   

4.
Peroxisomes are capable of importing folded and oligomeric proteins. However, it is a matter of dispute whether oligomer import by peroxisomes is the exception or the rule. Here, I argue for a clear distinction between homo-oligomeric proteins that are essentially peroxisomal, and dually localized hetero-oligomers that access the peroxisome by piggyback import, localizing there in limited number, whereas the majority remain in the cytosol. Homo-oligomeric proteins comprise the majority of all peroxisomal matrix proteins. There is evidence that binding by Pex5 in the cytosol can regulate their oligomerization state before import. The hetero-oligomer group is made up of superoxide dismutase and lactate dehydrogenase. These proteins have evolved mechanisms that render import inefficient and retain the majority of proteins in the cytosol.  相似文献   

5.
An ever-increasing number of proteins have been shown to translocate across various membranes of bacterial as well as eukaryotic cells in their folded states as a part of physiological and/or pathophysiological processes. Herein, we provide an overview of the systems/processes that are established or likely to involve the membrane translocation of folded proteins, such as protein export by the twin-arginine translocation system in bacteria and chloroplasts, unconventional protein secretion and protein import into the peroxisome in eukaryotes, and the cytosolic entry of proteins (e.g., bacterial toxins) and viruses into eukaryotes. We also discuss the various mechanistic models that have previously been proposed for the membrane translocation of folded proteins including pore/channel formation, local membrane disruption, membrane thinning, and transport by membrane vesicles. Finally, we introduce a newly discovered vesicular transport mechanism, vesicle budding and collapse, and present evidence that vesicle budding and collapse may represent a unifying mechanism that drives some (and potentially all) of folded protein translocation processes.  相似文献   

6.
Most soluble proteins targeted to the peroxisomal matrix contain a C‐terminal peroxisome targeting signal type 1 (PTS1) or an N‐terminal PTS2 that is recognized by the receptors Pex5p and Pex7p, respectively. These receptors cycle between the cytosol and peroxisome and back again for multiple rounds of cargo delivery to the peroxisome. A small number of peroxisomal matrix proteins, including all six isozymes of peroxisomal fatty acyl‐CoA oxidase (Aox) of the yeast Yarrowia lipolytica, contain neither a PTS1 nor a PTS2. Pex20p has been shown to function as a co‐receptor for Pex7p in the import of PTS2 cargo into peroxisomes. Here we show that cells of Y. lipolytica deleted for the PEX20 gene fail to import not only the PTS2‐containing protein 3‐ketoacyl‐CoA thiolase (Pot1p) but also the non‐PTS1/non‐PTS2 Aox isozymes. Pex20p binds directly to Aox isozymes Aox3p and Aox5p, which requires the C‐terminal Wxxx(F/Y) motif of Pex20p. A W411G mutation in the C‐terminal Wxxx(F/Y) motif causes Aox isozymes to be mislocalized to the cytosol. Pex20p interacts physically with members of the peroxisomal import docking complex, Pex13p and Pex14p. Our results are consistent with a role for Pex20p as the receptor for import of the non‐PTS1/non‐PTS2 Aox isozymes into peroxisomes.  相似文献   

7.
Integral peroxisomal membrane proteins (PMPs) are synthesized in the cytoplasm and imported posttranslationally. Here, we demonstrate that PEX19 binds and stabilizes newly synthesized PMPs in the cytosol, binds to multiple PMP targeting signals (mPTSs), interacts with the hydrophobic domains of PMP targeting signals, and is essential for PMP targeting and import. These results show that PEX19 functions as both a chaperone and an import receptor for newly synthesized PMPs. We also demonstrate the existence of two PMP import mechanisms and two classes of mPTSs: class 1 mPTSs, which are bound by PEX19 and imported in a PEX19-dependent manner, and class 2 mPTSs, which are not bound by PEX19 and mediate protein import independently of PEX19.  相似文献   

8.
The use of small molecules has great power to dissect biological processes. This study presents the identification and characterisation of an inhibitor of peroxisome matrix protein import. A mini-screen was carried out to identify molecules that cause alteration in peroxisome morphology, or mislocalization of a peroxisome targeted fluorescent reporter protein. A benzimidazole lead compound (LDS-003655) was identified that resulted in reduced GFP fluorescence in peroxisomes and cytosolic GFP accumulation. The effect of the compound was specific to peroxisomes as Golgi bodies, endoplasmic reticulum and the actin cytoskeleton were unaffected even at 25 μM, whereas peroxisome import via the PTS1 pathway was compromised at 100 nM. When seedlings were grown on 25 μM LDS-003655 they displayed morphology typical of seedlings grown in the presence of auxin, and expression of the auxin reporter DR5::GFP was induced. Analysis of a focussed library of LDS-003655 derivatives in comparison with known auxins led to the conclusion that the auxin-like activity of LDS-003655 is attributable to its in situ hydrolysis giving rise to 2,5-dichlorobenzoic acid, whereas the import inhibiting activity of LDS-003655 requires the whole molecule. None of the auxins tested had any effect on peroxisome protein import. Matrix import by the PTS2 import pathway was relatively insensitive to LDS-003655 and its active analogues, with effects only seen after prolonged incubation on high concentrations. Steady-state protein levels of PEX5, the PTS1 import pathway receptor, were reduced in the presence of 100 nM LDS-003655, suggesting a possible mechanism for the import inhibition.  相似文献   

9.
《Molecular cell》2022,82(17):3209-3225.e7
  1. Download : Download high-res image (166KB)
  2. Download : Download full-size image
  相似文献   

10.
Peroxisome biogenesis and the role of protein import   总被引:2,自引:0,他引:2  
Peroxisomes are metabolic organelles with enzymatic content that are found in virtually all cells and are involved in β-oxidation of fatty acids, hydrogen peroxide-based respiration and defence against oxidative stress. The steps of their biogenesis involves "peroxins", proteins encoded by PEX genes. Peroxins are involved in three key stages of peroxisome development: (1) import of peroxisomal membrane proteins; (2) import of peroxisomal matrix proteins and (3) peroxisome proliferation. Of these three areas, peroxisomal matrix-protein import is by far the best understood and accounts for most of the available published data on peroxisome biogenesis. Defects in peroxisome biogenesis result in peroxisome biogenesis disorders (PBDs), which although rare, have no known cure to-date. This review explores current understanding of each key area in peroxisome biogenesis, paying particular attention to the role of protein import.  相似文献   

11.
Proteins destined for the peroxisomal matrix are synthesized in the cytosol, and imported post-translationally. It has been previously demonstrated that stably folded proteins are substrates for peroxisomal import. Mammalian peroxisomes do not contain endogenous chaperone molecules. Therefore, it is possible that proteins are required to fold into their stable, tertiary conformation in order to be imported into the peroxisome. These investigations were undertaken to determine whether proteins rendered incapable of folding were also substrates for import into peroxisomes. Reduction of albumin resulted in a less compact tertiary structure as measured by analytical centrifugation. Microinjection of unfolded albumin molecules bearing the PTS1 targeting signal resulted in their import into peroxisomes. Kinetic analysis indicated that native and unfolded molecules were imported into peroxisomes at comparable rates. While import was unaffected by treatment with cycloheximide, hsc70 molecules were observed to be imported along with the unfolded albumin molecules. These results indicate that proteins, which are incapable of assuming their native conformation, are substrates for peroxisomal import. When combined with previous observations demonstrating the import of stably folded proteins, these results support the model that tertiary structure has no effect on protein import into the peroxisomal matrix .  相似文献   

12.
During biogenesis of the peroxisome, a subcellular organelle, the peroxisomal-targeting signal 1 (PTS1) receptor Pex5 functions as a shuttling receptor for PTS1-containing peroxisomal matrix proteins. However, the precise mechanism of receptor shuttling between peroxisomes and cytosol remains elusive despite the identification of numerous peroxins involved in this process. Herein, a new factor was isolated by a combination of biochemical fractionation and an in vitro Pex5 export assay, and was identified as AWP1/ZFAND6, a ubiquitin-binding NF-κB modulator. In the in vitro Pex5 export assay, recombinant AWP1 stimulated Pex5 export and an anti-AWP1 antibody interfered with Pex5 export. AWP1 interacted with Pex6 AAA ATPase, but not with Pex1-Pex6 complexes. Preferential binding of AWP1 to the cysteine-ubiquitinated form of Pex5 rather than to unmodified Pex5 was mediated by the AWP1 A20 zinc-finger domain. Inhibition of AWP1 by RNA interference had a significant effect on PTS1-protein import into peroxisomes. Furthermore, in AWP1 knock-down cells, Pex5 stability was decreased, similar to fibroblasts from patients defective in Pex1, Pex6 and Pex26, all of which are required for Pex5 export. Taken together, these results identify AWP1 as a novel cofactor of Pex6 involved in the regulation of Pex5 export during peroxisome biogenesis.  相似文献   

13.
Human catalase forms a 240-kDa tetrameric complex and degrades H(2) O(2) in peroxisomes. Human catalase is targeted to peroxisomes by the interaction of its peroxisomal targeting signal type 1 (PTS1)-like KANL sequence with the cytosolic PTS1 receptor Pex5p. We show herein that human catalase tetramers are formed in the cytoplasm and that the expression of a PTS signal on each of the four subunits is not necessary for peroxisomal transport. We previously demonstrated that a Pex5p mutant defective in binding to Pex13p, designated Pex5p(Mut234), imports typical PTS1-type proteins but not catalase. This impaired catalase import is not rescued by replacing its C-terminal KANL sequence with a typical PTS1 sequence, SKL, indicating that the failure of catalase import in Mut234-expressing cells is not due to its weak PTS1. In contrast, several enzymatically inactive and monomeric mutants of catalase are efficiently imported in Mut234-expressing cells. Moreover, trimeric chloramphenicol acetyltransferase (CAT) harboring SKL is not imported in Pex5p(Mut234)-expressing cells, but CAT-SKL trimers are transported to peroxisomes in the wild-type cells. These findings suggest that the Pex5p-Pex13p interaction likely plays a pivotal role in the peroxisomal import of folded and oligomeric proteins.  相似文献   

14.
Most chloroplast and mitochondrial precursor proteins are targeted specifically to either chloroplasts or mitochondria. However, there is a group of proteins that are dual targeted to both organelles. We have developed a novel in vitro system for simultaneous import of precursor proteins into mitochondria and chloroplasts (dual import system). The mitochondrial precursor of alternative oxidase, AOX was specifically targeted only to mitochondria. The chloroplastic precursor of small subunit of pea ribulose bisphosphate carboxylase/oxygenase, Rubisco, was mistargeted to pea mitochondria in a single import system, but was imported only into chloroplasts in the dual import system. The dual targeted glutathione reductase GR precursor was targeted to both mitochondria and chloroplasts in both systems. The GR pre-sequence could support import of the mature Rubisco protein into mitochondria and chloroplasts in the single import system but only into chloroplasts in the dual import system. Although the GR pre-sequence could support import of the mature portion of the mitochondrial FAd subunit of the ATP synthase into mitochondria and chloroplasts, mature AOX protein was only imported into mitochondria under the control of the GR pre-sequence in both systems. These results show that the novel dual import system is superior to the single import system as it abolishes mistargeting of chloroplast precursors into pea mitochondria observed in a single organelle import system. The results clearly show that although the GR pre-sequence has dual targeting ability, this ability is dependent on the nature of the mature protein.  相似文献   

15.
Cysteine ubiquitination of PTS1 receptor Pex5p regulates Pex5p recycling   总被引:1,自引:0,他引:1  
Pex5p is the cytosolic receptor for peroxisome matrix proteins with peroxisome-targeting signal (PTS) type 1 and shuttles between the cytosol and peroxisomes. Here, we show that Pex5p is ubiquitinated at the conserved cysteine(11) in a manner sensitive to dithiothreitol, in a form associated with peroxisomes. Pex5p with a mutation of the cysteine(11) to alanine, termed Pex5p-C11A, abrogates peroxisomal import of PTS1 and PTS2 proteins in wild-type cells. Pex5p-C11A is imported into peroxisomes but not exported, resulting in its accumulation in peroxisomes. These results suggest an essential role of the cysteine residue in the export of Pex5p. Furthermore, domain mapping indicates that N-terminal 158-amino-acid region of Pex5p-C11A, termed 158-CA, is sufficient for such dominant-negative activity by binding to membrane peroxin Pex14p via its two pentapeptide WXXXF/Y motifs. Stable expression of either Pex5p-C11A or 158-CA likewise inhibits the wild-type Pex5p import into peroxisomes, strongly suggesting that Pex5p-C11A exerts the dominant-negative effect at the translocation step via Pex14p. Taken together, these findings show that the cysteine(11) of Pex5p is indispensable for two distinct steps, its import and export. The Pex5p-C11A would be a useful tool for gaining a mechanistic insight into the matrix protein import into peroxisomes.  相似文献   

16.
Most mitochondrial preproteins are maintained in a loosely folded import-competent conformation by cytosolic chaperones, and are imported into mitochondria by translocator complexes containing a preprotein receptor, termed translocase of the outer membrane of mitochondria (Tom) 20. Using two-hybrid screening, we identified arylhydrocarbon receptor-interacting protein (AIP), an FK506-binding protein homologue, interacting with Tom20. The extreme COOH-terminal acidic segment of Tom20 was required for interaction with tetratricopeptide repeats of AIP. An in vitro import assay indicated that AIP prevents preornithine transcarbamylase from the loss of import competency. In cultured cells, overexpression of AIP enhanced preornithine transcarbamylase import, and depletion of AIP by RNA interference impaired the import. An in vitro binding assay revealed that AIP specifically binds to mitochondrial preproteins. Formation of a ternary complex of Tom20, AIP, and preprotein was observed. Hsc70 was also found to bind to AIP. An aggregation suppression assay indicated that AIP has a chaperone-like activity to prevent substrate proteins from aggregation. These results suggest that AIP functions as a cytosolic factor that mediates preprotein import into mitochondria.  相似文献   

17.
Tom20 is the master receptor for protein import into mitochondria. Analysis of motifs present in Tom20 sequences from fungi and animals found several highly conserved regions, including features of the transmembrane segment, the ligand-binding domain and functionally important flexible segments at the N terminus and the C terminus of the protein. Hidden Markov model searches of genome sequence data revealed novel isoforms of Tom20 in vertebrate and invertebrate animals. A three-dimensional comparative model of the novel type I Tom20, based on the structurally characterized type II isoform, shows important differences in the amino acid residues lining the ligand-binding groove, where the type I protein from animals is more similar to the fungal form of Tom20. Given that the two receptor types from mouse interact with the same set of precursor protein substrates, comparative analysis of the substrate-binding site provides unique insight into the mechanism of substrate recognition. No Tom20-related protein was found in genome sequence data from plants or protozoans, suggesting the receptor Tom20 evolved after the split of animals and fungi from the main lineage of eukaryotes.  相似文献   

18.
Toc64/OEP64 was identified biochemically in pea as a putative component of the chloroplast protein import apparatus. In Arabidopsis, three paralogous genes (atTOC64-III, atTOC64-V and atTOC64-I) encode Toc64-related proteins, and these have been reported to localize in chloroplasts, mitochondria and the cytosol, respectively. To assess the role of the atToc64-III protein in chloroplast protein import in an in vivo context, we identified and characterized Arabidopsis knockout mutants. The absence of detectable defects in toc64-III single mutants raised the possibility of redundancy, and prompted us to also identify toc64-V and toc64-I mutants, cross them to toc64-III, and generate double- and triple-mutant combinations. The toc64 mutants were analysed carefully with respect to a variety of criteria, including chlorophyll accumulation, photosynthetic performance, organellar ultrastructure and chloroplast protein accumulation. In each case, the mutant plants were indistinguishable from wild type. Furthermore, the efficiency of chloroplast protein import was not affected by the toc64 mutations, even when a putative substrate of the atToc64-III protein (wheatgerm-translated precursor of the 33 kDa subunit of the oxygen-evolving complex, OE33) was examined. Moreover, under various stress conditions (high light, osmotic stress and cold), the toc64 triple-mutant plants were not significantly different from wild type. These results demonstrate that Toc64/OEP64 is not essential for the efficient import of proteins into chloroplasts in Arabidopsis, and draw into question the functional significance of this component.  相似文献   

19.
20.
Peroxisomes are components of virtually all eukaryotic cells. While much is known about peroxisomal matrix protein import, our understanding of how peroxisomal membrane proteins (PMPs) are targeted and inserted into the peroxisome membrane is extremely limited. Here, we show that PEX19 binds a broad spectrum of PMPs, displays saturable PMP binding, and interacts with regions of PMPs required for their targeting to peroxisomes. Furthermore, mislocalization of PEX19 to the nucleus leads to nuclear accumulation of newly synthesized PMPs. At steady state, PEX19 is bimodally distributed between the cytoplasm and peroxisome, with most of the protein in the cytoplasm. We propose that PEX19 may bind newly synthesized PMPs and facilitate their insertion into the peroxisome membrane. This hypothesis is supported by the observation that the loss of PEX19 results in degradation of PMPs and/or mislocalization of PMPs to the mitochondrion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号