首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The identification of ubiquitin (Ub) and Ub‐like protein (Ubl) conjugation sites is important in understanding their roles in biological pathway regulations. However, unambiguously and sensitively identifying Ub/Ubl conjugation sites through high‐throughput MS remains challenging. We introduce an improved workflow for identifying Ub/Ubl conjugation sites based on the ChopNSpice and X!Tandem software. ChopNSpice is modified to generate Ub/Ubl conjugation peptides in the form of a cross‐link. A combinatorial FASTA database can be acquired using the modified ChopNSpice (MchopNSpice). The modified X!Tandem (UblSearch) introduces a new fragmentation model for the Ub/Ubl conjugation peptides to match unambiguously the MS/MS spectra with linear peptides or Ub/Ubl conjugation peptides using the combinatorial FASTA database. The novel workflow exhibited better performance in analyzing an Ub and Ubl spectral library and a large‐scale Trypanosoma cruzi small Ub‐related modifier dataset compared with the original ChopNSpice method. The proposed workflow is more suitable for processing large‐scale MS datasets of Ub/Ubl modification. MchopNSpice and UblSearch are freely available under the GNU General Public License v3.0 at http://sourceforge.net/projects/maublsearch .  相似文献   

2.
Ubiquitin (Ub) and the ubiquitin‐like proteins (Ubls) comprise a remarkable assortment of polypeptides that are covalently conjugated to target proteins (or other biomolecules) to modulate their intracellular localization, half‐life, and/or activity. Identification of Ub/Ubl conjugation sites on a protein of interest can thus be extremely important for understanding how it is regulated. While MS has become a powerful tool for the study of many classes of PTMs, the identification of Ub/Ubl conjugation sites presents a number of unique challenges. Here, we present an improved Ub/Ubl conjugation site identification strategy, utilizing SUMmOn analysis and an additional protease (lysyl endopeptidase C), as a complement to standard approaches. As compared with standard trypsin proteolysis‐database search protocols alone, the addition of SUMmOn analysis can (i) identify Ubl conjugation sites that are not detected by standard database searching methods, (ii) better preserve Ub/Ubl conjugate identity, and (iii) increase the number of identifications of Ub/Ubl modifications in lysine‐rich protein regions. Using this methodology, we characterize for the first time a number of novel Ubl linkages and conjugation sites, including alternative yeast (K54) and mammalian small ubiquitin‐related modifier (SUMO) chain (SUMO‐2 K42, SUMO‐3 K41) assemblies, as well as previously unreported NEDD8 chain (K27, K33, and K54) topologies.  相似文献   

3.
Leiliang Zhang 《FEBS letters》2009,583(4):607-614
Post-translational polypeptide tagging by conjugation with ubiquitin and ubiquitin-like (Ub/Ubl) molecules is a potent way to alter protein functions and/or sort specific protein targets to the proteasome for degradation. Many poxviruses interfere with the host Ub/Ubl system by encoding viral proteins that can usurp this pathway. Some of these include viral proteins of the membrane-associated RING-CH (MARCH) domain, p28/Really Interesting New Gene (RING) finger, ankyrin-repeat/F-box and Broad-complex, Tramtrack and Bric-a-Brac (BTB)/Kelch subgroups of the E3 Ub ligase superfamily. Here we describe and discuss the various strategies used by poxviruses to target and subvert the host cell Ub/Ubl systems.  相似文献   

4.
Attachment of ubiquitin (Ub) or ubiquitin-like (Ubl) modifiers is a reversible post-translational modification that regulates the fate and function of proteins. In particular, proteolytic enzymes with Ub/Ubl processing activity appear to be more widespread than originally anticipated. It is therefore not surprising that bacterial and viral pathogens have exploited many ways to interfere with Ub/Ubl conjugation, but also de-conjugation. On one hand, pathogens were shown to manipulate host encoded enzymes. On the other hand, pathogen derived sequences of proteases specific for Ub/Ubls are emerging as a common feature shared by many viruses, bacteria and protozoa, and we are at an early stage of understanding how these proteases contribute to the pathogenesis of infection. Whereas some of these proteases share a common origin with mammalian cell encoded hydrolases with specific properties towards Ub/Ubls, most of them have ancient intrinsic functions, such as processing pathogen protein components, and may have acquired the specificity for Ub/Ubls by interacting with mammalian hosts and their immune system throughout evolution. Since many of these proteases are clearly distinct from their mammalian counterparts, they represent attractive targets for drug design against infectious diseases.  相似文献   

5.
ES Elgin  N Sökmen  FC Peterson  BF Volkman  C Dağ  AL Haas 《Proteins》2012,80(10):2482-2487
The covalent attachment of ubiquitin (Ub) and ubiquitin‐like (Ubl) proteins to various eukaryotic targets plays critical roles in regulating numerous cellular processes. E1‐activating enzymes are critical, because they catalyze activation of their cognate Ub/Ubl protein and are responsible for its transfer to the correct E2‐conjugating enzyme(s). The activating enzyme for neural‐precursor‐cell‐expressed developmentally downregulated 8 (NEDD8) is a heterodimer composed of APPBP1 and Uba3 subunits. The carboxyl terminal ubiquitin‐like β‐grasp domain of human Uba3 (Uba3‐βGD) has been suggested as a key E2‐binding site defining E2 specificity. In crystal structures of free E1 and the NEDD8‐E1 complex, the E2‐binding surface on the domain was missing from the electron density. However, when complexed with various E2s, this missing segment adopts a kinked α‐helix. Here, we demonstrate that Uba3‐βGD is an independently folded domain in solution and that residues involved in E2 binding are absent from the NMR spectrum, indicating that the E2‐binding surface on Uba3‐βGD interconverts between multiple conformations, analogous to a similar conformational transition observed in the E2‐binding surface of SUMO E1. These results suggest that access to multiple conformational substates is an important feature of the E1–E2 interaction. Proteins 2012;. © 2012 Wiley Periodicals, Inc.  相似文献   

6.
Post-translational modification of target proteins by ubiquitin (Ub) and ubiquitin-like (Ubl) proteins is a critical mechanism for regulating protein functions affecting diverse cellular processes. Ub/Ubl proteins are conjugated to lysine residues in substrate proteins through an adenosine triphosphate (ATP)-dependent enzymatic cascade involving enzyme 1 (E1)-activating enzyme, E2-conjugating enzyme, and E3 ligase. The amount of adenosine monophosphate (AMP) produced in the first step, involving E1-mediated Ub/Ubl activation, represents an accurate measure of Ub/Ubl transfer during the process. Here we describe a novel bioluminescent assay platform, AMP-Glo, to quantify Ub/Ubl conjugation by measuring the AMP generated. The AMP-Glo assay is performed in a two-step reaction. The first step terminates the ubiquitination reaction, depletes the remaining ATP, and converts the AMP generated in the ubiquitination reaction to adenosine diphosphate (ADP), and in the second step the ADP generated is converted to ATP, which is detected as a bioluminescent signal using luciferase/luciferin, proportional to the AMP concentration and correlated with the Ub/Ubl transfer activity. We demonstrate the use of the assay to study Ub/Ubl conjugation and screen for chemical modulators of enzymes involved in the process. Because there is a sequential enhancement in light output in the presence of E1, E2, and E3, the AMP-Glo system can be used to deconvolute inhibitor specificity.  相似文献   

7.
Modification of proteins by ubiquitin (Ub) and Ub-like (Ubl) modifiers regulates a variety of cellular functions. The ability of Ub to form chains of eight structurally and functionally distinct types adds further complexity to the system. Ub-specific proteases (USPs) hydrolyse polyUb chains, and some have been suggested to be cross-reactive with Ubl modifiers, such as neural precursor cell expressed, developmentally downregulated 8 (NEDD8) and interferon-stimulated gene 15 (ISG15). Here, we report that USP21 cleaves Ub polymers, and with reduced activity also targets ISG15, but is inactive against NEDD8. A crystal structure of USP21 in complex with linear diUb aldehyde shows how USP21 interacts with polyUb through a previously unidentified second Ub- and ISG15-binding surface on the USP domain core. We also rationalize the inability of USP21 to target NEDD8 and identify differences that allow USPs to distinguish between structurally related modifications.  相似文献   

8.
The ubiquitin-like (Ubl) system has been shown to be ubiquitous in all three kingdoms of life following the very recent characterization of ubiquitin-like small archaeal modifier proteins (SAMP1 and 2) from Haloferax volcanii. The ubiquitin (Ub) and Ubl molecules in eukaryotes have been studied extensively and their cellular functions are well established. Biochemical and structural data pertaining to prokaryotic Ubl protein (Pup) continue to be reported. In contrast to eukaryotes and prokaryotes, no structural information on the archaeal Ubl molecule is available. Here we determined the crystal structure of SAMP1 at 1.55 Å resolution and generated a model of SAMP2. These were then compared with other Ubl molecules from eukaryotes as well as prokaryotes. The structure of SAMP1 shows a β-grasp fold of Ub, suggesting that the archaeal Ubl molecule is more closely related to eukaryotic Ub and Ubls than to its prokaryotic counterpart. The current structure identifies the location of critical elements such a single lysine residue (Lys4), C-terminal di-glycine motif, hydrophobic patches near leucine 60, and uniquely inserted α-helical segments (α1 and α3) in SAMP1. Based on the structure of SAMP1, several Ub-like features of SAMPs such as poly-SAMPylation and non-covalent interactions have been proposed, which should provide the basis for further investigations concerning the molecular function of archaeal Ubls and the large super-family of β-grasp fold proteins in the archaeal kingdom.  相似文献   

9.
Ubiquitin (Ub) and ubiquitin-like (Ubl) proteins regulate a diverse array of cellular pathways through post-translational attachment to protein substrates. Ub/Ubl-mediated signaling is initiated through E1, E2, and E3-mediated conjugation, transduced by proteins that recognize Ub/Ubl-modified substrates, and terminated by proteases which remove the Ub/Ubl from the substrate. Recent structural studies have elucidated mechanisms pertinent to Ub/Ubl conjugation, recognition, and deconjugation, highlighting essential steps during Ub/Ubl modification that illustrate common and divergent mechanistic themes within this important process.  相似文献   

10.
Lina Herhaus  Ivan Dikic 《EMBO reports》2015,16(9):1071-1083
Ubiquitylation is among the most prevalent post‐translational modifications (PTMs) and regulates numerous cellular functions. Interestingly, ubiquitin (Ub) can be itself modified by other PTMs, including acetylation and phosphorylation. Acetylation of Ub on K6 and K48 represses the formation and elongation of Ub chains. Phosphorylation of Ub happens on multiple sites, S57 and S65 being the most frequently modified in yeast and mammalian cells, respectively. In mammals, the PINK1 kinase activates ubiquitin ligase Parkin by phosphorylating S65 of Ub and of the Parkin Ubl domain, which in turn promotes the amplification of autophagy signals necessary for the removal of damaged mitochondria. Similarly, TBK1 phosphorylates the autophagy receptors OPTN and p62 to initiate feedback and feedforward programs for Ub‐dependent removal of protein aggregates, mitochondria and pathogens (such as Salmonella and Mycobacterium tuberculosis). The impact of PINK1‐mediated phosphorylation of Ub and TBK1‐dependent phosphorylation of autophagy receptors (OPTN and p62) has been recently linked to the development of Parkinson's disease and amyotrophic lateral sclerosis, respectively. Hence, the post‐translational modification of Ub and its receptors can efficiently expand the Ub code and modulate its functions in health and disease.  相似文献   

11.
植物泛素/26S蛋白酶体途径研究进展   总被引:6,自引:0,他引:6  
泛素/26S蛋白酶体途径是最重要的,有高度选择性的蛋白质降解途径,由泛素激活酶、泛素结合酶、泛素蛋白连接酶和26S蛋白酶体组成,参与调控植物生长发育的多个方面。泛素蛋白酶体途径参与植物体内的众多生理过程,如植物激素信号,光形态建成、自交不亲和反应和细胞周期等。本文就泛素/26S蛋白酶体途径以及在植物生长发育中的作用的研究近况做一综述。  相似文献   

12.
The basis for selective E1-E2 interactions in the ISG15 conjugation system   总被引:1,自引:0,他引:1  
E1 and E2 enzymes coordinate the first steps in conjugation of ubiquitin (Ub) and ubiquitin-like proteins (Ubls). ISG15 is an interferon-alpha/beta-induced Ubl, and the E1 and E2 enzymes for ISG15 conjugation are Ube1L and UbcH8, respectively. UbcH7 is the most closely related E2 to UbcH8, yet it does not function in ISG15 conjugation in vivo, while both UbcH7 and UbcH8 have been reported to function in Ub conjugation. Kinetic analyses of wild-type and chimeric E2s were performed to determine the basis for preferential activation of UbcH8 by Ube1L and to determine whether UbcH8 is activated equally well by Ube1L and E1(Ub) (Ube1). K(m) determinations confirmed the strong preference of Ube1L for UbcH8 over UbcH7 (a 29-fold K(m) difference), similar to the preference of E1(Ub) for UbcH7 over UbcH8 (a 36-fold K(m) difference). Thioester assays of chimeric E2s identified two structural elements within residues 1-39 of UbcH8 that play a major role in defining Ube1L-UbcH8 specificity: the alpha1-helix and the beta1-beta2 region. The C-terminal ubiquitin fold domain (UFD) of Ube1L was required for transfer of ISG15 to UbcH8 and for binding of Ube1L to UbcH8. Replacement of the Ube1L UFD with that from E1(Ub) resulted in preferential transfer of ISG15 to UbcH7. Together, these results indicate that Ube1L discriminates between UbcH8 and closely related Ub E2s based on specific interactions between the Ube1L UFD and determinants within the N-terminal region of UbcH8.  相似文献   

13.
Mutations in the Park2 gene, encoding the RING-HECT hybrid E3 ubiquitin ligase parkin, are responsible for a common familial form of Parkinson disease. By mono- and polyubiquitinating target proteins, parkin regulates various cellular processes, including degradation of proteins within the 26 S proteasome, a large multimeric degradation machine. In our attempt to further elucidate the function of parkin, we have identified the proteasomal ubiquitin receptor Rpn13/ADRM1 as a parkin-interacting protein. We show that the N-terminal ubiquitin-like (Ubl) domain of parkin binds directly to the pleckstrin-like receptor for ubiquitin (Pru) domain within Rpn13. Using mutational analysis and NMR, we find that Pru binding involves the hydrophobic patch surrounding Ile-44 in the parkin Ubl, a region that is highly conserved between ubiquitin and Ubl domains. However, compared with ubiquitin, the parkin Ubl exhibits greater than 10-fold higher affinity for the Pru domain. Moreover, knockdown of Rpn13 in cells increases parkin levels and abrogates parkin recruitment to the 26 S proteasome, establishing Rpn13 as the major proteasomal receptor for parkin. In contrast, silencing Rpn13 did not impair parkin recruitment to mitochondria or parkin-mediated mitophagy upon carbonyl cyanide m-chlorophenyl hydrazone-induced mitochondrial depolarization. However, it did delay the clearance of mitochondrial proteins (TIM23, TIM44, and TOM20) and enhance parkin autoubiquitination. Taken together, these findings implicate Rpn13 in linking parkin to the 26 S proteasome and regulating the clearance of mitochondrial proteins during mitophagy.  相似文献   

14.
Modification of proteins with ubiquitin (Ub) and Ub-like modifiers (Ubls) plays a fundamental role in cell biology. As a consequence, proteomics-based efforts were developed to characterize proteins that are modified by Ub or Ubls. A more focused functional proteomics strategy relies on active-site probes based on the Ub/Ubl scaffold, which specifically targets Ub/Ubl-processing enzymes. Activity-based profiling with such tools led to the identification of novel gene products with Ub/Ubl-processing activity and uncovered novel control mechanisms regulating their activity. This review discusses recent advances in chemistry-based functional proteomics applications, and how this information can provide a framework for drug development against Ub/Ubl-processing enzymes.  相似文献   

15.
A proteomics method has been developed to purify and identify the specific proteins modified by ubiquitin (Ub) from human cells. In purified samples, Ub and 21 other proteins were identified by liquid chromatography-tandem mass spectrometry (LC-MS/MS) spectra using SEQUEST. These proteins included several of the expected carriers of Ub including Ub-conjugating enzymes and histone proteins. To perform these experiments, a cell line coexpressing epitope tagged His(6X)-Ub and green fluorescent protein (GFP) was generated by stably transfecting HEK293 cells. Ubiquitinated proteins were purified using nickel-affinity chromatography and digested in solution with trypsin. Complex mixtures of peptides were separated by reversed phase chromatography and analyzed by nano LC-MS/MS using the LCQ quadrupole ion-trap mass spectrometer. Proteins identified from His(6X)-Ub-GFP transfected cells were compared to a list of proteins from HEK293 cells, which associate with nickel-nitrilotriacetic acid (Ni-NTA)-agarose in the absence of His-tagged Ub. In a proof of principle experiment, His(6X)-Ub-GFP transfected cells were treated with As (III) (10 microM, 24 h) in an attempt to identify substrates increasingly modified by Ub. In this experiment, proliferating cell nuclear antigen, a DNA repair protein and known ubiquitin substrate, was confidently identified. This proteomics method, developed for the analysis of ubiquitinated proteins, is a step towards large-scale characterization of Ub-protein conjugates in numerous physiological and pathological states.  相似文献   

16.
Modification of proteins with ubiquitin (Ub) and Ub-like modifiers (Ubls) plays a fundamental role in cell biology. As a consequence, proteomics-based efforts were developed to characterize proteins that are modified by Ub or Ubls. A more focused functional proteomics strategy relies on active-site probes based on the Ub/Ubl scaffold, which specifically targets Ub/Ubl-processing enzymes. Activity-based profiling with such tools led to the identification of novel gene products with Ub/Ubl-processing activity and uncovered novel control mechanisms regulating their activity. This review discusses recent advances in chemistry-based functional proteomics applications, and how this information can provide a framework for drug development against Ub/Ubl-processing enzymes.  相似文献   

17.
Ubiquitin-conjugating enzymes (E2s) are the central players in the trio of enzymes responsible for the attachment of ubiquitin (Ub) to cellular proteins. Humans have ∼40 E2s that are involved in the transfer of Ub or Ub-like (Ubl) proteins (e.g., SUMO and NEDD8). Although the majority of E2s are only twice the size of Ub, this remarkable family of enzymes performs a variety of functional roles. In this review, we summarize common functional and structural features that define unifying themes among E2s and highlight emerging concepts in the mechanism and regulation of E2s.  相似文献   

18.
We have developed a DNA vaccine encoding a fusion protein of ubiquitin (Ub) and target proteins at the N-terminus for effective induction of antigen-specific CD8+ T cells. A series of expression plasmids encoding a model antigen, ovalbumin (OVA), fused with mutated Ub, was constructed. Western blotting analyses using COS7 cells transfected with these plasmids revealed that there were three types of amino acid causing different binding capacities between Ub and OVA. Natural Ub with a C-terminal glycine readily dissociated from OVA; on the other hand, artificially mutated Ub, the C-terminal amino acid of which had been exchanged to valine or arginine, stably united with the polypeptide, while Ub with a C-terminal alanine partially dissociated. The ability of DNA vaccination to induce OVA-specific CD8+ T cells closely correlated with the stability of Ub fusion to OVA. Our strategy could be used to optimize the effect of genetic vaccines on the induction of CD8+ T cells.  相似文献   

19.
Ubiquitin/ubiquitin-like (Ub/Ubl) proteins are involved in diverse cellular processes by their covalent linkage to protein substrates. Here, we provide evidence for a post-translational modification system that regulates enzyme activity which is composed of an archaeal Ubl protein (SAMP1) and a JAMM/MPN+ metalloprotease (HvJAMM1). Molybdopterin (MPT) synthase activity was found to be inhibited by covalent linkage of SAMP1 to the large subunit (MoaE) of MPT synthase. HvJAMM1 was shown to cleave the covalently linked inactive form of SAMP1-MoaE to the free functional individual SAMP1 and MoaE subunits of MPT synthase, suggesting reactivation of MPT synthase by this metalloprotease. Overall, this study provides new insight into the broad idea that Ub/Ubl modification is a post-translational process that can directly and reversibly regulate the activity of metabolic enzymes. In particular, we show that Ub/Ubl linkages on the active site residues of an enzyme (MPT synthase) can inhibit its catalytic activity and that the enzyme can be reactivated through cleavage by a JAMM/MPN+ metalloprotease.  相似文献   

20.
The 26 S proteasome possesses two distinct deubiquitinating activities. The ubiquitin (Ub) chain amputation activity removes the entire polyUb chain from the substrates. The Ub chain trimming activity progressively cleaves a polyUb chain from the distal end. The Ub chain amputation activity mediates degradation-coupled deubiquitination. The Ub chain trimming activity can play a supportive or an inhibitory role in degradation, likely depending on features of the substrates. How Ub chain trimming assists degradation is not clear. We find that inhibition of the chain trimming activity of the 26 S proteasome with Ub aldehyde significantly inhibits degradation of Ub4 (Lys-48)-UbcH10 and causes accumulation of free Ub4 (generated from chain amputation) that can be retained on the proteasome. Also, a non-trimmable Lys-48-mimic Ub4 efficiently targets UbcH10 to the 26 S proteasome, but it cannot support efficient degradation of UbcH10 compared with regular Lys-48 Ub4. These results indicate that polyUb chain trimming promotes proteasomal degradation of Lys-48-linked substrates. Mechanistically, we propose that Ub chain trimming cleaves the proteasome-bound Lys-48-linked polyUb chains, which vacates the Ub binding sites of the 26 S proteasome, thus allowing continuous substrate loading.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号