首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Three sodium salts of (2E)‐3‐(4'‐halophenyl)prop‐2‐enoyl sulfachloropyrazine (CCSCP) were synthesized and their structures were determined by 1H and 13C NMR, LC‐MS and IR. The binding properties between CCSCPs and bovine serum albumin (BSA) were studied using fluorescence spectroscopy in combination with UV–vis absorbance spectroscopy. The results indicate that the fluorescence quenching mechanisms between BSA and CCSCPs were static quenching at low concentrations of CCSCPs or combined quenching (static and dynamic) at higher CCSCP concentrations of 298, 303 and 308 K. The binding constants, binding sites and corresponding thermodynamic parameters (ΔH, ΔS, ΔG) were calculated at different temperatures. All ΔG values were negative, which revealed that the binding processes were spontaneous. Although all CCSCPs had negative ΔH and positive ΔS, the contributions of ΔH and ΔS to ΔG values were different. When the 4'‐substituent was fluorine or chlorine, van der Waals interactions and hydrogen bonds were the main interaction forces. However, when the halogen was bromine, ionic interaction and proton transfer controlled the overall energetics. The binding distances between CCSCPs and BSA were determined using the Förster non‐radiation energy transfer theory and the effects of CCSCPs on the conformation of BSA were analyzed by synchronous fluorescence spectroscopy. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

2.
A series of peptide–peptoid hybrids, containing N‐substituted glycines, were synthesized based on the H‐Aib‐Val‐Aib‐Glu‐Ile‐Gln‐Leu‐Nle‐His‐Gln‐Har‐NH2 (Har = Homoarginine) as the parent parathyroid hormone (1–11) analog. The compounds were pharmacologically characterized in their agonistic activity at the parathyroid hormone 1 receptor. Copyright © 2010 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

3.
Conformational control in peptoids, N-substituted glycines, is crucial for the design and synthesis of biologically-active compounds and atomically-defined nanomaterials. While there are a growing number of structural studies in solution, most have been performed with conformationally-constrained short sequences (e.g., sterically-hindered sidechains or macrocyclization). Thus, the inherent degree of heterogeneity of unconstrained peptoids in solution remains largely unstudied. Here, we explored the folding landscape of a series of simple peptoid tetramers in aqueous solution by NMR spectroscopy. By incorporating specific 13C-probes into the backbone using bromoacetic acid-2-13C as a submonomer, we developed a new technique for sequential backbone assignment of peptoids based on the 1,n-Adequate pulse sequence. Unexpectedly, two of the tetramers, containing an N-(2-aminoethyl)glycine residue (Nae), had preferred conformations. NMR and molecular dynamics studies on one of the tetramers showed that the preferred conformer (52%) had a trans-cis-trans configuration about the three amide bonds. Moreover, >80% of the ensemble contained a cis amide bond at the central amide. The backbone dihedral angles observed fall directly within the expected minima in the peptoid Ramachandran plot. Analysis of this compound against similar peptoid analogs suggests that the commonly used Nae monomer plays a key role in the stabilization of peptoid structure via a side-chain-to-main-chain interaction. This discovery may offer a simple, synthetically high-yielding approach to control peptoid structure, and suggests that peptoids have strong intrinsic conformational preferences in solution. These findings should facilitate the predictive design of folded peptoid structures, and accelerate application in areas ranging from drug discovery to biomimetic nanoscience.  相似文献   

4.
Peptoids, oligomers of N-substituted glycines, have been attracting increasing interest due to their advantageous properties as peptidomimetics. However, due to the lack of chiral centers and amide hydrogen atoms, peptoids, in general, do not form folding structures except that they have α-chiral side chains. We have recently developed “peptoids with backbone chirality” as a new class of peptoid foldamers called α-ABpeptoids and demonstrated that they could have folding conformations owing to the methyl groups on chiral α-carbons in the backbone structure. Here we report α-ABpeptoid/β3-peptide oligomers as a unique peptidomimetic structure with a heterogeneous backbone. This hybrid structure contains a mixed α-ABpeptoid and β3-peptide residues arranged in an alternate manner. These α-ABpeptoid/β3-peptide oligomers could form intramolecular hydrogen bonding and have better cell permeability relative to pure peptide sequences. These oligomers were shown to adopt ordered folding structures based on circular dichroism studies. Overall, α-ABpeptoid/β3-peptide oligomers may represent a novel class of peptidomimetic foldamers and will find a wide range of applications in biomedical and material sciences.  相似文献   

5.
Human osteoclast‐stimulating factor (hOSF) is an intracellular protein produced by osteoclasts that induces osteoclast formation and bone resorption. The protein contains a modular Src homology 3 (SH3) domain that mediates the intermolecular recognition and interaction of hOSF with its biological partners. Here, we proposed targeting the hOSF SH3 domain to disrupt hOSF–partner interactions for bone disease therapy by using SH3 inhibitors. In the procedure, the primary sequences of three known hOSF‐interacting proteins (c‐Src, SMN and Sam68) were parsed, from which totally 31 octapeptide segments that contain the core SH3‐binding motif PXXP were extracted, and their binding behavior to hOSF SH3 domain was investigated at structural level using a biomolecular modeling protocol. Several SH3‐binding candidates were identified theoretically and then determined to have high or moderate affinity for the domain using fluorescence spectroscopy assays. One potent peptide 425APP ARP VK432 (Kd = 3.2 μM), which corresponds to the residues 425–432 of Sam68 protein, was used as template to derive N substitution of peptides (peptoids). Considering that proline is the only endogenous N‐substituted amino acid that plays a critical role in SH3–peptide binding, the substitution was addressed at the two key proline residues (Pro427 and Pro430) of the template peptide with nine N‐substituted amino acid types. By systematically evaluating the structural and energetic effects of different N‐substituted amino acids presenting at the two proline sites on peptide binding, we rationally designed five peptoid inhibitors and then determined in vitro their binding affinity to hOSF SH3 domain. Consequently, two designed peptoids APP AR( N ‐Clp) VK and APP AR( N ‐Ffa) VK with Pro430 replaced by N‐Clp and N‐Ffa were confirmed to have increased (Kd = 0.87 μM) and comparable (Kd = 2.9 μM) affinities relative to the template, respectively. In addition, we also found that the Pro427 residue plays an essential role in restricting peptide/peptoid conformations to polyproline II (PPII) helix as the basic requirement of SH3 binding so that the residue cannot be modified. Copyright © 2016 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

6.
7.
The major histocompatibility complex (MHC) class II binding requirements for solvent-exposed peptide residues were systematically studied using amino acid and peptoid substitutions. In a peptoid residue, the side chain is present on the backbone nitrogen atom as opposed to the alpha-carbon atom in an amino acid residue. To investigate the effect of this side chain shifting on MHC binding, three amino acids in the central part of the peptide sticking out of the binding groove were replaced by corresponding peptoid residues. Two peptoid-peptide hybrids showed large affinity decreases in the MHC-peptide binding assay. To investigate this affinity loss, the individual contributions to MHC binding affinity of the side chain (position), the putative hydrogen bond, and the flexibility were dissected. We conclude that the side chain position as well as the backbone nitrogen atom hydrogen bonding features of solvent-exposed residues in the peptide can be important for MHC binding affinity.  相似文献   

8.
Elevated levels of activated Protein Kinase B (PKB/Akt) have been detected in many types of human cancer. In contrast to ATP site inhibitors, substrate-based inhibitors are more likely to be selective because of extensive interactions with the specific substrate binding site. Unfortunately, peptide-based inhibitors lack important pharmacological properties that are required of drug candidates. Chemical modifications of potent peptide inhibitors, such as peptoids and Nα-methylated amino acids, may overcome these drawbacks, while maintaining potency. We present a structure-activity relationship study of a potent, peptide-based PKB/Akt inhibitor, PTR6154. The study was designed to evaluate backbone modifications on the inhibitory activity of PTR6154. Two peptidomimetic libraries, peptoid and Nα-methylation, based on PTR6154, were synthesized and evaluated for in vitro PKB/Akt inhibition efficiency. All the peptoid analogs reduced potency significantly, as well as most of the members of the N-methyl library, suggesting that the backbone conformation and/or hydrogen bond interactions of PTR6154 derivatives are essential for inhibition activity. Two N-terminal members of the N-methyl library did not decrease potency and can be used as future drug leads.  相似文献   

9.
The multiphosphorylated tryptic peptide αs1‐casein(59–79) has been shown to be antigenic with anti‐casein antibodies. In an approach to determine the amino acyl residues critical for antibody binding we undertook an epitope analysis of the peptide using overlapping synthetic peptides. With αs1‐casein(59–79) as the adsorbed antigen in a competitive ELISA only two of five overlapping synthetic peptides at 1 mM significantly inhibited binding of the anti‐casein antibodies. Peptides Glu‐Ser(P)‐Ile‐Ser(P)‐Ser(P)‐Ser(P)‐Glu‐Glu and Ile‐Val‐Pro‐Asn‐Ser(P)‐Val‐Glu‐Glu inhibited antibody binding by 20.0±3.6% and 60.3±7.9%, respectively. The epitope of Glu63‐Ser(P)‐Ile‐Ser(P)‐Ser(P)‐Ser(P)‐Glu‐Glu70 was further localised to the phosphoseryl cluster as the peptide Ser(P)‐Ser(P)‐Ser(P) significantly inhibited binding of the anti‐casein antibodies to αs1‐casein(59–79) by 29.5±7.4%. Substitution of Ser(P)75 with Ser75 in the second inhibitory peptide Ile‐Val‐Pro‐Asn‐Ser(P)75‐Val‐Glu‐Glu also abolished inhibition of antibody binding to αs1‐casein (59–79) demonstrating that Ser(P)75 is also a critical residue for recognition by the antibodies. These data show that the phosphorylated residues in the cluster sequence ‐Ser(P)66‐Ser(P)‐Ser(P)68 and in the sequence ‐Pro73‐Asn‐Ser(P)‐Val‐Glu77‐ are critical for antibody binding to αs1‐casein(59–79) and further demonstrate that a highly phosphorylated segment of a protein can be antigenic. Copyright © 1999 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   

10.
The interaction of letrozole, an efficient and safe aromatase inhibitor, with herring sperm DNA (hsDNA) was investigated in vitro through spectroscopy analysis and molecular modeling to elucidate the binding mechanism of anticancer drugs and DNA. The binding constant and the number of binding sites were 2.13 × 104 M?1 and 1.09, respectively, at 298 K. Thermodynamic parameters (ΔG, ΔH and ΔS) exhibited negative values, which indicated that binding was spontaneous and Van der Waals forces and hydrogen bond were the main interaction forces. Fourier transform infrared spectroscopy and other spectroscopy analysis methods illustrated that letrozole could intercalate into the phosphate backbone of hsDNA and interact with the nitrogenous bases. Consistent with the experimental findings, molecular modeling results demonstrated that the interaction was dominated by intercalation and hydrogen bonding. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

11.
The interaction of paylean (PL) with calf thymus DNA (ctDNA) was investigated using fluorescence spectroscopy, UV absorption, melting studies, ionic strength, viscosity experiments and molecular docking under simulated physiological conditions. Values for the binding constant Ka between PL and DNA were 5.11 × 103, 2.74 × 103 and 1.74 × 103 L mol–1 at 19, 29 and 39°C respectively. DNA quenched the intrinsic fluorescence of PL via a static quenching procedure as shown from Stern–Volmer plots. The relative viscosity and the melting temperature of DNA were basically unchanged in the presence of PL. The fluorescence intensity of PL–DNA decreased with increasing ionic strength. The value of Ka for PL with double‐stranded DNA (dsDNA) was larger than that for PL with single‐stranded DNA (ssDNA). All the results revealed that the binding mode was groove binding, and molecular docking further indicated that PL was preferentially bonded to A–T‐rich regions of DNA. The values for ΔH, ΔS and ΔG suggested that van der Waals forces or hydrogen bonding might be the main acting forces between PL and DNA. The binding distance was determined to be 3.37 nm based on the theory of Förster energy transference, which indicated that a non‐radiation energy transfer process occurred. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
N-hydroxy amides can be found in many naturally occurring and synthetic compounds and are known to act as both strong proton donors and chelators of metal cations. We have initiated studies of peptoids, or N-substituted glycines which contain N-hydroxy amide side chains to investigate the potential effects of these functional groups on peptoid backbone amide rotamer equilibria and local conformations. We reasoned that the propensity of these functional groups to participate in hydrogen bonding could be exploited to enforce intramolecular or intermolecular interactions that yield new peptoid structures. Here, we report the design, synthesis, and detailed conformational analysis of a series of model N-hydroxy peptoids. These peptoids were readily synthesized, and their structures were analyzed in solution by 1D and 2D NMR and in the solid-state by X-ray crystallography. The N-hydroxy amides were found to strongly favor trans conformations with respect to the peptoid backbone in chloroform. More notably, unique sheet-like structures held together via intermolecular hydrogen bonds were observed in the X-ray crystal structures of an N-hydroxy amide peptoid dimer, which to our knowledge represent the first structure of this type reported for peptoids. These results suggest that the N-hydroxy amide can be utilized to control both local backbone geometries and longer-range intermolecular interactions in peptoids, and represents a new functional group in the peptoid design toolbox.  相似文献   

13.
To further understand the mechanism of action and pharmacokinetics of medroxyprogesterone acetate (MPA), the binding interaction of MPA with bovine serum albumin (BSA) under simulated physiological conditions (pH 7.4) was studied using fluorescence emission spectroscopy, synchronous fluorescence spectroscopy, circular dichroism and molecular docking methods. The experimental results reveal that the fluorescence of BSA quenches due to the formation of MPA–BSA complex. The number of binding sites (n) and the binding constant for MPA–BSA complex are ~1 and 4.6 × 103 M?1 at 310 K, respectively. However, it can be concluded that the binding process of MPA with BSA is spontaneous and the main interaction forces between MPA and BSA are van der Waals force and hydrogen bonding interaction due to the negative values of ΔG0, ΔH0 and ΔS0 in the binding process of MPA with BSA. MPA prefers binding on the hydrophobic cavity in subdomain IIIA (site II′′) of BSA resulting in a slight change in the conformation of BSA, but BSA retaining the α‐helix structure. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
To further understand the mode of action and pharmacokinetics of lisinopril, the binding interaction of lisinopril with bovine serum albumin (BSA) under imitated physiological conditions (pH 7.4) was investigated using fluorescence emission spectroscopy, synchronous fluorescence spectroscopy, Fourier transform infrared spectroscopy (FTIR), circular dichroism (CD) and molecular docking methods. The results showed that the fluorescence quenching of BSA near 338 nm resulted from the formation of a lisinopril–BSA complex. The number of binding sites (n) for lisinopril binding on subdomain IIIA (site II) of BSA and the binding constant were ~ 1 and 2.04 × 104 M–1, respectively, at 310 K. The binding of lisinopril to BSA induced a slight change in the conformation of BSA, which retained its α‐helical structure. However, the binding of lisinopril with BSA was spontaneous and the main interaction forces involved were van der Waal's force and hydrogen bonding interaction as shown by the negative values of ΔG0, ΔH0 and ΔS0 for the binding of lisinopril with BSA. It was concluded from the molecular docking results that the flexibility of lisinopril also played an important role in increasing the stability of the lisinopril–BSA complex. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

15.
The interaction between 3‐spiro‐2′‐pyrrolidine‐3′‐spiro‐3″‐piperidine‐2,3″‐dione (PPD) and bovine serum albumin (BSA) in aqueous solution was studied using fluorescence and UV–vis spectroscopy. Fluorescence emission data revealed that BSA (1.00 × 10‐5 mol/L) fluorescence was statically quenched by PPD at various concentrations, which implies that a PPD–BSA complex was formed. The binding constant (KA), the number of binding sites (n) and the specific binding site of the PPD with BSA were determined. Energy‐transfer efficiency parameters were determined and the mechanism of the interaction discussed. The thermodynamic parameters, ΔG, ΔH and ΔS, were obtained according to van't Hoff's equation, showing the involvement of hydrophobic forces in these interactions. The effect of PPD acting on the BSA conformation was detected by synchronous fluorescence. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

16.
Hypoxanthine riboside (HXR) is a nucleoside essential for wobble base pairs to translate the genetic code. In this work, an absorption and luminescence study showed that HXR and human serum albumin (HSA) formed a new complex through hydrogen bonds and van der Waals forces at ground state. Fluorescence probe experiments indicated that HXR entered the first subdomain of domain II in HSA and was fixed by amino acid residues in site I defined by Sudlow, and after competing with a known site marker. The recognition interaction featured negative ΔH?, ΔS? and ΔG? thermodynamic parameters. Fluorescence and circular dichroism spectra described the polarity of residues and α‐helix and β‐strand content changed because of HXR binding. The most rational structure for the HXR–HSA complex was recommended by the molecular docking method, in which the binding location, molecular orientation, adjacent amino acid residues, and hydrogen bonds were included. In addition, the influence of β‐cyclodextrin and some essential metal ions on the balance of the HSA–HXR system interaction was measured. The study gained comprehensive information on the transportation mechanism for HXR in blood, and was of great significance in understanding the theory of HXR biotransformation and in discussing its clinical in vivo half‐life.  相似文献   

17.
HIV-1 viral budding involves binding of the viral Gagp6 protein to the ubiquitin E2 variant domain of the human tumor susceptibility gene 101 protein (Tsg101). Recognition of p6 by Tsg101 is mediated in part by a proline-rich motif that contains the sequence ‘Pro-Thr-Ala-Pro’ (‘PTAP’). Using the p6-derived 9-mer sequence ‘PEPTAPPEE’, we had previously improved peptide binding affinity by employing N-alkylglycine (‘peptoid’) residues. The current study applies ring-closing metathesis macrocyclization strategies to Tsg101-binding peptide–peptoid hybrids as an approach to stabilize binding conformations and to observe the effects of such macrocyclization on Tsg101-binding affinity and bioavailability.  相似文献   

18.
Two tiny hairpin DNAs, CORE (dAGGCTTCGGCCT) and AP2 (dAGGCTXCGGCCT; X: abasic nucleotide), fold into almost the same tetraloop hairpin structure with one exception, that is, the sixth thymine (T6) of CORE is exposed to the solvent water (Kawakami, J. et al., Chem. Lett. 2001, 258–259). In the present study, we selected small peptides that bind to CORE or AP2 from a combinatorial pentapeptide library with 2.5 × 106 variants. On the basis of the structural information, the selected peptide sequences should indicate the essential qualifications for recognition of the hairpin loop DNA with and without a flipped base. In the selected DNA binding peptides, aromatic amino acids such as histidine for CORE and glutamine/aspartic acid for AP2 were found to be abundant amino acids. This amino acid preference suggests that CORE-binding peptides use π–π stacking to recognize the target while hydrogen bonding is dominant for AP2-binding peptides. To investigate the binding properties of the selected peptide to the target, surface plasmon resonance was used. The binding constant of the interaction between CORE and a CORE-binding peptide (HWHHE) was about 1.1 × 106 M?1 at 25°C and the resulting binding free energy change at 25°C (ΔG°25) was ?8.2 kcal mol?1. The binding of the peptide to AP2 was also analyzed and the resulting binding constant and ΔG°25 were about 4.2 × 104 M?1 and ?6.3 kcal mol?1, respectively. The difference in the binding free energy changes (ΔΔG°25) of 1.9 kcal mol?1 was comparable to the values reported in other systems and was considered a consequence of the loss of π–π stacking. Moreover, the stabilization effect by stacking affected the dissociation step as well as the association step. Our results suggest that the existence of an aromatic ring (T6 base) produces new dominant interactions between peptides and nucleic acids, although hydrogen bonding is the preferable mode of interaction in the absence of the flipping base. These findings regarding CORE and AP2 recognition are expected to give useful information in the design of novel artificial DNA binding peptides.  相似文献   

19.
Antimicrobial peptides (AMPs) are critical components of the innate immune system and exhibit bactericidal activity against a broad spectrum of bacteria. We investigated the use of N‐substituted glycine peptoid oligomers as AMP mimics with potent antimicrobial activity. The antimicrobial mechanism of action varies among different AMPs, but many of these peptides can penetrate bacterial cell membranes, causing cell lysis. We previously hypothesized that amphiphilic cyclic peptoids may act through a similar pore formation mechanism against methicillin‐resistant Staphylococcus aureus (MRSA). Peptoid‐induced membrane disruption is observed by scanning electron microscopy and results in a loss of membrane integrity. We demonstrate that the antimicrobial activity of the peptoids is attenuated with the addition of polyethylene glycol osmoprotectants, signifying protection from a loss of osmotic balance. This decrease in antimicrobial activity is more significant with larger osmoprotectants, indicating that peptoids form pores with initial diameters of ~2.0–3.8 nm. The initial membrane pores formed by cyclic peptoid hexamers are comparable in diameter to those formed by larger and structurally distinct AMPs. After 24 h, the membrane pores expand to >200 nm in diameter. Together, these results indicate that cyclic peptoids exhibit a mechanism of action that includes effects manifested at the cell membrane of MRSA. © 2014 Wiley Periodicals, Inc. Biopolymers 103: 227–236, 2015.  相似文献   

20.
Palmatine, an isoquinoline alkaloid, is an important medicinal herbal extract with diverse pharmacological and biological properties. In this work, spectroscopic and molecular modeling approaches were employed to reveal the interaction between palmatine and DNA isolated from herring sperm. The absorption spectra and iodide quenching results indicated that groove binding was the main binding mode of palmatine to DNA. Fluorescence studies indicated that the binding constant (K) of palmatine and DNA was ~ 104 L·mol?1. The associated thermodynamic parameters, ΔG, ΔH, and ΔS, indicated that hydrogen bonds and van der Waals forces played major roles in the interaction. The effects of chemical denaturant, thermal denaturation and pH on the interaction were investigated and provided further support for the groove binding mode. In addition to experimental approaches, molecular modeling was conducted to verify binding pattern of palmatine–DNA. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号