首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To investigate the role of protein cavities in facilitating movement of the substrates, methane and dioxygen, in the soluble methane monooxygenase hydroxylase (MMOH), we determined the X-ray structures of MMOH from Methylococcus capsulatus (Bath) cocrystallized with dibromomethane or iodoethane, or by using crystals pressurized with xenon gas. The halogenated alkanes bind in two cavities within the alpha-subunit that extend from one surface of the protein to the buried dinuclear iron active site. Two additional binding sites were located in the beta-subunit. Pressurization of two crystal forms of MMOH with xenon resulted in the identification of six binding sites located exclusively in the alpha-subunit. These results indicate that hydrophobic species bind preferentially in preexisting cavities in MMOH and support the hypothesis that such cavities may play a functional role in sequestering and enhancing the availability of the physiological substrates for reaction at the active site.  相似文献   

2.
Cdc25 phosphatases involved in cell cycle checkpoints are now active targets for the development of anti‐cancer therapies. Rational drug design would certainly benefit from detailed structural information for Cdc25s. However, only apo‐ or sulfate‐bound crystal structures of the Cdc25 catalytic domain have been described so far. Together with previously available crystalographic data, results from molecular dynamics simulations, bioinformatic analysis, and computer‐generated conformational ensembles shown here indicate that the last 30–40 residues in the C‐terminus of Cdc25B are partially unfolded or disordered in solution. The effect of C‐terminal flexibility upon binding of two potent small molecule inhibitors to Cdc25B is then analyzed by using three structural models with variable levels of flexibility, including an equilibrium distributed ensemble of Cdc25B backbone conformations. The three Cdc25B structural models are used in combination with flexible docking, clustering, and calculation of binding free energies by the linear interaction energy approximation to construct and validate Cdc25B‐inhibitor complexes. Two binding sites are identified on top and beside the Cdc25B active site. The diversity of interaction modes found increases with receptor flexibility. Backbone flexibility allows the formation of transient cavities or compact hydrophobic units on the surface of the stable, folded protein core that are unexposed or unavailable for ligand binding in rigid and densely packed crystal structures. The present results may help to speculate on the mechanisms of small molecule complexation to partially unfolded or locally disordered proteins. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

3.
The location and ligand accessibility of internal cavities in cysteine‐free wild‐type T4 lysozyme was investigated using O2 gas‐pressure NMR spectroscopy and molecular dynamics (MD) simulation. Upon increasing the concentration of dissolved O2 in solvent to 8.9 mM, O2‐induced paramagnetic relaxation enhancements (PREs) to the backbone amide and side chain methyl protons were observed, specifically around two cavities in the C‐terminal domain. To determine the number of O2 binding sites and their atomic coordinates from the 1/r6 distance dependence of the PREs, we established an analytical procedure using Akaike's Information Criterion, in combination with a grid‐search. Two O2‐accessible sites were identified in internal cavities: One site was consistent with the xenon‐binding site in the protein in crystal, and the other site was established to be a novel ligand‐binding site. MD simulations performed at 10 and 100 mM O2 revealed dioxygen ingress and egress as well as rotational and translational motions of O2 in the cavities. It is therefore suggested that conformational fluctuations within the ground‐state ensemble transiently develop channels for O2 association with the internal protein cavities.  相似文献   

4.
Identification and size characterization of surface pockets and occluded cavities are initial steps in protein structure-based ligand design. A new program, CAST, for automatically locating and measuring protein pockets and cavities, is based on precise computational geometry methods, including alpha shape and discrete flow theory. CAST identifies and measures pockets and pocket mouth openings, as well as cavities. The program specifies the atoms lining pockets, pocket openings, and buried cavities; the volume and area of pockets and cavities; and the area and circumference of mouth openings. CAST analysis of over 100 proteins has been carried out; proteins examined include a set of 51 monomeric enzyme-ligand structures, several elastase-inhibitor complexes, the FK506 binding protein, 30 HIV-1 protease-inhibitor complexes, and a number of small and large protein inhibitors. Medium-sized globular proteins typically have 10-20 pockets/cavities. Most often, binding sites are pockets with 1-2 mouth openings; much less frequently they are cavities. Ligand binding pockets vary widely in size, most within the range 10(2)-10(3)A3. Statistical analysis reveals that the number of pockets and cavities is correlated with protein size, but there is no correlation between the size of the protein and the size of binding sites. Most frequently, the largest pocket/cavity is the active site, but there are a number of instructive exceptions. Ligand volume and binding site volume are somewhat correlated when binding site volume is < or =700 A3, but the ligand seldom occupies the entire site. Auxiliary pockets near the active site have been suggested as additional binding surface for designed ligands (Mattos C et al., 1994, Nat Struct Biol 1:55-58). Analysis of elastase-inhibitor complexes suggests that CAST can identify ancillary pockets suitable for recruitment in ligand design strategies. Analysis of the FK506 binding protein, and of compounds developed in SAR by NMR (Shuker SB et al., 1996, Science 274:1531-1534), indicates that CAST pocket computation may provide a priori identification of target proteins for linked-fragment design. CAST analysis of 30 HIV-1 protease-inhibitor complexes shows that the flexible active site pocket can vary over a range of 853-1,566 A3, and that there are two pockets near or adjoining the active site that may be recruited for ligand design.  相似文献   

5.
In our previous study, we have shown that the microenvironments around conserved amino acids are also conserved in protein families (Bandyopadhyay and Mehler, Proteins 2008; 72:646–659). In this study, we have hypothesized that amino acids perform similar functions when embedded in a certain type of protein microenvironment. We have tested this hypothesis on the microenvironments around disulfide‐bridged cysteines from high‐resolution protein crystal structures. Although such cystines mainly play structural role in proteins, in certain enzymes they participate in catalysis and redox reactions. We have performed and report a functional annotation of enzymatically active cystines to their respective microenvironments. Three protein microenvironment clusters were identified: (i) buried‐hydrophobic, (ii) exposed‐hydrophilic, and (iii) buried‐hydrophilic. The buried‐hydrophobic cluster encompasses a small group of 22 redox‐active cystines, mostly in alpha‐helical conformations in a –C‐x‐x‐C‐ motif from the Oxido‐reductase enzyme class. All these cystines have high strain energy and near identical microenvironments. Most of the active cystines in hydrolase enzyme class belong to buried hydrophilic microenvironment cluster. In total there are 34 half‐cystines detected in buried hydrophilic cluster from hydrolases, as a part of enzyme active site. Even within the buried hydrophilic cluster, there is clear separation of active half‐cystines between surface exposed part of the protein and protein interior. Half‐cystines toward the surface exposed region are higher in number compared to those in protein interior. Apart from cystines at the active sites of the enzymes, many more half‐cystines were detected in buried hydrophilic cluster those are part of the microenvironment of enzyme active sites. However, no active half‐cystines were detected in extremely hydrophilic microenvironment cluster, that is, exposed hydrophilic cluster, indicating that total exposure of cystine toward the solvent is not favored for enzymatic reactions. Although half‐cystines in exposed‐hydrophilic clusters occasionally stabilize enzyme active sites, as a part of their microenvironments. Analysis performed in this work revealed that cystines as a part of active sites in specific enzyme families or folds share very similar protein microenvironment regions, despite of their dissimilarity in protein sequences and position specific sequence conservations. Proteins 2016; 84:1576–1589. © 2016 Wiley Periodicals, Inc.  相似文献   

6.
Group II chaperonins, found in eukaryotic and archaeal organisms, recognize substrate proteins through diverse mechanisms that involve either hydrophobic‐ or electrostatic‐dominated interactions. This action is distinct from the universal substrate recognition mechanism of group I chaperonins, which bind a wide spectrum of non‐native proteins primarily through hydrophobic interactions. We use computational approaches to pinpoint the substrate protein binding sites of the γ‐subunit of the eukaryotic chaperonin CCT and to identify its interactions with the stringent substrate β‐tubulin. Protein–protein docking methods reveal intrinsic binding sites of CCT comprising a helical (HL) region, homologous to the GroEL‐binding site, and the helical protrusion (HP) region. We performed molecular dynamics simulations of the solvated CCTγ apical domain, β‐tubulin peptide‐CCTγ complexes, and isolated β‐tubulin peptides. We find that tubulin binds to CCTγ through an extensive interface that spans both the HL region and the HP region. HL interactions involve both hydrophobic and electrostatic contacts, while binding to the HP region is stabilized almost exclusively by a salt bridge network. On the basis of additional simulations of a β‐tubulin‐CCTγ complex that involves a reduced interface, centered onto the HP region, we conclude that this salt bridge network is the minimal stabilizing interaction required. Strong conservation of the charged amino acids that participate in the salt bridge network, Arg306 and Glu271, indicates a general mechanism across the nonidentical CCT subunits and group II chaperonins. Proteins 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

7.
8.
Polyethylene glycol modification (PEGylation) can enhance the pharmacokinetic properties of therapeutic proteins by the attachment of polyethylene glycol (PEG) to the surface of a protein to shield the protein surface from proteolytic degradation and limit aggregation. However, current PEGylation strategies often reduce biological activity, potentially as a result of steric hindrance of PEG. Overall, there are no structure‐based guidelines for selection of conjugate sites that retain optimal biological activity with improved pharmacokinetic properties. In this study, site‐specific PEGylation based on the FGF2‐FGFR1‐heparin complex structure is performed. The effects of the conjugate sites on protein function are investigated by measuring the receptor/heparin binding affinities of the modified proteins and performing assays to measure cell‐based bio‐activity and in vivo stability. Comprehensive analysis of these data demonstrates that PEGylation of FGF2 that avoids the binding sites for fibroblast growth factor receptor 1 (FGFR1) and heparin provides optimal pharmacokinetic enhancement with minimal losses to biological activity. Animal experiments demonstrate that PEGylated FGF2 exhibits greater efficacy in protecting against traumatic brain injury‐induced brain damage and neurological functions than the non‐modified FGF2. This rational structure‐based PEGylation strategy for protein modification is expected to have a major impact in the area of protein‐based therapeutics.  相似文献   

9.
10.
Protein‐protein interactions control a large range of biological processes and their identification is essential to understand the underlying biological mechanisms. To complement experimental approaches, in silico methods are available to investigate protein‐protein interactions. Cross‐docking methods, in particular, can be used to predict protein binding sites. However, proteins can interact with numerous partners and can present multiple binding sites on their surface, which may alter the binding site prediction quality. We evaluate the binding site predictions obtained using complete cross‐docking simulations of 358 proteins with 2 different scoring schemes accounting for multiple binding sites. Despite overall good binding site prediction performances, 68 cases were still associated with very low prediction quality, presenting individual area under the specificity‐sensitivity ROC curve (AUC) values below the random AUC threshold of 0.5, since cross‐docking calculations can lead to the identification of alternate protein binding sites (that are different from the reference experimental sites). For the large majority of these proteins, we show that the predicted alternate binding sites correspond to interaction sites with hidden partners, that is, partners not included in the original cross‐docking dataset. Among those new partners, we find proteins, but also nucleic acid molecules. Finally, for proteins with multiple binding sites on their surface, we investigated the structural determinants associated with the binding sites the most targeted by the docking partners.  相似文献   

11.
Zhenhua Li  Jinyan Li 《Proteins》2010,78(16):3304-3316
A protein interface can be as “wet” as a protein surface in terms of the number of immobilized water molecules. This important water information has not been explicitly taken by computational methods to model and identify protein binding hot spots, overlooking the water role in forming interface hydrogen bonds and in filing cavities. Hot spot residues are usually clustered at the core of the protein binding interfaces. However, traditional machine learning methods often identify the hot spot residues individually, breaking the cooperativity of the energetic contribution. Our idea in this work is to explore the role of immobilized water and meanwhile to capture two essential properties of hot spots: the compactness in contact and the far distance from bulk solvent. Our model is named geometrically centered region (GCR). The detection of GCRs is based on novel tripartite graphs, and atom burial levels which are a concept more intuitive than SASA. Applying to a data set containing 355 mutations, we achieved an F measure of 0.6414 when ΔΔG ≥ 1.0 kcal/mol was used to define hot spots. This performance is better than Robetta, a benchmark method in the field. We found that all but only one of the GCRs contain water to a certain degree, and most of the outstanding hot spot residues have water‐mediated contacts. If the water is excluded, the burial level values are poorly related to the ΔΔG, and the model loses its performance remarkably. We also presented a definition for the O‐ring of a GCR as the set of immediate neighbors of the residues in the GCR. Comparative analysis between the O‐rings and GCRs reveals that the newly defined O‐ring is indeed energetically less important than the GCR hot spot, confirming a long‐standing hypothesis. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

12.
Chaperonins are versatile molecular machines that assist the folding of a wide range of substrate proteins. They harness an ATPase cycle to control access of non-native proteins to hydrophobic binding sites. ATP binding promotes large conformational changes that partially bury the hydrophobic sites and initiate the binding of a co-chaperonin, creating closed and open cavities. Non-native proteins progress towards the native fold during their confinement in these cavities, and are then released by the allosteric action of ATP.  相似文献   

13.
McCormick MS  Lippard SJ 《Biochemistry》2011,50(51):11058-11069
In all structurally characterized bacterial multicomponent monooxygenase (BMM) hydroxylase proteins, a series of hydrophobic cavities in the α-subunit trace a conserved path from the protein exterior to the carboxylate-bridged diiron active site. This study examines these cavities as a potential route for transport of dioxygen to the active site by crystallographic characterization of a xenon-pressurized sample of the hydroxylase component of phenol hydroxylase from Pseudomonas sp. OX1. Computational analyses of the hydrophobic cavities in the hydroxylase α-subunits of phenol hydroxylase (PHH), soluble methane monooxygenase (MMOH), and toluene/o-xylene monooxygenase (ToMOH) are also presented. The results, together with previous findings from crystallographic studies of xenon-pressurized sMMO hydroxylase, clearly identify the propensity for these cavities to bind hydrophobic gas molecules in the protein interior. This proposed functional role is supported by recent stopped flow kinetic studies of ToMOH variants [Song, W. J., et al. (2011) Proc. Natl. Acad. Sci. U.S.A.108, 14795-14800]. In addition to information about the Xe sites, the structure determination revealed significantly weakened binding of regulatory protein to the hydroxylase in comparison to that in the previously reported structure of PHH, as well as the presence of a newly identified metal-binding site in the α-subunit that adopts a linear coordination environment consistent with Cu(I), and a glycerol molecule bound to Fe1 in a fashion that is unique among hydrocarbon-diiron site adducts reported to date in BMM hydroxylase structures. Finally, a comparative analysis of the α-subunit structures of PHH, MMOH, and ToMOH details proposed routes for the other three BMM substrates, the hydrocarbon, electrons, and protons, comprising cavities, channels, hydrogen-bonding networks, and pores in the structures of their α-subunits.  相似文献   

14.
The complex interactions between proteins and small organic molecules (ligands) are intensively studied because they play key roles in biological processes and drug activities. Here, we present a novel approach to characterize and map the ligand‐binding cavities of proteins without direct geometric comparison of structures, based on Principal Component Analysis of cavity properties (related mainly to size, polarity, and charge). This approach can provide valuable information on the similarities and dissimilarities, of binding cavities due to mutations, between‐species differences and flexibility upon ligand‐binding. The presented results show that information on ligand‐binding cavity variations can complement information on protein similarity obtained from sequence comparisons. The predictive aspect of the method is exemplified by successful predictions of serine proteases that were not included in the model construction. The presented strategy to compare ligand‐binding cavities of related and unrelated proteins has many potential applications within protein and medicinal chemistry, for example in the characterization and mapping of “orphan structures”, selection of protein structures for docking studies in structure‐based design, and identification of proteins for selectivity screens in drug design programs. Proteins 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

15.
The C‐terminal three‐Cys2His2 zinc‐finger domain (TZD) of mouse testis zinc‐finger protein binds to the 5′‐TGTACAGTGT‐3′ at the Aie1 (aurora‐C) promoter with high specificity. Interestingly, the primary sequence of TZD is unique, possessing two distinct linkers, TGEKP and GAAP, and distinct residues at presumed DNA binding sites at each finger, especially finger 3. A Kd value of ~10?8 M was obtained from surface plasmon resonance analysis for the TZD‐DNA complex. NMR structure of the free TZD showed that each zinc finger forms a typical ββα fold. On binding to DNA, chemical shift perturbations and the R2 transverse relaxation rate in finger 3 are significantly smaller than those in fingers 1 and 2, which indicates that the DNA binding affinity in finger 3 is weaker. Furthermore, the shift perturbations between TZD in complex with the cognate DNA and its serial mutants revealed that both ADE7 and CYT8, underlined in 5′‐ATATGTACAGTGTTAT‐3′, are critical in specific binding, and the DNA binding in finger 3 is sequence independent. Remarkably, the shift perturbations in finger 3 on the linker mutation of TZD (GAAP mutated to TGEKP) were barely detected, which further indicates that finger 3 does not play a critical role in DNA sequence‐specific recognition. The complex model showed that residues important for DNA binding are mainly located on positions ?1, 2, 3, and 6 of α‐helices in fingers 1 and 2. The DNA sequence and nonsequence‐specific bindings occurring simultaneously in TZD provide valuable information for better understanding of protein–DNA recognition. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

16.
The α4β2 nicotinic acetylcholine receptor (nAChR) has significant roles in nervous system function and disease. It is also a molecular target of general anesthetics. Anesthetics inhibit the α4β2 nAChR at clinically relevant concentrations, but their binding sites in α4β2 remain unclear. The recently determined NMR structures of the α4β2 nAChR transmembrane (TM) domains provide valuable frameworks for identifying the binding sites. In this study, we performed solution NMR experiments on the α4β2 TM domains in the absence and presence of halothane and ketamine. Both anesthetics were found in an intra-subunit cavity near the extracellular end of the β2 transmembrane helices, homologous to a common anesthetic binding site observed in X-ray structures of anesthetic-bound GLIC (Nury et al., [32]). Halothane, but not ketamine, was also found in cavities adjacent to the common anesthetic site at the interface of α4 and β2. In addition, both anesthetics bound to cavities near the ion selectivity filter at the intracellular end of the TM domains. Anesthetic binding induced profound changes in protein conformational exchanges. A number of residues, close to or remote from the binding sites, showed resonance signal splitting from single to double peaks, signifying that anesthetics decreased conformation exchange rates. It was also evident that anesthetics shifted population of two conformations. Altogether, the study comprehensively resolved anesthetic binding sites in the α4β2 nAChR. Furthermore, the study provided compelling experimental evidence of anesthetic-induced changes in protein dynamics, especially near regions of the hydrophobic gate and ion selectivity filter that directly regulate channel functions.  相似文献   

17.
The representation of protein structures as small-world networks facilitates the search for topological determinants, which may relate to functionally important residues. Here, we aimed to investigate the performance of residue centrality, viewed as a family fold characteristic, in identifying functionally important residues in protein families. Our study is based on 46 families, including 29 enzyme and 17 non-enzyme families. A total of 80% of these central positions corresponded to active site residues or residues in direct contact with these sites. For enzyme families, this percentage increased to 91%, while for non-enzyme families the percentage decreased substantially to 48%. A total of 70% of these central positions are located in catalytic sites in the enzyme families, 64% are in hetero-atom binding sites in those families binding hetero-atoms, and only 16% belong to protein-protein interfaces in families with protein-protein interaction data. These differences reflect the active site shape: enzyme active sites locate in surface clefts, hetero-atom binding residues are in deep cavities, while protein-protein interactions involve a more planar configuration. On the other hand, not all surface cavities or clefts are comprised of central residues. Thus, closeness centrality identifies functionally important residues in enzymes. While here we focus on binding sites, we expect to identify key residues for the integration and transmission of the information to the rest of the protein, reflecting the relationship between fold and function. Residue centrality is more conserved than the protein sequence, emphasizing the robustness of protein structures.  相似文献   

18.
Seven‐helix transmembrane proteins, including the G‐protein‐coupled receptors (GPCRs), mediate a broad range of fundamental cellular activities through binding to a wide range of ligands. Understanding the structural basis for the ligand‐binding selectivity of these proteins is of significance to their structure‐based drug design. Comparison analysis of proteins' ligand‐binding sites provides a useful way to study their structure‐activity relationships. Various computational methods have been developed for the binding‐site comparison of soluble proteins. In this work, we applied this approach to the analysis of the primary ligand‐binding sites of 92 seven‐helix transmembrane proteins. Results of the studies confirmed that the binding site of bacterial rhodopsins is indeed different from all GPCRs. In the latter group, further comparison of the binding sites indicated a group of residues that could be responsible for ligand‐binding selectivity and important for structure‐based drug design. Furthermore, unexpected binding‐site dissimilarities were observed among adrenergic and adenosine receptors, suggesting that the percentage of the overall sequence identity between a target protein and a template protein alone is not sufficient for selecting the best template for homology modeling of seven‐helix membrane proteins. These results provided novel insight into the structural basis of ligand‐binding selectivity of seven‐helix membrane proteins and are of practical use to the computational modeling of these proteins. © 2010 Wiley Periodicals, Inc. Biopolymers 95: 31–38, 2011.  相似文献   

19.
Nest box supplementation is widely used to increase nest‐site availability for cavity nesting animals but the analysis of its effects on individuals breeding in natural cavities is often neglected. This study offers a novel restoration technique to revert abandonment of natural breeding sites by a secondary cavity avian bird, the European roller (Coracias garrulus), and other ecologically similar species. We found that, after a program of nest box supplementation with ensuing monitoring, rollers gradually abandon nesting in natural and seminatural cavities in favor of nest boxes because the latter are of higher quality. We examine whether reducing the entrance size of natural and seminatural cavities improves their suitability for rollers. A 6‐year program reduced the diameter of the entrance of sandstone cavities and cavities in bridges. This led to a high occupancy (59%) of manipulated nest‐sites. Manipulated sites were most frequently occupied by rollers and little owls (Athene noctua) (31 and 18% of sites, respectively). Manipulation did not affect clutch size or fledgling success. We suggest that nest‐site diversity and nesting in natural cavities should be preserved to reduce nest box dependence. Our study illustrates the value of nest boxes when used alongside restoration of natural breeding sites and provides insights for the management of natural cavities.  相似文献   

20.
Systematic investigation of a protein and its binding site characteristics are crucial for designing small molecules that modulate protein functions. However, fundamental uncertainties in binding site interactions and insufficient knowledge of the properties of even well‐defined binding pockets can make it difficult to design optimal drugs. Herein, we report the development and implementation of a cavity detection algorithm built with HINT toolkit functions that we are naming Vectorial Identification of Cavity Extents (VICE). This very efficient algorithm is based on geometric criteria applied to simple integer grid maps. In testing, we carried out a systematic investigation on a very diverse data set of proteins and protein–protein/protein–polynucleotide complexes for locating and characterizing the indentations, cavities, pockets, grooves, channels, and surface regions. Additionally, we evaluated a curated data set of unbound proteins for which a ligand‐bound protein structures are also known; here the VICE algorithm located the actual ligand in the largest cavity in 83% of the cases and in one of the three largest in 90% of the cases. An interactive front‐end provides a quick and simple procedure for locating, displaying and manipulating cavities in these structures. Information describing the cavity, including its volume and surface area metrics, and lists of atoms, residues, and/or chains lining the binding pocket, can be easily obtained and analyzed. For example, the relative cross‐sectional surface area (to total surface area) of cavity openings in well‐enclosed cavities is 0.06 ± 0.04 and in surface clefts or crevices is 0.25 ± 0.09. Proteins 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号