首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Mycobacterium tuberculosis RecA intein (PI-MtuI), a LAGLIDADG homing endonuclease, displays dual target specificity in response to alternative cofactors. While both ATP and Mn2+ were required for optimal cleavage of an inteinless recA allele (hereafter referred to as cognate DNA), Mg2+ alone was sufficient for cleavage of ectopic DNA sites. In this study, we have explored the ability of PI-MtuI to catalyze ATP hydrolysis in the presence of alternative metal ion cofactors and DNA substrates. Our results indicate that PI-MtuI displays maximum ATPase activity in the presence of cognate but not ectopic DNA. Kinetic analysis revealed that Mn2+ was able to stimulate PI-MtuI catalyzed ATP hydrolysis, whereas Mg2+ failed to do so. Using UV crosslinking, limited proteolysis and amino acid sequence analysis, we show that 32P-labeled ATP was bound to a 14 kDa peptide containing the putative Walker A motif. Furthermore, the limited proteolysis approach disclosed that cognate DNA was able to induce structural changes in PI-MtuI. Mutation of the presumptive metal ion-binding ligands (Asp122 and Asp222) in the LAGLIDADG motifs of PI-MtuI impaired its affinity for ATP, thus resulting in a reduction in or loss of its endonuclease activity. Together, these results suggest that PI-MtuI is a (cognate) DNA- and Mn2+-dependent ATPase, unique from the LAGLIDADG family of homing endonucleases, and implies a possible role for ATP hydrolysis in the recognition and/or cleavage of homing site DNA sequence.  相似文献   

2.
Modular organization of inteins and C-terminal autocatalytic domains.   总被引:15,自引:1,他引:14       下载免费PDF全文
Analysis of the conserved sequence features of inteins (protein "introns") reveals that they are composed of three distinct modular domains. The N-terminal (N) and C-terminal (C) domains are predicted to perform different parts of the autocatalytic protein splicing reaction. An optional endonuclease domain (EN) is shown to correspond to different types of homing endonucleases in different inteins. The N domain contains motifs predicted to catalyze the first steps of protein splicing, leading to the cleavage of the intein N terminus from its protein host. Intein N domain motifs are also found in C-terminal autocatalytic domains (CADs) present in hedgehog and other protein families. Specific residues in the N domain of intein and CADs are proposed to form a charge relay system involved in cleaving their N-termini. The intein C domain is apparently unique to inteins and contains motifs that catalyze the final protein splicing steps: ligation of the intein flanks and cleavage of its C terminus to release the free intein and spliced host protein. All intein EN domains known thus far have dodecapeptide (DOD, LAGLI-DADG) type homing endonuclease motifs. This work identifies an EN domain with an HNH homing-endonuclease motif and two new small inteins with no EN domains. One of these small inteins might be inactive or a "pseudo intein." The results suggest a modular architecture for inteins, clarify their origin and relationship to other protein families, and extend recent experimental findings on the functional roles of intein N, C, and EN motifs.  相似文献   

3.
Among the 14 inteins of the Pyrococcus abyssi genome, 10 harbour the LAGLIDADG motifs of dodecapeptide endonucleases. Four of these were cloned, expressed in Escherichia coli and purified to assay their potential endonuclease activity. PabRIR1-2 and PabRIR1-3 are specific endonucleases, named PI-PabI and PI-PabII, respectively, cleaving the sequence spanning their homing site. This is consistent with their size and with the relative positions and sequences of their endonuclease motifs. However, PI-PabI is 10-fold more active than PI-PabII and a discrepancy of the DNA recognition and cleavage mechanisms was observed between the two inteins. In particular, analysis of the DNA cleavage reactions by MALDI-TOF highlighted that while the cleavage of DNA by PI-PabI consists of two steps corresponding to the cleavage of each DNA strand, PI-PabII processes the two DNA strands simultaneously. Furthermore, the two inteins interact differently with DNA. In addition, we did not detect any endonuclease activity for PabLon and PabRIR1-1. Deletions in the intein sequences and mutations in the putative endonuclease motifs probably abolish this activity. Hence, inteins from the same archaebacteria, even if contained in the same host protein, did not evolve uniformly and are presumably at different stages of the invasion cycle.  相似文献   

4.
Homing endonucleases (HEs) of the LAGLIDADG family cleave intron/inteinless cognate DNA at, or near, the insertion site (IS) of their own intron/intein. Here, we describe a notable exception to this rule. Two introns, Pog.S1205 (length 32 bp) and Pog.S1213 (664 bp), whose ISs are 8 bp apart, exist within the 16S rRNA gene of the archaeon Pyrobaculum oguniense. Pog.S1213 harbors a nested open reading frame (ORF) encoding a 22 kDa monomeric protein, I-PogI, which contains two LAGLIDADG motifs and has optimal DNA cleavage activity at 90 degrees C. Intriguingly, I-PogI cleaves the Pog.S1205-less substrate DNA in the presence or absence of Pog.S1213. The cleavage site (CS) of I-PogI does not coincide with the IS of Pog.S1213 but with that of Pog.S1205. Thus, I-PogI activity both promotes the homing of its own intron, Pog.S1213, and guarantees co-conversion of the ORF-less intron Pog.S1205.  相似文献   

5.
Escherichia coli DNA topoisomerase I (TopA) contains a 67 kDa N‐terminal catalytic domain and a 30 kDa C‐terminal zinc‐binding region (ZD domain) which has three adjacent tetra‐cysteine zinc‐binding motifs. Previous studies have shown that E. coli TopA can bind both iron and zinc, and that iron binding in TopA results in failure to unwind the negatively supercoiled DNA. Here, we report that each E. coli TopA monomer binds one atom of iron via the first two zinc‐binding motifs in ZD domain and both the first and second zinc‐binding motifs are required for iron binding in TopA. The site‐directed mutagenesis studies further reveal that while the mutation of the third zinc‐binding motif has very little effect on TopA's activity, mutation of the first two zinc‐binding motifs in TopA greatly diminishes the topoisomerase activity in vitro and in vivo, indicating that the first two zinc‐binding motifs in TopA are crucial for its function. The DNA‐binding activity assay and intrinsic tryptophan fluorescence measurements show that iron binding in TopA may decrease the single‐stranded (ss) DNA‐binding activity of ZD domain and also change the protein structure of TopA, which subsequently modulate topoisomerase activity.  相似文献   

6.
Restricted expression of caspase‐14 in differentiating keratinocytes suggests the involvement of caspase‐14 in terminal differentiation. We purified active caspase‐14 from human cornified cells with sequential chromatographic procedures. Specific activity increased 764‐fold with a yield of 9.1%. Purified caspase‐14 revealed the highest activity on WEHD‐methylcoumaryl‐amide (MCA), although YVAD‐MCA, another caspase‐1 substrate, was poorly hydrolyzed. The purified protein was a heterodimer with 17 and 11 kDa subunits. N‐terminal and C‐terminal analyses demonstrated that the large subunit consisted of Ser6‐Asp146 and N‐terminal of small subunit was identified as Lys153. We successfully developed an antiserum (anti‐h14D146) directed against the Asp146 cleavage site, which reacted only with active caspase‐14 but not with procaspase‐14. Furthermore we confirmed that anti‐h14D146 did not show any reactivity to the active forms of other caspases. Immunohistochemical analysis demonstrated that anti‐h14D146 staining was mostly restricted to the cornified layer and co‐localized with some of the TUNEL positive‐granular cells in the normal human epidermis. UV radiation study demonstrated that caspase‐3 was activated and co‐localized with TUNEL‐positive cells in the middle layer of human epidermis. In contrast, we could not detect caspase‐14 activation in response to UV. Our study revealed tightly regulated action of caspase‐14, in which only the terminal differentiation of keratinocytes controls its activation process. J. Cell. Biochem. 109: 487–497, 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

7.
Phylogenetic diversity in the Phycodnaviridae (double‐stranded DNA viruses infecting photosynthetic eukaryotes) is most often studied using their DNA polymerase gene (PolB). This gene and its translated protein product can harbor a selfish genetic element called an “intein” that disrupts the sequence of the host gene without affecting its activity. After translation, the intein peptide sequence self‐excises precisely, producing a functional ligated host protein. In addition, inteins can encode homing endonuclease (HEN) domains that permit the possibility of lateral transfers to intein‐free alleles. However, no clear evidence for their transfer between viruses has previously been shown. The objective of this paper was to determine whether recent transfers of inteins have occurred between prasinoviruses (Phycodnaviridae) that infect the Mamiellophyceae, an abundant and widespread class of unicellular green algae, by using DNA sequence analyses and cophylogenetic methods. Our results suggest that transfer among prasinoviruses is a dynamic ongoing process and, for the first time in the Phycodnaviridae family, we showed a recombination event within an intein.  相似文献   

8.
The mtDNA rnl-U7 region has been examined for the presence of introns in selected species of the genus Ceratocystis. Comparative sequence analysis identified group I and group II introns encoding single and double motif LAGLIDADG open reading frames (ORFs) at the following positions L1671, L1787, and L1923. In addition downstream of the rnl-U7 region group I introns were detected at positions L1971 and L2231, and a group II intron at L2059. A GIY-YIG type ORF was located within one mL1923 LAGLIDADG type ORF and a degenerated GIY-YIG ORF fused to a nad2 gene fragment was found in association with the mL1971 group I intron. The diversity of composite elements that appear to be sporadically distributed among closely related species of Ceratocystis illustrates the potential for homing endonucleases and their associated introns to invade new sites. Phylogenetic analysis showed that single motif LADGLIDADG ORFs related to the mL1923 ORFs have invaded the L1787 group II intron and the L1671 group I intron. Phylogenetic analysis of intron encoded single and double motif LAGLIDADG ORFs also showed that these ORFs transferred four times from group I into group II B1 type introns.  相似文献   

9.
The modes of binding of 5′‐[4‐(aminoiminomethyl)phenyl]‐[2,2′‐Bifuran]‐5‐carboximidamide (DB832) to multi‐stranded DNAs: human telomere quadruplex, monomolecular R‐triplex, pyr/pur/pyr triplex consisting of 12 T*(T·A) triplets, and DNA double helical hairpin were studied. The optical adsorption of the ligand was used for monitoring the binding and for determination of the association constants and the numbers of binding sites. CD spectra of DB832 complexes with the oligonucleotides and the data on the energy transfer from DNA bases to the bound DB832 assisted in elucidating the binding modes. The affinity of DB832 to the studied multi‐stranded DNAs was found to be greater (Kass ≈ 107M?1) than to the duplex DNA (Kass ≈ 2 × 105M?1). A considerable stabilizing effect of DB832 binding on R‐triplex conformation was detected. The nature of the ligand tight binding differed for the studied multi‐stranded DNA depending on their specific conformational features: recombination‐type R‐triplex demonstrated the highest affinity for DB832 groove binding, while pyr/pur/pyr TTA triplex favored DB832 intercalation at the end stacking contacts and the human telomere quadruplex d[AG3(T2AG3)3] accommodated the ligand in a capping mode. Additionally, the pyr/pur/pyr TTA triplex and d[AG3(T2AG3)3] quadruplex bound DB832 into their grooves, though with a markedly lesser affinity. DB832 may be useful for discrimination of the multi‐sranded DNA conformations and for R‐triplex stabilization. © 2009 Wiley Periodicals, Inc. Biopolymers 93: 8–20, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

10.
Forty‐three 2‐[(benzotriazol‐1/2‐yl)methyl]benzimidazoles, bearing either linear (dialkylamino)alkyl‐ or bulkier (quinolizidin‐1‐yl)alkyl moieties at position 1, were evaluated in cell‐based assays for cytotoxicity and antiviral activity against viruses representative of two of the three genera of the Flaviviridae family, i.e. Flaviviruses (Yellow Fever Virus (YFV)) and Pestiviruses (Bovine Viral Diarrhoea Virus (BVDV)), as Hepaciviruses can hardly be used in routine cell‐based assays. Compounds were also tested against representatives of other virus families. Among ssRNA+ viruses were a retrovirus (Human Immunodeficiency Virus type 1 (HIV‐1)), two picornaviruses (Coxsackie Virus type B2 (CVB2), and Poliovirus type‐1, Sabin strain (Sb‐1)); among ssRNA? viruses were a Paramyxoviridae (Respiratory Syncytial Virus (RSV)) and a Rhabdoviridae (Vesicular Stomatitis Virus (VSV)) representative. Among double‐stranded RNA (dsRNA) viruses was a Reoviridae representative (Reo‐1). Two representatives of DNA virus families were also included: Herpes Simplex type 1, (HSV‐1; Herpesviridae) and Vaccinia Virus (VV; Poxviridae). Most compounds exhibited potent activity against RSV, with EC50 values as low as 20 nM . Moreover, some compounds, in particular when bearing a (quinolizidin‐1‐yl)alkyl residue, were also moderately active against BVDV, YFV, and CVB2.  相似文献   

11.
Poly(ADP‐ribose) polymerase‐1 (PARP‐1) is a mammalian enzyme that attaches long branching chains of ADP‐ribose to specific nuclear proteins, including itself. Because its activity in vitro is dependent upon interaction with broken DNA, it has been postulated that PARP‐1 plays an important role in DNA strand‐break repair in vivo. The exact mechanism of binding to DNA and the structural determinants of binding remain to be defined, but regions of transition from single‐stranded to double‐strandedness may be important recognition sites. Here we employ surface plasmon resonance (SPR) to investigate this hypothesis. Oligodeoxynucleotide (ODN) substrates that mimic DNA with different degrees of single‐strandedness were used for measurements of both PARP‐1/DNA binding kinetics and PARP‐1's enzyme activities. We found that binding correlated with activity, but was unrelated to single‐strandedness of the ODN. Instead, PARP‐1 binding and activity were highest on ODNs that modeled a DNA double‐strand break (DSB). These results provide support for PARP‐1 recognizing and binding DSBs in a manner that is independent of single‐stranded features, and demonstrate the usefulness of SPR for simultaneously investigating both PARP‐1 binding and PARP‐1 auto‐poly(ADP‐ribosyl)ation activities within the same in vitro system. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

12.
A series of novel ethyl 2,7‐dimethyl‐4‐oxo‐3‐[(1‐phenyl‐1H‐1,2,3‐triazol‐4‐yl)methyl]‐4,5‐dihydro‐3H‐pyrano[2,3‐d]pyrimidine‐6‐carboxylate derivatives 7a – 7m were efficiently synthesized employing click chemistry approach and evaluated for in vitro cytotoxic activity against four tumor cell lines: A549 (human lung adenocarcinoma cell line), HepG2 (human hematoma), MCF‐7 (human breast adenocarcinoma), and SKOV3 (human ovarian carcinoma cell line). Among the compounds tested, the compounds 7a , 7b , 7f , 7l , and 7m have shown potential and selective activity against human lung adenocarcinoma cell line (A549) with IC50 ranging from 0.69 to 6.74 μm . Molecular docking studies revealed that the compounds 7a , 7b , 7f , 7l , and 7m are potent inhibitors of human DNA topoisomerase‐II and also showed compliance with stranded parameters of drug likeness. The calculated binding constants, kb, from UV/VIS absorptional binding studies of 7a and 7l with CT‐DNA were 10.77 × 104, 6.48 × 104, respectively. Viscosity measurements revealed that the binding could be surface binding mainly due to groove binding. DNA cleavage study showed that 7a and 7l have the potential to cleave pBR322 plasmid DNA without any external agents.  相似文献   

13.
The mitochondria and plastids of eukaryotic cells evolved from endosymbiotic prokaryotes. DNA from the endosymbionts has bombarded nuclei since the ancestral prokaryotes were engulfed by a precursor of the nucleated eukaryotic host. An experimental confirmation regarding the molecular mechanisms responsible for organelle DNA incorporation into nuclei has not been performed until the present analysis. Here we introduced double‐stranded DNA breaks into the nuclear genome of tobacco through inducible expression of I‐SceI, and showed experimentally that tobacco chloroplast DNAs insert into nuclear genomes through double‐stranded DNA break repair. Microhomology‐mediated linking of disparate segments of chloroplast DNA occurs frequently during healing of induced nuclear double‐stranded breaks (DSB) but the resulting nuclear integrants are often immediately unstable. Non‐Mendelian inheritance of a selectable marker (neo), used to identify plastid DNA transfer, was observed in the progeny of about 50% of lines emerging from the screen. The instability of these de novo nu clear insertions of p last id DNA (nupts) was shown to be associated with deletion not only of the nupt itself but also of flanking nuclear DNA within one generation of transfer. This deletion of pre‐existing nuclear DNA suggests that the genetic impact of organellar DNA transfer to the nucleus is potentially far greater than previously thought.  相似文献   

14.
15.
Three mononuclear CuII complexes, [CuCl(naph‐pa)] ( 1 ), [Cu(bipy)(naph‐pa)]Cl ( 2 ), and [Cu(naph‐pa)(phen)]Cl ( 3 ) ((naph‐pa)=Schiff base derived from the condensation of 2‐hydroxynaphthalene‐1‐carbaldehyde and 2‐picolylamine (=2‐(aminomethyl)pyridine), bipy=2,2′‐bypiridine, and phen=1,10‐phenanthroline) were synthesized and characterized. Complex 1 exhibits square‐planar geometry, and 2 and 3 exhibit square pyramidal geometry, where Schiff base and bipy/phen act as NNO and as NN donor ligands, respectively. CT (Calf thymus)‐DNA‐binding studies revealed that the complexes bind through intercalative mode and show good binding propensity (intrinsic binding constant Kb: 0.98×105, 2.22×105, and 2.67×105 M ?1 for 1 – 3 , resp.). The oxidative and hydrolytic DNA‐cleavage activity of these complexes has been studied by gel electrophoresis: all the complexes displayed chemical nuclease activity in the presence and absence of H2O2. From the kinetic experiments, hydrolytic DNA cleavage rate constants were determined as 2.48, 3.32, and 4.10 h?1 for 1 – 3 , respectively. It amounts to (0.68–1.14)×108‐fold rate enhancement compared to non‐catalyzed DNA cleavage, which is impressive. The complexes display binding and cleavage propensity to DNA in the order of 3 > 2 > 1 .  相似文献   

16.
The MepRAB operon in Staphylococcus aureus has been identified to play a role in drug resistance. Although the functions of MepA and MepR are known, little information is available on the function of MepB. Here we report the X‐ray structure of MepB to 2.1 Å revealing its structural similarity to the PD‐(D/E)XK family of endonucleases. We further show that MepB binds DNA and RNA, with a higher affinity towards RNA and single stranded DNA than towards double stranded DNA. Notably, the PD‐(D/E)XK catalytic active site residues are not conserved in MepB. MepB's association with a drug resistance operon suggests that it plays a role in responding to antimicrobials. This role is likely carried out through MepB's interactions with nucleic acids.  相似文献   

17.
Two copper(II) terpyridine complexes, [Cu(atpy)(NO3)(H2O)](NO3) ? 3H2O ( 1 ) and [Cu(ttpy)(NO3)2] ( 2 ) (atpy = 4′‐p‐N9‐adeninylmethyl‐phenyl‐2,2′:6,2″‐terpyridine; ttpy = 4′‐p‐tolyl‐2,2′:6,2″‐terpyridine) exhibited high cytotoxicity, with average ten times more potency than cisplatin against the human cervix carcinoma cell line (HeLa), the human liver carcinoma cell line (HepG2), the human galactophore carcinoma cell line (MCF7), and the human prostate carcinoma cell line (PC‐3). The cytotoxicity of the complex 1 was lower than that of the complex 2 . Both complexes showed more efficient oxidative DNA cleavage activity under irradiation with UV light at 260 nm than in the presence of ascorbic acid. Especially, complex 1 exhibited evident photoinduced double‐stranded DNA cleavage activity. The preliminary mechanism experiments revealed that hydrogen peroxide was involved in the oxidative DNA damage induced by both complexes. From the absorption titration data, the DNA‐binding affinity of the complexes with surpersoiled plasmid pUC19 DNA, polydAdT, and polydGdC was calculated and complex 2 showed higher binding affinity than complex 1 with all these substrates. The DNA cleavage ability and DNA‐binding affinity of both complexes depended on the substituent group on the terpyrdine ligands. © 2009 Wiley Periodicals, Inc. J Biochem Mol Toxicol 23:295–302, 2009; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/jbt.20292  相似文献   

18.
Carnosol is a natural compound with pharmacological action due to its anti‐cancer properties. However, the precise mechanism for its anti‐carcinogenic effect remains elusive. In this study, we used lymphoblastoid TK6 cell lines to identify the DNA damage and repair mechanisms of carnosol. Our results showed that carnosol induced DNA double‐strand breaks (DSBs). We also found that cells lacking tyrosyl‐DNA phosphodiesterase 1 (TDP1), an enzyme related to topoisomerase 1 (TOP1), and tyrosyl‐DNA phosphodiesterase 2 (TDP2), an enzyme related to topoisomerase 2 (TOP2), were supersensitive to carnosol. Carnosol was found to induce the formation of the TOP1‐DNA cleavage complex (TOP1cc) and TOP2‐DNA cleavage complex (TOP2cc). When comparing the accumulation of γ‐H2AX foci and the number of chromosomal aberrations (CAs) with wild‐type (WT) cells, the susceptivity of the TDP1?/? and TDP2?/? cells were associated with an increased DNA damage. Our results provided evidence of carnosol inducing DNA lesions in TK6 cells and demonstrated that the damage induced by carnosol was associated with abnormal topoisomerase activity. We conclude that TDP1 and TDP2 play important roles in the anti‐cancer effect of carnosol.  相似文献   

19.
Recombinant protein expression and purification remains a central need for biotechnology. Herein, the authors report a streamlined protein and peptide purification strategy using short self‐assembling peptides and a C‐terminal cleavage intein. In this strategy, the fusion protein is first expressed as an aggregate induced by the self‐assembling peptide. Upon simple separation, the target protein or peptide with an authentic N‐terminus is then released in the solution by intein‐mediated cleavage. Different combinations of four self‐assembling peptides (ELK16, L6KD, FK and FR) with three inteins (Sce VMA, Mtu ΔI‐CM and Ssp DnaB) were explored. One protein and two peptides were used as model polypeptides to test the strategy. The intein Mtu ΔI‐CM, which has pH‐shift inducible cleavage, was found to work well with three self‐assembling peptides (L6KD, FR, FK). Using this intein gave a yield of protein or peptide comparable with that from other more established strategies, such as the Trx‐strategy, but in a simpler and more economical way. This strategy provides a simple and efficient method by which to prepare proteins and peptides with an authentic N‐terminus, which is especially effective for peptides of 30‐100 amino acids in length that are typically unstable and susceptible to degradation in Escherichia coli.  相似文献   

20.
The Mre11–Rad50 nuclease–ATPase is an evolutionarily conserved multifunctional DNA double‐strand break (DSB) repair factor. Mre11–Rad50's mechanism in the processing, tethering, and signaling of DSBs is unclear, in part because we lack a structural framework for its interaction with DNA in different functional states. We determined the crystal structure of Thermotoga maritima Rad50NBD (nucleotide‐binding domain) in complex with Mre11HLH (helix‐loop‐helix domain), AMPPNP, and double‐stranded DNA. DNA binds between both coiled‐coil domains of the Rad50 dimer with main interactions to a strand‐loop‐helix motif on the NBD. Our analysis suggests that this motif on Rad50 does not directly recognize DNA ends and binds internal sites on DNA. Functional studies reveal that DNA binding to Rad50 is not critical for DNA double‐strand break repair but is important for telomere maintenance. In summary, we provide a structural framework for DNA binding to Rad50 in the ATP‐bound state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号